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ABSTRACT 24 

The ecotoxicity of platinum nanoparticles (PtNPs) widely used in for example automotive catalytic 25 

converters, is largely unknown. This study employs various characterization techniques and toxicity 26 

endpoints to investigate PtNP toxicity towards the green microalgae Pseudokirchneriella subcapitata 27 

and Chlamydomonas reinhardtii. Growth rate inhibition occurred in standard ISO tests (EC50 values of 28 

15-200 mg Pt/L), but also in a double-vial setup, separating cells from PtNPs, thus demonstrating 29 

shading as an important artefact for PtNP toxicity. Negligible membrane damage, but substantial 30 

oxidative stress was detected at 0.1-80 mg Pt/L in both algal species using flow cytometry. PtNPs 31 

caused growth rate inhibition and oxidative stress in P. subcapitata, beyond what was accounted for by 32 

dissolved Pt, indicating NP-specific toxicity of PtNPs. Overall, P. subcapitata was found to be more 33 

sensitive towards PtNPs and higher body burdens were measured in this species, possibly due to a 34 

favored binding of Pt to the polysaccharide-rich cell wall of this algal species. This study highlights the 35 

importance of using multi-method approaches in nanoecotoxicological studies to elucidate toxicity 36 

mechanisms, influence of NP-interactions with media/organisms, and ultimately to identify artefacts 37 

and appropriate endpoints for NP-ecotoxicity testing.   38 
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INTRODUCTION 39 

The aquatic fate and toxicity of various metal nanoparticles have been studied intensively in recent 40 

years,1 but very few studies have focused on the effects of platinum nanoparticles (PtNPs) on aquatic 41 

organisms. This is somewhat surprising considering the extensive use of PtNPs in automotive catalytic 42 

converters during the past decades. In the three-way catalytic converter, Pt is wash-coated onto a 43 

ceramic carrier and deposited as NPs,2 typically in the size range of 1-10 nm.3 The well-known 44 

catalytic activity of Pt is improved for nanostructured particles, allowing for an increased specific 45 

surface area of the Pt.4 During use, abrasion of the catalytic converter will cause emission of Pt to the 46 

environment, mainly as elemental nanocrystalline Pt attached to µm-sized alumina particles.5 47 

Automotive catalysts represent the largest use of Pt and one of the main sources for emissions into the 48 

environment.6 Emitted particles will be spread in the environment via atmospheric transport and/or 49 

stormwater runoff into drainage systems. Thus, elevated Pt levels have been detected in roadside dust, 50 

river sediments, aquatic organisms6,7 and even in Greenlandic snow isolated from heavy traffic.8  51 

The ecotoxicological effects of PtNPs in the aquatic environment remains, however, largely unknown. 52 

Zebrafish embryos exposed to 3-10 nm PtNPs capped with polyvinyl alcohol, showed hatching delays, 53 

concentration-dependent drop in heart rate, touch response, and axis curvature.9 Similarly, 10 nm 54 

PtNPs influenced the heart rate of zebrafish embryos, as well as hatching and morphology, while also 55 

causing mortality and cytotoxicity in in vitro assays.10 More recently, PtNPs in the size range of 30-60 56 

nm were shown to inhibit the growth of green algae with a 72 h mean effective concentration (EC50,72h) 57 

of 17 mg Pt/L.11 58 

Algal toxicity data are required in hazard assessments schemes for chemical classification and 59 

regulation,12 but NPs comprise a challenge to aquatic toxicity testing, due to their heterogeneous and 60 

dynamic nature when suspended in aqueous media.13 This results in varying exposure concentrations 61 
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during incubation which ultimately affect the test validity and reproducibility.14–16 The issue of NP 62 

transformation during incubation is further magnified for algal growth inhibition tests, due to the 63 

exponential increase in algal cells as well as the presence of their exudates and metabolic products.17 64 

The presence of relatively high concentrations of NPs in algal growth inhibition tests may also restrict 65 

light from reaching the algae, thereby causing growth inhibition as a result of a physical shading effect 66 

and not as an effect of toxicity to the algae.14,15,18  67 

When conducting algal toxicity testing for regulatory purposes, the tested substances, are considered 68 

hazardous to the aquatic environment when the mean effective concentration (EC50) is ≤ 100 mg/L in 69 

tests with either algae, crustaceans or fish.12 Consequently, the algal testing setup needs to be valid 70 

even at relative high NP-concentrations, compared to relevant environmental exposure concentrations. 71 

The algal test was originally developed for soluble chemicals, for which a high concentration is only 72 

problematic in the case of poorly soluble or very colored substances.19 As NPs are not soluble 73 

chemicals, but rather particles suspended in the test medium, it is important to investigate testing 74 

artefacts, such as shading, to evaluate the appropriateness of the currently used standard tests.20 75 

Currently, the outcome of standard toxicity testing is applied in hazard identification and regulation of 76 

NPs, although the mechanisms behind the test outcome rarely are understood completely. A testing 77 

scheme involving various endpoints may contribute to a better understanding of potential NP-specific 78 

ecotoxicological effects and form a more solid foundation for NP regulation.  79 

This study aims to investigate potential mechanisms involved in the growth rate inhibition caused by 80 

PtNPs in the standard algal test used for hazard identification purposes. A multi-method approach is 81 

applied to elucidate the role of: 1) Physical obstruction of light, referred to as shading, 2) Cellular 82 

effects including oxidative stress and membrane damage, 3) Dissolution of PtNPs, and 4) Association 83 

of PtNPs to algal cells, determined as measured body burdens. Different biological endpoints are 84 
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compared for PtNPs and dissolved Pt (PtCl4) in two algal species P. subcapitata and C. reinhardtii and 85 

paralleled with the aggregation and dissolution behavior of PtNPs in the respective algal media. 86 

  87 
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MATERIALS AND METHODS 88 

Test materials, chemical analysis and preparation of test suspensions 89 

The PtNPs were synthesized as described by Engelbrekt and co-workers,4 yielding an aqueous 90 

suspension of pH4, containing residual amounts of starch (0.6% weight in total), 6 mM glucose, 4 91 

mM gluconic acid, 10 mM 2-(N-morpholino)ethanesulfonic acid (MES), 9 mM K+ and 12 mM Cl-. The 92 

starch stabilized PtNPs have a primary metal core diameter of 1.7 ± 0.2 nm and an outer diameter 93 

(including the starch coating) of 5.8-6.0 nm as determined by transmission electron microscopy (TEM) 94 

and thermogravimetric analysis.4 The nominal Pt concentration of 390 mg Pt/L in the synthesized 95 

suspension was confirmed by inductively coupled plasma – mass spectrometry (ICP-MS; Agilent 7700, 96 

Morges, Switzerland) upon aqua regia digestion, yielding an average recovery of 109 ± 1% (n=3).  97 

The two algal species P. subcapitata and C. reinhardtii were cultivated in ISO 8692 medium,21 and 98 

four-fold diluted Tris-Acetate-Phosphate medium,22 respectively (referred to hereafter as ISO and 99 

TAP4 media). Prior to all characterization and algal toxicity testing, a stock suspension was prepared 100 

from an aliquot of the synthesized suspension by adjusting the pH using 1 M NaOH and adding algal 101 

nutrients to match the two algal test media. These stock suspensions were then diluted further with 102 

algal medium to prepare the test concentrations. The Pt concentration in selected stock and diluted test 103 

suspensions of both PtCl4 (0.1-400 mg Pt/L) and PtNPs (10-390 mg Pt/L) was measured by ICP-MS 104 

upon preparation. PtNPs were digested before ICP-MS by evaporating the media and re-dissolving the 105 

solid fraction in aqua regia. The average recovery was 85 ± 15% (n=66). A series of studies on abiotic 106 

ROS generation was carried out with a second batch of PtNP synthesized as outlined above. For this 107 

batch the average recovery was 68 ± 9.6% (n=6) in media suspensions of 1-200 mg Pt/L. Platinum (IV) 108 

chloride (PtCl4, 96%) was purchased from Sigma-Aldrich and included as a soluble Pt material. Other 109 
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reagents were analytical grade and all suspensions were prepared with Ultrapure Milli-Q water (> 18.2 110 

Ω Milli-Q Direct system, Merck Millipore, Darmstadt, Germany).  111 

 112 

Characterization of PtNPs suspended in algal media 113 

The size distributions and zeta potentials of PtNPs in algal media were determined by Dynamic Light 114 

Scattering (DLS) using a Malvern ZetaSizer Nano ZS (Malvern Instruments, Malvern, UK). 115 

Measurements were conducted 1, 24 and 48 h after preparation of the PtNP suspensions of 30 mg Pt/L 116 

in TAP4 and ISO medium, respectively. The size distributions of PtNPs suspended in both media were 117 

also determined by Asymmetric Flow Field-Flow Fractionation (AsFlFFF) using an AF2000 (Postnova 118 

Analytics, Landsberg, Germany) immediately upon preparation and after 1, 24 and 48 h. For the 119 

elemental detection, the AsFlFFF system was coupled to an ICP-MS (Agilent 7700, Morges, 120 

Switzerland) monitoring the 195Pt signal. The outflow of the AsFlFFF system was connected directly to 121 

the nebulizer of the ICP-MS.  122 

The PtNP agglomeration and sedimentation behavior during 48 h in the two media were investigated 123 

respectively by nanoparticle tracking analysis (NTA) with a NanoSight LM10 (Malvern Instrument, 124 

Malvern, UK) and spectrophotometry (Agilent 8453, Agilent Technologies, USA). The PtNP 125 

suspensions (80 mg Pt/L) were prepared as for toxicity testing, and stored at 4 °C between 126 

measurements, with TAP4 and ISO media as blank references. The measurements were conducted 1, 127 

24 and 48 h after preparation of suspensions. The size and number of agglomerates (> ≈ 50 nm) present 128 

in the suspensions were determined using NTA 3.1 with automated settings, camera level 16 and a 129 

detection threshold of 5. For each measurement, three videos of 60 s were recorded and the sample 130 

advanced before each video. Sedimentation was investigated by recording the absorbance of 131 

suspensions at wavelengths ranging from 190 to 1100 nm.  132 
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The concentration of dissolved Pt in the stock suspensions of PtNPs and dilutions in algal media was 133 

determined by ultracentrifugation (Beckman L8-60M) using a swinging bucket rotor (SW 41 Ti; 134 

Beckman). PtNPs were suspended at 68 mg Pt/L in Milli-Q, ISO and TAP4 media. Immediately upon 135 

suspension, and after 48 h incubation under algal testing conditions, samples of 10 mL (n=2) were 136 

centrifuged for 16 h at 3×104 rpm (68000 × g) to ensure settling of particles ≥ 5.7 nm. The supernatant 137 

(5 mL) was removed, acidified with nitric acid and the Pt content was measured by ICP-MS. 138 

The abiotic generation of reactive oxygen species (ROS) by PtNPs and PtCl4 suspended in algal media 139 

(without algae present) was determined using the fluorescent dye 2’,7’-dichlorodihydrofluorescein 140 

diacetate (H2DCF-DA, Sigma Aldrich) as described by Ivask and co-workers.23 Specific details are 141 

given the Supporting Information (SI).  142 

 143 

Algal growth rate inhibition and 
14

C-assimilation tests  144 

Tests were performed in accordance with the ISO 8692 algal growth inhibition test protocol21 with 145 

modifications as described below, and 48 h incubation.24 Tested concentrations (n=3) and controls 146 

(n=6) were inoculated with algae (104 cells/mL) yielding average control growth rates of 1.0-1.3 d−1 for 147 

P. subcapitata and 1.7-1.8 d−1 for C. reinhardtii. A maximum pH change of 1.7 units occurred in 148 

controls as well as exposed algae during the 48 h incubation. The quantity of algal pigments was 149 

quantified at 0, 24 and 48 h by acetone extraction25 followed by fluorescence spectrophotometry 150 

(Hitachi F-7000) at 430 and 670 nm excitation and emission wavelengths, respectively. The 14C-151 

incorporation was performed as described in previous work16 (details are included in SI). A maximum 152 

change in pH of 1.5 units was measured during the 2 h incubation. 153 

The influence of PtNPs’ shading on algal growth rates and 14C-assimilation inhibition was studied 154 

under the same conditions as described above, but using a double-vial test setup. Algae in media (2 155 
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mL) were kept in a small inner-vial, and physically separated from the PtNP suspension (6 mL) placed 156 

in the larger outer-vial (Figure S1). The control growth rates were in the range given for the regular 157 

setup. Finally, the potential photochemical efficiency was monitored over 48 h in algae exposed to 0, 2 158 

and 80 mg Pt/L, as described in the SI. 159 

 160 

Algal cell damage and oxidative stress 161 

Test suspensions were prepared in volumetric flasks, inoculated to 105 cells/mL and distributed (25 162 

mL, n=3) to 100 mL Erlenmeyer flasks incubated as described in the SI. Tests with PtCl4 were 163 

conducted using the setup for growth inhibition tests. A maximum variation of 0.4 (PtNPs) and 1.3 164 

(PtCl4) pH-units was found before testing and after 48 h incubation in controls and the highest test 165 

concentrations. After 2, 24 and 48 h incubation, algae were sampled from each concentration and 166 

controls, and incubated with fluorescent dyes for 30 min in the dark. CellROX Green (Life 167 

Technologies Europe B.V., Zug, Switzerland) was employed as intracellular oxidative stress indicator 168 

(5 µM), and propidium iodide (Sigma-Aldrich, Buchs, Switzerland) was used to determine membrane 169 

permeability alteration (7 µM), as previously described in details for C. reinhardtii.26,27 Unexposed 170 

algae were used as negative controls, whereas the positive controls prior to staining, were incubated 171 

with 10 mM H2O2 (30 min in the dark) and in a 90°C water bath (10 min) for CellROX Green and 172 

propidium iodide, respectively. Flow cytometry was conducted using a BD Accuri C6 flow cytometer 173 

(BD Biosciences, San Jose, CA, USA) with an argon-ion excitation laser (488 nm) and FL1 green 174 

channel (530 ± 15 nm), FL2 orange channel (585 ± 20 nm) and FL3 red channel (670 ± 25 nm). For 175 

tests with PtCl4, results were analyzed using a BD FACSCanto II flow cytometer (BD Biosciences, San 176 

Jose, CA, USA). Gating strategies were applied to discriminate positively stained cells from the 177 
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negative control (Figure S2-4). Data analysis was conducted using BD Accuri C6 software 264.15 and 178 

FlowJo V10 for the two flow cytometers, respectively. 179 

 180 

Algal body burden of PtNPs 181 

Algae were exposed to PtNPs (2 and 80 mg Pt/L) in triplicate 250 mL flasks with 75 mL suspension 182 

inoculated to105 cells/mL. A sample of 20 mL suspension from each replicate was taken after 2, 24 and 183 

48 h incubation and filtered through a 3.0 µm nitrocellulose filter (Merck Millipore). The algal cells 184 

retained by the filter were gently washed with 20 mL medium before filters were digested in Teflon 185 

tubes (1 mL aqua regia at 90°C for 2 h). The Pt content was determined by ICP-MS analysis (Agilent 186 

7700, Morges, Switzerland) after dilution with 5% (v/v) HCl (Baker, instar grade). The cell number for 187 

each replicate suspension was determined after 0, 2, 24 and 48 h incubation on a Coulter Multisizer III 188 

particle counter (Beckman-Coulter, Switzerland). Suspensions of PtNPs in media (80 mg Pt/L) without 189 

algae were applied as background controls, and treated as described above. The particle counts and Pt 190 

content of digested filters were all background corrected using data from these controls. 191 

 192 

Atomic force microscopy imaging 193 

For atomic force microscopy (AFM) both algal species were exposed to PtNPs (10 mg Pt/L) under the 194 

same conditions as described for growth inhibition testing. After 48 h incubation, a drop of each 195 

suspension was placed on sliced silicon wafers and allowed to dry. To remove dry salt particles, the 196 

wafer pieces were carefully washed with distilled water and dried again with nitrogen gas. Atomic 197 

Force Microscope (AFM NX20, Park Systems) images were taken of the two samples using non-198 

contact mode, an amplitude of 1.67×106 nm and a scan rate of 1 Hz. 199 

 200 
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Statistical analysis and data interpretation 201 

Mean effective concentrations (EC50) and corresponding 95% confidence intervals for the inhibition of 202 

algal growth rates and carbon assimilation were estimated using the statistical program LOG457, which 203 

applies the log-logistic model for nonlinear regression analysis of responses versus concentration, 204 

minimizing the sum of squares between calculated and measured inhibitions.28 Nominal concentrations 205 

were used, as the average Pt recovery from ICP-MS analyses was 84 ±15% in selected stock and test 206 

suspensions of PtCl4 and PtNPs (n=72). Comparison of growth rate inhibition data is based on EC50-207 

values and their variability provided by corresponding 95% confidence intervals.  208 

  209 
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RESULTS AND DISCUSSION 210 

Characterization of PtNPs in algal media  211 

The size distributions of PtNPs suspended in algal media were determined after 1, 24 and 48 h by 212 

AsFlFFF (4 mg Pt/L), DLS (30 mg Pt/L) and NTA (80 mg Pt/L), see Figure 1. A size peak of 10 nm 213 

was identified by AsFlFFF and DLS. For NTA the size detection limit is higher than 10 nm, but NTA 214 

measurements contribute with information about agglomeration of PtNPs in algal media. As shown in 215 

Figure 1C, the number of PtNP agglomerates (> 50 nm) increased almost three orders of magnitude in 216 

the TAP4 medium, whereas PtNPs in the ISO medium remained within the same order of magnitude 217 

over the 48 h period. The agglomerates formed were in the size range of 50-400 nm for both media; 218 

this finding is supported by the DLS measurements, showing hydrodynamic diameters within this range 219 

at all times measured (Figure 1B). Moreover, the measured zeta potentials of PtNP suspensions (20-25 220 

mg Pt/L) after 1 and 48 hours indicated higher stability of PtNPs in ISO (-28 ± 0.3 mV) than in TAP4 221 

medium (-15 ± 0.9 mV). Besides the increasing agglomerate number, agglomerate sizes increased with 222 

time according to NTA (Figure 1C). Although the PtNPs agglomerated substantially, especially in the 223 

TAP4 medium, the UV-VIS absorbance did not change during the 48 h, indicating that the PtNPs 224 

remained suspended, and did not settle in the suspensions (Figure S5). The ICP-MS analyses of 225 

samples fractionated using AsFlFFF showed constant Pt recoveries in ISO medium over time (around 226 

80% ), whereas recoveries in TAP4 decreased from 80% at 0 h to 62% and 63% at 24 and 48 h, 227 

respectively (Table S2). This decrease may be due to agglomeration, as larger agglomerates will not 228 

elute from the channel and hence not be detected by ICP-MS.  229 

The concentration of dissolved Pt in PtNPs suspensions (total concentration 68 mg Pt/L) prepared in 230 

Milli-Q water, ISO and TAP4 media and incubated for 48 h under algal testing conditions were in the 231 

ranges of 2.3-2.4 mg Pt/L (Milli-Q water suspensions), 2.0-2.2 mg Pt/L (ISO medium suspension) and 232 
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2.0-2.5 mg Pt/L (TAP4 medium suspension). The concentrations increased only slightly during the 48 233 

h incubation. This shows that dissolved Pt (corresponding to about 3% of the total Pt content) in the 234 

test suspensions mainly was non-reacted Pt from the particle synthesis. 235 

For the abiotic ROS generation analyses of PtNPs and PtCl4 in both algal media (Figure S6) a relatively 236 

high, and varying, background DCF fluorescence was measured. As a consequence, the abiotic ROS 237 

was determined concomitantly for both PtNPs and PtCl4 in the two media within one test run, to allow 238 

for a relative comparison between the ROS generation of the two forms of Pt. It should be noted that 239 

these analyses were made using another batch of PtNPs than otherwise used in this study. The PtNPs in 240 

this new batch were synthesized as described in the Materials and Methods and identical primary 241 

diameters were obtained. The algal-free assay measuring abiotic ROS generation revealed increasing 242 

DCF fluorescence relative to the backgrounds in a concentration-dependent manner for PtNPs in both 243 

media. A slightly higher response was detected in the ISO medium compared to TAP4, especially after 244 

48 h. Conversely for PtCl4, the relative DCF fluorescence was greater in TAP4 than in ISO medium. 245 

Collectively, these data suggest that abiotic ROS generation is influenced by the media and that abiotic 246 

ROS measured in the PtNP suspension cannot be solely ascribed to dissolved Pt. The abiotic ROS 247 

generation activity by PtNPs of various shapes has been reported as low, based also on a cell-free DCF 248 

assay.29 Comparison of results is however challenged by differences in methods and media applied.  249 

 250 

Effects of PtNPs on algal photosynthesis, carbon assimilation and growth rate 251 

Exposure to PtNPs resulted in decreased growth rates of both P. subcapitata and C. reinhardtii in 252 

standard ISO tests, with EC50,48h values (95% confidence intervals in brackets) of 15 [13-16] and 201 253 

[173-235] mg Pt/L, respectively. Based on the results from tests with P. subcapitata, the PtNPs would 254 

be classified as “harmful” to algae in accordance with the CLP regulation.12 These results are generally 255 
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in agreement with the reported EC50,72h value of 17 mg Pt/L for growth inhibition in P. subcapitata 256 

exposed to PtNPs.11 Due to the dark color of the suspensions, we hypothesized that PtNPs limited the 257 

available light for algal growth causing shading, thus inhibiting growth physically rather than by a toxic 258 

action of the PtNPs to the algal cells. As growth rate inhibition also occurred in the double-vial setup 259 

with no contact between algae and PtNPs, we cannot falsify this hypothesis. The growth rate inhibition 260 

found using the double-vial setup was however slightly lower that in the standard test setup with 261 

EC50,48h = 45 [30-68] and 373 [167-838] mg Pt/L for P. subcapitata and C. reinhardtii, respectively 262 

(Figure 2A, C). These results suggest that physical shading from PtNPs lowered the algal growth rates, 263 

but also indicate that PtNPs inhibit algal growth rates by other means than shading, possibly by direct 264 

toxic effects. However, the higher response in the regular setup could also arise from PtNPs adhesion to 265 

the algal surface, potentially causing “localized” shading and/or interference with the membrane, 266 

nutrient uptake and other cellular processes involving the cell surface.14 As described by Hjorth and co-267 

workes 30 :“Shading and toxicity are not additive effects. The impact of shading cannot be eliminated 268 

by simply subtracting the effect observed in the shading test from the actual test. Deducting the effect 269 

of shading is more complicated for NPs as the exact mode of action is unknown and the observed 270 

effects are potentially multicausal.” Also, shading can mask or limit potential toxicity, because slowly 271 

growing algae under low light intensity are less sensitive to toxicants than faster growing algae.30 272 

In agreement with our results, shading effects have been reported to markedly influence growth rate 273 

inhibition in green algae exposed to gold NPs31 and carbon nanotubes,32 while studies with ZnO, CuO 274 

and TiO2 have found shading negligible.14,33 It is likely that exposure concentration, suspension color, 275 

and NP adhesion to algal surfaces are influencing factors on shading. Consequently, growth rate 276 

inhibition alone is not an appropriate endpoint for disclosing PtNP toxicity, as it does not allow for 277 

discrimination between direct toxic effects and indirect physical effects. For this reason, 14C-278 
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assimilation was included as an alternative endpoint to quantify the toxicity of PtNPs towards the two 279 

algal species (Figure 2B, D). Comparable EC50 values were obtained for P. subcapitata and C. 280 

reinhardtii of 47 [43-50] and 37 [31-46] mg Pt/L, respectively, in the regular setup, and 32 [16-65] and 281 

32 [18-56] mg Pt/L in the double-vial setup. The slopes of the concentration response curves are 282 

however different between data from the shading and the regular test with C. reinhardtii (Figure 2B). 283 

As the EC50 values does not differ between the regular and the double-vial setup, the 2 h 14C-284 

assimilation inhibition in both algal species may be solely ascribed to physical shading effects of 285 

PtNPs. Thus, the endpoint of 2 h carbon assimilation is even more sensitive to shading and/or less 286 

applicable for testing PtNP toxicity than the standard 48 h growth rate inhibition test. 287 

Using the ultracentrifugation results, concentration–response data for PtNPs were recalculated based on 288 

the dissolved Pt concentration rather than the total nominal concentration (Figure 2A, C). For C. 289 

reinhardtii these data aligned closely with the PtCl4 data, as also seen by the overlapping 95% 290 

confidence intervals of the EC50 values. Thus, the PtNP toxicity to this algal species may be caused by 291 

the dissolved Pt. For P. subcapitata however, data based on dissolved Pt showed greater inhibition than 292 

PtCl4, suggesting a possible NP-specific effect.  293 

Taken together, the 48 h growth inhibition data (Figure 2A, C) demonstrate that P. subcapitata is more 294 

sensitive to the toxic effects of both PtCl4 and PtNPs than C. reinhardtii. Furthermore, the results from 295 

the double-vial setups indicate that P. subcapitata is more affected by shading than C. reinhardtii. It 296 

may be, that P. subcapitata is less efficient in adapting to light conditions over time, and thus more 297 

affected by this physical effect than C. reinhardtii. The potential photochemical efficiency monitored 298 

over 48 h in algae exposed to 0, 2 and 80 mg Pt/L (Figure S7 was indeed slightly lower for P. 299 

subcapitata than C. reinhardtii, both for controls and exposed algae. This agrees with the difference in 300 
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growth rate measured for the two algal species controls in growth rate inhibition tests (app. 1.1 vs. 1.8 301 

d-1 for P. subcapitata and C. reinhardtii, respectively).  302 

Overall, the results demonstrate that shading from PtNPs does occur and affects the growth rates 303 

measured in a standard guideline test. If the double-vial setup had not been applied, comparing the 304 

results for PtCl4 and PtNPs in Figure 2 could easily be misinterpreted and lead to faulty conclusions. 305 

Due to the influence of shading, neither growth rate inhibition nor 14C-assimliation can be considered 306 

appropriate endpoints to test algal toxicity of PtNPs for hazard identification purposes. As the PtNP 307 

toxicity may be attributed to dissolved Pt for C. reinhardtii, but not entirely for P. subcapitata, the NP-308 

specific effect(s) found could be algal species specific though the behavior of PtNPs in the two 309 

different algal media used, may also affects the toxicity. 310 

 311 

Cellular effects of PtNPs in algae: Oxidative stress and membrane damage 312 

Extensive oxidative stress was observed for both algal species upon PtNP exposure, as demonstrated by 313 

the increasing percentage of stained cells (Figure 3A, B). C. reinhardtii was highly stressed after 2 h 314 

exposure to PtNPs, even at the lowest exposure concentration (0.1 mg Pt/L). However, the algal 315 

population recovered over time for all PtNP-concentrations up to 10 mg Pt/L. Some indication of 316 

recovery over time was also seen for P. subcapitata, although much less pronounced than for C. 317 

reinhardtii. After exposure to PtCl4, oxidative stress was only detected in C. reinhardtii with no 318 

indication of recovery over time as it was seen after exposure to PtNPs (Figure 3D). Interestingly, no 319 

signs of oxidative stress were detected in P. subcapitata upon PtCl4 exposure (Figure 3C), indicating 320 

the oxidative stress from PtNP exposure is not related to the dissolved Pt. Despite the substantial 321 

percentage of cells with oxidative stress caused by PtNPs, the percentage of cells with membrane 322 

damage were < 2% for P. subcapitata and < 22% for C. reinhardtii (supporting data, Figure S8). This 323 
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suggests that the antioxidant systems of both algal species were able to cope with the oxidative stress 324 

induced by PtNPs, thereby preventing its progression to membrane damage. In vitro studies using 325 

human cell lines similarly report that PtNPs do not affect the membrane integrity.10,34,35 Whether or not 326 

PtNPs induce oxidative stress in human cells is more ambiguous, with biotic ROS and oxidative stress 327 

from PtNPs being both confirmed36 and rejected,29,35 and even detoxification of ROS has been 328 

suggested.34
 329 

 330 

Algal body burden of PtNPs 331 

Although exposed to similar PtNP concentrations in suspension, the Pt body burden differed greatly for 332 

the two algal species (Figure 4A, B). In general, the body burdens were higher for P. subcapitata, 333 

especially at the highest tested concentration of 80 mg Pt/L. This may explain the more pronounced 48 334 

h growth rate inhibition found for this algal species since higher attachment of PtNPs to the algal 335 

surface is likely to cause a higher (local) shading effect and/or toxicity. For C. reinhardtii the body 336 

burden decreased significantly over 48 h for 2 mg Pt/L, but increased slightly at 80 mg Pt/L. This 337 

observation correlates well with the oxidative stress pattern showing recovery at 2 mg Pt/L, but not at 338 

80 mg Pt/L (Figure 3). Conversely, P. subcapitata recovered slightly from oxidative stress after 48 h at 339 

the highest concentration of 80 mg Pt/L and the body burden also decreased with time at this 340 

concentration (Figure 3 and 4A). The differences in body burdens in the two algal species may relate to 341 

the different composition of their cell walls. The cell wall of P. subcapitata contains cellulose and 342 

polysaccharides, whereas the cell wall of C. reinhardtii does not,37 but rather consists of several layers 343 

of glycoproteins.22 It has been proposed, that while Pt (II) has higher affinity for amino acids and 344 

proteins, Pt (IV) may preferentially bind to a polysaccharide matrix.38 This may explain why higher 345 

growth rate inhibition was found for P. subcapitata than C. reinhardtii upon PtCl4, and PtNP exposure. 346 
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Another factor influencing the body burden is the higher growth rate of C. reinhardtii compared to P. 347 

subcapitata. This causes the ratio of PtNPs to algal cells to decrease faster in C. reinhardtii, and thus 348 

yield a lower body burden after 48 h exposure to PtNPs.  349 

In a separate series of tests, the two algal species were examined by AFM after 48 h exposure to PtNP, 350 

providing some indication of PtNP-agglomerates on the algal cell surface (Figure S9). Several studies 351 

have demonstrated how various NPs attach to the surface of algae.14,15,33 Attachment of NPs to algae is 352 

most likely a dynamic process, changing the NP body burden over time depending on algal physiology 353 

and NP properties. This is an area that needs more investigation and could prove very useful for the 354 

interpretation of data from aquatic toxicity testing of NPs.  355 

 356 

PtNP behavior in test media and related biological effects 357 

Overall, the characterization of PtNPs in algal media showed a higher degree of agglomeration and 358 

dissolution of PtNPs in the TAP4 medium, whereas slightly more abiotic ROS was generated in the 359 

ISO medium. The implications of these findings are discussed below, along with the possible 360 

connection between the toxicity endpoints, and the difference in toxicity of PtNPs vs. dissolved Pt.  361 

According to NTA, a significantly higher number of agglomerates was formed during 48 h incubation 362 

in the TAP4 medium (C. reinhardtii) than in the ISO medium (P. subcapitata). The lower PtNP body 363 

burden in C. reinhardtii cells may be linked to the agglomeration behavior in the TAP4 medium, as 364 

smaller particle sizes theoretically favor greater adhesion to the algal surface, due to the increased 365 

number of particles available for contact with the algae. The lower Pt body burden in C. reinhardtii 366 

may in turn explain why this species was less affected in the growth inhibition test with PtNPs, as less 367 

contact between algal cells and PtNPs also reduces any localized shading and/or physical effects. 368 

 369 
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Both AsFlFFF and ultracentrifugation data showed higher dissolution of PtNPs in the TAP4 medium 370 

(C. reinhardtii) than in the ISO medium (P. subcapitata). The growth rate inhibition of C. reinhardtii 371 

could be explained by the dissolved fraction of Pt in the medium. For P. subcapitata however, the 372 

PtNPs caused higher growth rate inhibition than explained by the measured dissolved Pt. Furthermore, 373 

the oxidative stress responses in the two algal species were not governed by dissolved Pt. For P. 374 

subcapitata all cells were affected by PtNPs, but none by PtCl4 (Figure 3). C. reinhardtii cells were 375 

affected by both PtNPs and PtCl4, but the presence of dissolved Pt cannot fully account for the level of 376 

oxidative stress nor the recovery observed when cells were exposed to PtNPs (Figure 3). To fully 377 

understand the role of dissolved Pt in algal toxicity, knowledge on speciation and binding to media 378 

components is crucial. Unfortunately, speciation data such as solubility constants is limited39 and not 379 

included in speciation models such as MINTEQ. The main differences between the two media are the 380 

pH, buffer types and the content of chloride and organic components. The ISO medium (pH 8) contains 381 

sodium bicarbonate buffer, whereas TAP4 (pH 7) contains TRIS, sodium acetate and roughly half the 382 

chloride amount of the ISO medium. The speciation and solubility of Pt is influenced by chloride 383 

species, pH, and organic ligands such as citric acid.39–41 However, determining the exact Pt speciation 384 

in the actual media is challenged by the different scopes and variables of available speciation studies, 385 

as well as the obscure number of chemical species found even in a simple system of Pt, chloride and 386 

water.41  387 

Abiotic ROS, generated by PtNPs when suspended in the two algal media, may have caused or 388 

contributed to the oxidative stress detected in both algal species. Abiotic ROS was however, also 389 

generated by PtNPs in Milli-Q water (data not shown) suggesting that the ROS generation from PtNPs 390 

may occur on the surface of PtNPs. This is further supported by the results of the positive controls in 391 

the tests of abiotic ROS (Figure S6) and oxidative stress (Figure S3 and S4) as no abiotic ROS or 392 
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oxidative stress occurred from the positive control (H2O2) or the dissolved reference (PtCl4) in the ISO 393 

medium, whereas PtNPs caused very clear responses in both these tests. Similarly, it has been 394 

suggested by other publications that NPs may induce elevated intracellular ROS by direct 395 

physical/chemical interactions with biomolecules.42,43 In this case, the algal species with the highest Pt 396 

body burden, i.e. P. subcapitata, would be expected to exhibit most oxidative stress. However, most 397 

oxidative stress was found in C. reinhardtii cells. In contrast, P. subcapitata was the most affected 398 

species in the growth inhibition tests. Thus, oxidative stress and growth rate inhibition appear 399 

unrelated. Generally, ROS generation and oxidative stress has been suggested as likely mechanisms 400 

related to NP toxicity in algae and other aquatic microorganisms, although the causal link between 401 

particle properties and ROS generation or effects is not yet established.42 The formation of extra- or 402 

intracellular ROS can trigger a cascade of cellular events that may cause toxicity.42 The reverse may 403 

also occur, i.e. that NPs induce toxicity by another mechanism, such as DNA lesions, leading to 404 

cellular stress and accumulation of intracellular ROS.43 DNA damage is a known effect of platinum 405 

compounds and is also confirmed for PtNPs in human cells.35,36 However, whether DNA damage 406 

results in cytotoxicity strongly depends on the nature of formed DNA adducts, as documented for the 407 

stereoisomers cis- and transplatin in their toxicity towards cancer cells.35 Least oxidative stress was 408 

found for P. subcapitata even though higher toxicity occurred for this species and more abiotic ROS 409 

was produced in the medium of this species (ISO medium). The many pathways interlinking 410 

abiotic/biotic ROS, oxidative stress, DNA damage and cellular toxicity challenge the establishment of 411 

causality.  412 

Our results demonstrate that shading is an important artefact in standard algal growth rate inhibition 413 

testing of PtNPs. If not taken into account, the standard method is not applicable for regulatory hazard 414 

identification purposes. The shading issue will be relevant for other NPs as well, especially those with 415 
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EC50 values in the higher end of the classification range (10-100 mg/L) and those adhering strongly to 416 

the algal surface. While the environmental relevance of toxicity testing of NPs at such high 417 

concentration levels is questionable, it is of high regulatory relevance for toxicity identification and 418 

ranking as well as classification, and labeling of NPs within the current regulatory framework. The 419 

cellular toxicity quantified by flow cytometry revealed no marked membrane damage, but significant 420 

oxidative stress in both algal species. This may be linked with abiotic ROS generated by the PtNPs. For 421 

P. subcapitata, PtNPs caused both growth rate inhibition and oxidative stress in higher levels than what 422 

could be accounted for by dissolved Pt. This indicates a NP-specific effect possibly related to the 423 

catalytic properties of PtNPs and/or their adhesion to algal cells. Overall, P. subcapitata was more 424 

sensitive to the effects of PtNPs than C. reinhardtii. Furthermore, higher body burdens were measured 425 

for P. subcapitata, most likely due to favored binding of Pt to the polysaccharide containing cell wall 426 

of this algal species. The multi-method approach in this study provided insight into the possible 427 

underlying mechanisms behind the observed PtNP-cell interaction and toxicity. Until more knowledge 428 

on NP-specific toxicity mechanisms becomes available, it is crucial to investigate and account for 429 

artefacts and NP interactions with organisms and media. Generally, a broader and more exploratory 430 

approach to aquatic toxicity testing, employing various endpoints and testing methods, may assist to 431 

avoid false negative as well as false positive test results and advance the understanding within the field 432 

of nanoecotoxicology.   433 
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SUPPORTING INFORMATION  565 

Additional experimental details regarding size distribution measurements by AsFlFFF, abiotic ROS 566 

formation by PtNPs and PtCl4, algal culturing, algal shading and 14C-assimilation tests, gating 567 

strategies for flow cytometry, as well as determination of the potential photochemical efficiency of 568 

PSII in algae. Results and data for sedimentation of PtNPs in algal media, abiotic ROS generation by 569 

PtNPs and PtCl4 in algal media, potential PSII photochemical efficiency and membrane damage in 570 

algae, and atomic force microscopy images of algal cells exposed to PtNPs.  571 
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 572 

Figure 1. Size distributions after different incubation periods (1-48h) for PtNPs suspended in TAP4 573 

medium (top row) and ISO medium (bottom row) determined by different methods. Column A) 574 

Suspensions of 4 mg Pt/L analyzed by Asymmetric Flow Field-Flow Fractionation (AsFlFFF); Column 575 

B) Suspensions of 30 mg Pt/L analyzed by Dynamic Light Scattering (DLS); Column C) Suspensions 576 

of 80 mg Pt/L analyzed by Nanoparticle Tracking Analysis (NTA).  577 
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578 
Figure 2. Concentration-response data and fitted curves from 48 h growth rate inhibition tests (A and 579 

C) and 2 h 14C-assimilation tests (B and D) with C. reinhardtii (A and B) and P. subcapitata (C and D) 580 

for PtNPs and PtCl4. For PtNPs two setups were applied in accordance with Figure S1: A regular setup 581 

and a double-vial setup for investigation of shading effects. Furthermore, the concentration-response 582 

data and curves for PtNPs was recalculated based on the dissolved Pt fraction, and plotted for A and C 583 

to reflect the toxicity of the dissolved Pt in the PtNP suspension.   584 
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 585 

Figure 3. Oxidative stress in P. subcapitata and C. reinhardtii upon 2, 24 and 48 h exposure to PtCl4, 586 

in single concentrations (0.14-73 mg Pt/L) and PtNPs in two parallel tests with triplicate low 587 

concentrations (0.1-2 mg Pt/L) and high (2-80 mg Pt/L), respectively. Data for C. reinhardtii exposed 588 

to PtCl4 for 2 h are based on very low cells numbers. The error bars represent standard deviations. 589 
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  590 

Figure 4. Body burdens of platinum for P. subcapitata (A) and C. reinhardtii (B) after 2, 24 and 48 h 591 

exposure to PtNPs at 2 and 80 mg Pt/L. The error bars represent standard deviations. For body burdens 592 

determined at 80 mg Pt/L after 2 and 24 hours n=2 or n=1. For all other data n=3. The letters “a” and 593 

“b” denotes statistically significant differences in medians (p < 0.05) according to Kruskal-Wallis and 594 

Dunn’s multiple comparison tests, over time within each algal species and exposure concentration 595 

treatment.     596 
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S1 Materials and methods - additional details, including references. 31 

 32 

Size distribution measured by AsFlFFF 33 

Suspensions of 4 mg Pt/L were injected in the separation system and characterized immediately upon 34 

preparation and after 1, 24 and 48 h. A spacer of 350 µm thickness, a 20 µL loop and a regenerated 35 

cellulose (RC) membrane with a cut-off of 1 kDa were used in all the experiments. 0.01% sodium dodecyl 36 

sulfate (SDS) in 1 mM NH4NO3 (Sigma-Aldrich) solution at pH 8 was used as carrier. The optimal 37 

separation program found is detailed in Table S1. In order to characterize the sample, the system was first 38 

calibrated against polystyrene standards of known size (22, 58 and 97 nm). The following linear 39 

relationship between the logarithm of the retention ratio R (defined as elution time corresponding to the 40 

void volume divided by the retention time for a given particle) and the logarithm of the diameter (d) in 41 

nanometers was experimentally found: 42 

Log(R) = 0.4939 - 0.9539×Log(d); r = 0.9958   (1) 43 

Fractograms obtained as a function of time for each sample were converted into size distributions 44 

according to equation (1). 45 

 46 

Abiotic ROS formation  47 

H2DCF-DA was dissolved in ethanol (1.3 mM) and deacetylated to H2DCF by letting 1 mL react with 4 48 

mL 0.01 M NaOH for 30 min in the dark. The mixture was added 20 mL sodium phosphate buffer (25 49 

mM, pH 7.4) and the resulting 52 µM H2DCF solution was placed on ice in the dark until use. PtNPs and 50 

PtCl4 were added to TAP4 and ISO media in the concentration range 0.001-390 mg Pt/L. After 2 h and 48 51 

h incubation in media, under the same conditions as for growth inhibition testing, 100 µL of the PtNP 52 

suspensions was each mixed with 100 µL H2DCF solution in the wells of a 96-well black microplate 53 

(three replicates of each concentration). After 1 h incubation in the dark, the fluorescence of DCF was 54 
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measured (readings, n=3) (excitation/emission at 485/527 nm) using a fluorescence plate reader (Biotek 55 

Synergy Mx plate reader). As positive control, H2O2 was diluted in ISO and TAP4 media in the 56 

concentration range 0.16–20% (w/w). The ROS level in samples was calculated in relative fluorescence 57 

units (RFUs) by dividing the fluorescence of samples (PtNPs in media incubated with H2DCF) by 58 

fluorescence of background (media incubated with H2DCF). 59 

 60 

Algal culturing 61 

P. subcapitata was obtained from the Norwegian Institute for Water Research, Oslo, Norway (NIVA) and 62 

cultivated in ISO 8692 medium1 and the C. reinhardtii strain CPC11 was obtained from the Canadian 63 

Phycological Culture Center (CPCC, Department of Biology, University of Waterloo, Canada) and grown 64 

in four times diluted Tris-Acetate-Phosphate medium2. The two respective media are hereafter referred to 65 

as ISO and TAP4 media. For all toxicity testing, the algae were exposed in their respective cultivation 66 

medium and testing was conducted under the same incubation conditions as for the culture. For cellular 67 

toxicity, photosynthesis efficiency and body burden studies 250 mL Erlenmeyer flasks were fitted with 68 

permeable stoppers, containing 50 mL algal suspension and incubated (Infors, Bottmingen, Switzerland) 69 

at 20 ± 2°C with continuous agitation (100 rpm) and illumination from above (110 ± 10 µmol/m2/s). For 70 

growth and carbon assimilation inhibition tests 20 mL glass vials with perforated screw cap lids, 71 

containing 5 mL suspension were kept at 20 ± 2°C, continuous shaking (300 rpm) and illuminated from 72 

below by fluorescent tubes (30W/33; Philips, The Netherlands) at a light intensity of 100 ± 20 µmol/m2/s. 73 

The algal cultures were re-inoculated in fresh media every second to third day, to ensure an exponentially 74 

growing culture. 75 

 76 

Algal 
14

C-assimilation tests 77 
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Preparation of test concentrations, control and replicates was similar to the growth rate inhibition tests, but 78 

the initial algal density was 105 cells/mL. Immediately before incubation, 50 µL of NaH14CO3 solution 79 

(specific activity: 20 µCi/mL; obtained from DHI, Hoersholm, Denmark) was added to all vials which 80 

were then closed with airtight screw caps. The tests were terminated after 2 h incubation by adding 0.2 mL 81 

10% HCl to each vial (yielding pH < 2). The vials were left open overnight in a fume hood and 10 mL 82 

scintillation liquid (Optiphase “Hisafe” 3, Perkin Elmer, Waltham, MA, USA) was added to each vial. 83 

After thorough mixing, they were left in the dark for 8 h and submitted to liquid scintillation counting 84 

(Hidex 300 SL). H14CO3 solution was also added to three replicates of medium only, as controls to 85 

confirm that all added 14C that had not incorporated into biomass, was being converted into 14CO2 and 86 

removed in the evaporation step. 87 

 88 

Potential photochemical efficiency of PSII 89 

Algae exposed to PtNPs at 2 and 80 mg Pt/L, along with a control, were incubated for 48 h in triplicate 90 

100 mL flasks of 25 mL suspension. After 2, 24 and 48 h incubation, samples of 3.5 mL were drawn from 91 

all replicates, and upon 1 h of dark acclimation, fluorescence variables were measured by Fast Repetition 92 

Rate Fluorometry (FRRF) using a FastOcean FRR plus FastAct fluorometer (Chelsea Technologies Group 93 

Ltd). Six acquisitions were run per sample and each acquisition comprised of 36 sequence repeats with 94 

saturation/relaxation phases of 100/40 flashlets per sequence and a 2/50 µs pitch. By use of the program 95 

FastPro8 © (Version 1.0.50, Kevin Oxborough, Chelsea Technologies Group Ltd), the potential 96 

photochemical efficiency of PSII (Fv/Fm) was obtained, reflective of changes in the photochemical 97 

energy conversion efficiency.3 Specific blank corrections with pure medium and PtNPs suspension of 80 98 

mg Pt/L in medium were carried out to rule out a possible direct increase of the fluorescence signal due to 99 

the presence of PtNPs. Fluorescence blank readings were lower than 10% of the sample fluorescence 100 

(22% for 2 h measurements). 101 
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S2 Settings and results for AsFlFFF measurements 112 

 113 

Table S1. Separation program used for AsFlFFF measurements with an outflow of 1.0 mL/min. 114 

   Time [s]  Crossflow [mL/min] 

Injection/focusing 300 
Injection flow                
0.2 mL/min 2 

   1200 constant 1 

Crossflow 300 linear decay 0 

   300 constant 0 

  115 

 116 

Table S2. Diameters and widths of the different size distributions and Pt recoveries obtained by AsFlFFF. 117 

 ISO 8692 medium TAP4 medium 
Time for PtNPs 

in media (h) 
Size 
(nm) 

Width 
(nm) 

Recovery 
(%) 

Size (nm) 
Width 
(nm) 

Recovery 
(%) 

0 9.5 7.2 78 ± 4 9.5 7.1 80 ± 4 
1 9.4 7.1 82 ± 4 9.5 6.9 80 ± 4 
5 9.5 7.1 87 ± 4 8.4 6.1 75 ± 4 
24 9.2 7.4 83 ± 4 8.6 5.4 62 ± 3 
48 9.6 7.6 77 ± 4 8.2 5.1 63 ± 3 

   118 
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S3 Experimental setup for shading experiments 119 

 120 

 121 

 122 

 123 

 124 

 125 

 126 

 127 

 128 

 129 

Figure S1. Photos and illustrations of the test setup used for determining shading effects in the algal 130 

growth inhibition and 14C-assimilation tests. A) The setup used for standard testing and B) The double-131 

vial setup, allowing for separation of algal cells in the smaller inner-vial from the surrounding PtNP 132 

suspension in the larger outer-vial.  133 



       Page S9 

    

    

    

S4 Flow cytometry gating strategies 134 

 135 

 136 

  137 

 138 

 139 

 140 

 141 

 142 

 143 

 144 

 145 

 146 

 147 

 148 

 149 

 150 

 151 

 152 

 153 

 154 

 155 

 156 

Figure S2. Flow cytrometry gating strategy. A) Raw data for C. reinhardtii upon 48 h exposure to PtNPs 157 

(80 mg PtL), B) Removing doublets with ”cleaned data” gate, C) Algal gate for unexposed C. reinhardtii, 158 

D) Algal gate for unexposed P. subcapitata, E) PtNPs in TAP4 medium, and F) PtNPs in ISO medium. 159 

FSC = Forward scatter, SSC = Side scatter, A = Area, H = Height. 160 
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 161 

Figure S3. Flow cytrometry gating strategy for biological end points using flow cytometer BD Accuri C6. 162 

The four graphs on top apply to C. reinhardtii and the four below, to P. subcapitata. The autofluorescence 163 

is measured in the fluorescence channel 3 (FL3), membrane permeabilization with the fluorescent probe 164 

propidium iodide in fluorescense channel 2 (FL2) and oxidative stress with the fluorescent probe 165 

CellROX green in fluorescense channel 1 (FL1). The gates are determined based on the negative and 166 

positive controls, except for CellROX in P. subcapitata, as H2O2 was not a usable postitive control for this 167 

alga/medium. The experiments are considered valid, as a very clear response was obtained from algae 168 

exposed to PtNPs.   169 
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 170 

Figure S4. Flow cytrometry gating strategy for biological end points using flow cytometer BD 171 

FACSCanto II. The four top graphs apply to C. reinhardtii and the four below, to P. subcapitata. The 172 

oxidative stress response is determined by the fluorescense of CellROX green in the FITC channel 1 of 173 

algal cells in the assigned gates. For C. reinhardtii a likely contamination was observed, and algal cells 174 

were distinguished by autoflourescence of algal pigments at 690 nm. The gates are determined based on 175 

negative and positive controls, except for CellROX in P. subcapitata, as H2O2 was not a usable positive 176 

control for this alga/medium. The experiments are considered valid, as a very clear response was obtained 177 

from algae exposed to PtNPs.   178 
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S5 Sedimentation of PtNPs in algal media 179 

 180 
Figure S5. Absorbance spectra for PtNPs (80 mg Pt/L) suspended in ISO and TAP4 algal media after 1, 181 

24, and 48 h.    182 
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S6 Abiotic ROS generation by PtNPs and PtCl4 in algal media 183 

 184 

 Figure S6. Abiotic ROS generation of PtNPs, PtCl4 and the positive control (H2O2) upon 2 and 48 h 185 

suspension in ISO and TAP4 algal media, given as relative fluorescence units (RFUs) determined by the 186 

fluorescence of DCF from the tested suspension, relative to the fluorescence of the background (DCF in 187 

the respective media). The error bars represent standard deviations (n=3). The fluorescence exceeded the 188 

detection range in the positive controls of 5-20%w/w H2O2 in TAP4 medium for 48 h measurements.  189 
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S7 Potential PSII photochemical efficiency in algae  190 

 191 

 192 

 193 

Figure S7. Fast Repetition Rate Fluorometry (FRRF) measurements of the potential PSII photochemical 194 

efficiency (Fv/Fm) for C. reinhardtii and P. subcapitata upon 2, 24 and 48 h exposure to 0, 2 or 80 mg 195 

Pt/L. Measurements were conducted for the algae in the PtNP suspensions, and for 48 h measurements 196 

also for algal cells washed with medium through a filter (48 h washed). The error bars represent standard 197 

deviations (n=3).   198 
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S8 Membrane damage in algal cells 199 

 200 

Figure S8. Membrane damage in C. reinhardtii and P. subcapitata upon 2, 24 and 48 h exposure to PtNPs 201 

in two parallel tests with low concentrations (0.1; 0.5; 1 and 2 mg Pt/L nominal) and high concentrations 202 

(2, 10, 30 and 80 mg Pt/L), respectively. The error bars represent standard deviations (n=3).  203 
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S9 Atomic force microscopy images of algal cells 204 

 205 

 206 

Figure S9. AFM visualizations of algal cells after 48 h incubation with PtNPs showing a single cell of C. 207 

reinhardtii (A) and two cells of P. subcapitata (B). The circle shown on the image of C. reinhardtii (A) 208 

shows the likely presence of PtNP agglomerates. According to the line scan completed for P. subcapitata 209 

(B), structures of app. 100 nm are identified on the cell surface, which may likely be PtNPs agglomerates. 210 
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