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Abstract—A novel multimodal approach is proposed to solve the
problem of blind source separation (BSS) of moving sources. The
challenge of BSS for moving sources is that the mixing filters are
time varying; thus, the unmixing filters should also be time varying,
which are difficult to calculate in real time. In the proposed ap-
proach, the visual modality is utilized to facilitate the separation for
both stationary and moving sources. The movement of the sources
is detected by a 3-D tracker based on video cameras. Positions
and velocities of the sources are obtained from the 3-D tracker
based on a Markov Chain Monte Carlo particle filter (MCMC-PF),
which results in high sampling efficiency. The full BSS solution
is formed by integrating a frequency domain blind source sepa-
ration algorithm and beamforming: if the sources are identified
as stationary for a certain minimum period, a frequency domain
BSS algorithm is implemented with an initialization derived from
the positions of the source signals. Once the sources are moving, a
beamforming algorithm which requires no prior statistical knowl-
edge is used to perform real time speech enhancement and pro-
vide separation of the sources. Experimental results confirm that
by utilizing the visual modality, the proposed algorithm not only
improves the performance of the BSS algorithm and mitigates the
permutation problem for stationary sources, but also provides a
good BSS performance for moving sources in a low reverberant
environment.

Index Terms—Beamforming, blind source separation (BSS),
FastICA, Markov Chain Monte Carlo (MCMC) particle filtering,
multimodal signal processing, 3-D tracking.

I. INTRODUCTION

B
LIND source separation (BSS) of acoustic signals is a

challenging problem when applied to a real environment,

such as within an office occupied by a number of speakers, and

remains a topic of considerable active research due to many

potential applications [1]. BSS consists of estimating sources

from such observed audio mixtures with only limited informa-

tion and the associated algorithms have been conventionally

developed in either the time or frequency domains [2]–[16].

Frequency-domain convolutive blind source separation (FD-

CBSS) has however been a more popular approach as the

time-domain convolutive mixing is converted into a number
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of independent complex instantaneous mixing operations. The

permutation problem inherent to FDCBSS presents itself when

reconstructing the sources from the separated outputs of these

instantaneous mixtures. It is more severe and destructive than

for time-domain schemes as the number of permutations grows

exponentially with the number of instantaneous mixtures [10].

Most existing BSS algorithms assume that the sources are

physically stationary, i.e., the mixing filters are fixed. All

these algorithms are based on statistical information extracted

from the received mixed data [3]–[5]. However, in many real

applications, the sources may be moving, for example, a pre-

senter may walk around inside a room. In such applications,

there will generally be insufficient data length available over

which the sources are physically stationary, which limits the

application of these algorithms. Thus BSS methods for moving

sources are very important to solve the cocktail party problem

in practice [17]. Only a few papers have been presented in this

area [18]–[24]. In [18], sources are separated by employing

frequency domain ICA using a block-wise batch algorithm

in the first stage, and the separated signals are refined by

postprocessing in the second stage which constitutes crosstalk

component estimation and spectral subtraction. In the case of

[19], they used a framewise online algorithm in the time do-

main. However, both these two algorithms potentially assume

that in a short period the sources are physically stationary, or the

change of the mixing filters is very slow, which are very strong

constraints. In [21], BSS for time-variant mixing systems is

performed by piecewise linear approximations. In [22], they

used an online PCA algorithm to calculate the whitening matrix

and another online algorithm to calculate the rotation matrix.

However, both algorithms are designed only for instantaneous

source separation, and cannot separate convolutive mixed

signals. In [24], it is assumed that mixing process is changing

sufficiently slowly, so that one can find a window length that is

short enough that the mixing can reasonably be approximated

as stationary. Fundamentally, it is very difficult to separate con-

volutively mixed signals by utilizing the statistical information

only extracted from audio signals, and this is not the manner in

which humans solve the problem [25] since they generally use

both their ears and eyes.

In this paper, a multimodal approach is therefore proposed by

utilizing not only received linearly mixed signals, but also video

information obtained from cameras. A video system can capture

the approximate positions and velocities of the speakers, from

which we can identify the directions and motions, i.e., stationary

or moving, of the speakers. A source is identified as stationary if

its velocity is approximately zero for a certain minimum period,

so that enough data length can be obtained for frequency domain

BSS algorithms. Furthermore, the direction of the source signals

1932-4553/$26.00 © 2010 IEEE
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can also be obtained from the video cameras, and a geometri-

cally based initialization can then be performed to improve the

performance of the frequency domain BSS algorithm and miti-

gate the permutation problem [8]. If the velocity is larger than

an upper bound value, the source is identified as moving. In this

case, a beamforming method which does not need prior statis-

tical information, in common with the fundamental assumptions

in blind source separation, is used to enhance the signal from one

source direction and reduce the energy received from another

source direction, so that source separation can be obtained. Al-

though the beamforming approach can only reduce the signal

from a certain direction and the reverberance of the interference

still exists, which are also limitations in the BSS approach, it

can obtain an acceptable separation performance in a low rever-

berant environment. Note that the beamforming approach only

depends on the direction of the source signals, and no received

audio data are required, thus an online real time source separa-

tion can be obtained [26].

The remainder of this paper is organized as follows. Section II

presents the related work, Section III provides the system model,

and Section IV explains the tracking process. Section V de-

scribes the source separation by combining frequency domain

BSS and beamforming. Experimental results are provided in

Section VI based on real room recordings from our intelligent

office. Finally, in Section VII we conclude the paper.

II. RELATED WORK

Most existing BSS algorithms are based on the statistical in-

formation, second-order statistics (SOS)/higher order statistics

(HOS), extracted from the recorded data. Such methods are gen-

erally not applicable in CBSS of moving sources due to data

length limitations and are therefore not included for compar-

isons purposes in our simulation studies with moving sources.

In the context of CBSS of moving sources in a moderate rever-

berant environment, with a reverberation time (RT) 130 ms,

we believe that a multimodal approach is necessary which ex-

ploits different processing techniques as a function of the ve-

locity of the speakers. A key component in this approach is

the tracking of speakers. Many methods have been proposed

for the tracking of speakers on the basis of audio information,

visual information, or audio-visual fusion [27]–[45]. Broadly

speaking, the differences among the existing approaches arise

on the basis of single-person or multi-person tracking and the

type of sensor configuration used. In most of the works [27],

[28], [32], [33], [35], [42], on the basis of simple sensor config-

uration, either a single person is tracked in a single-person scene

or the current active speaker is tracked in the multi-person scene.

Multi-person tracking has been studied in [36], [38], [39], [41],

[43] on the basis of only a single modality, either audio or video.

In more recent works [29], [30], [37], [40] the multi-person

tracking problem has been studied by using the audio-visual

sensor configuration. To the best of our knowledge, the most re-

cent work on tracking, near to our requirement, is proposed by

Gatica-Perez [40]. In this paper, a detect before track technique

is applied, and a small microphone array with multiple uncal-

ibrated cameras with non-overlapping field of view (FOV) is

used for sensor configuration. For detection, audio observations

are derived from a source localization algorithm and visual ob-

servations are based on models of the shape and spatial structure

of human heads. For tracking, a 2-D tracker in the image plane

is implemented with a Markov Chain Monte Carlo particle filter

(MCMC-PF). In our case, for source separation, 3-D positions

of the speakers are required to handle complicated human mo-

tions. Therefore, initially, video cameras should be calibrated

[46] and have overlapping FOVs, because at least two cameras

are required for conversion of 2-D image coordinates to 3-D

real-world coordinates. Second, it is computationally better to

use one 3-D tracker rather than two 2-D trackers. Finally, audio

localization is not effective due to the complexity in the case

of multiple concurrent speakers. Localization for a single ac-

tive speaker based only on audio is also difficult because human

speech is an intermittent signal and contains much of its energy

in the low-frequency bins where spatial discrimination is impre-

cise, and locations estimated only by audio are also affected by

noise and room reverberations [47]. In [47], the tracker proposed

in [40] is implemented for speech enhancement and the simu-

lation results confirm that for stationary speakers and overlap-

ping speech utterances the audio-visual localization improves

by 2 cm and 3 cm, respectively, as compared to using only

visual information. McCowan in [48] proposed that any time

when the distance between the tracked speaker location and the

focus location of the beamformer exceeds 5 cm, the beamformer

channel filters should be recalculated, so practically there is no

significant improvement by integrating audio localization. In

other recent works [39], [44] only audio information is used.

In [44], particle filtering is used for acoustic source localiza-

tion and it is assumed that a single acoustic source with known

speed of wave propagation is present in a reverberant environ-

ment. In [39], time difference of arrival (TDOA) estimation and

localization of moving speakers are proposed (near to our re-

quirement) which distinguish individual speakers in a multipath

environment by associating one TDOA per frame to the predom-

inant speaker. In the situation when speakers are simultaneously

speaking and moving, both the above methods have limitations.

In [49], joint acoustic source localization and orientation esti-

mation using sequential Monte Carlo is presented and it is also

highlighted in the paper that in a situation where only one mi-

crophone pair (sensor configuration used in this work) provides

measurements then the performance is predictably poorer. In

another recent work [45], audio and visual information is used

for tracking of a speaker in a cluttered indoor environment and

localization based on audio is discussed for only a single ac-

tive speaker at a time. Therefore, in the proposed approach we

track the speakers by using only visual information motivated

by Colin Cherry’s observation that the human approach to solve

the cocktail party problem exploits visual cues [17], [50]. In

our application environment, an intelligent office, the cameras

also benefit from being mounted above the height of a human

and thereby make it easier to discriminate sources in close spa-

tial proximity. In the proposed approach, the source localiza-

tion is performed by using the state-of-the-art Viola-Jones face

detector [51]. The 3-D visual tracker is implemented with an

MCMC-PF which results in high sampling efficiency. We stress

that the domain of the proposed approach in this paper lies in

system integration and the main contribution is to provide the
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Fig. 1. System block diagram. Video localization is based on state-of-the-art Viola-Jones face detector [51], two fully calibrated color video cameras are used
to determine the approximate 2-D positions of the speakers. The 2-D image information of the two video cameras is converted to 3-D world coordinates through
the calibration parameters and optimization method. The approximated 3-D locations are fed to the visual-tracker, and on the basis of estimated 3-D real world
position and velocity from the tracking, the sources are separated either by beamforming or by intelligently initializing the FastICA algorithm.

proof of the concept for CBSS of moving sources. The areas of

detection and tracking are disciplines in their own rights and we

simply exploit recent results from these fields to provide geo-

metric information to facilitate a novel multimodal approach to

CBSS. The output of the tracking is position and velocity infor-

mation, on the basis of which we divide source separation into

two parts to provide the full BSS solution. As will be shown

in later simulations, the proposed approach can provide a rea-

sonable BSS performance for moving sources in a low rever-

berant environment in which the RT is 130 ms. Performing BSS

in rooms with large RT typically 130 ms remains as a research

challenge.

III. SYSTEM MODEL

The proposed approach can be divided into two stages:

human tracking to obtain position and velocity information;

and source separation by utilizing the position and velocity

information based on frequency domain BSS or beamforming.

The schematic diagram of the system is shown in Fig. 1.

For the localization of the sources we use two fully calibrated

color video cameras to determine the approximate positions of

the speakers. Both cameras are calibrated by the Tsai calibration

(non-coplanar) technique [46] and synchronized by the external

hardware trigger module and frames are captured at the rate of

frames/s, which means s. We extract the

face of each speaker in the images of both cameras to find the

position of each speaker at each state (time) . In each image

frame, the face can be extracted by the state-of-the-art Viola-

Jones face detector [51]. It is highlighted that for this proof of

concept work we assume the full face of a speaker is clearly

visible and a simple geometric visual cue, i.e., the center of the

face is available. The machine cocktail party problem is very

challenging and our work is only to approach the ability of a

human to solve this task. It is easy to contrive situations where

a human would fail in this task and these are beyond the scope

of this work. Further details are given in Section IV-B.

It is common in many science and engineering situations to

estimate the hidden state of a system that changes over time

using a sequence of noisy observations made on the system.

Normally, the state-space approach, which focuses attention on

the state vector of the system, is adopted for modeling a dy-

namic system. In this approach the 3-D location of each speaker

is estimated by using the Bayesian multispeaker state space ap-

proach. The 3-D multispeaker observation is defined as

, where represents the observations

of speaker and the multispeaker state configuration is defined

as . The filtering distribution of

states given observations is recursively approxi-

mated using an MCMC particle filter and the algorithm is ex-

plained in Section IV.

After estimating the 3-D position of each speaker the velocity

information is extracted, if the sources are physically stationary

for a certain period , then the positions of the speakers are

incorporated within the Intelligently Initialized FastICA (IIFas-

tICA) algorithm otherwise they are used within the beamformer

to obtain the source separation for stationary or moving sources.

The details of the beamformer and IIFastICA are explained in

Section V.

IV. 3-D VISUAL TRACKER

The most suitable candidate for a 3-D multispeaker visual

tracker is a particle filter because the probabilistic state-space

formulation (non-Gaussian) and the requirement for the update

of information on receipt of new measurements are ideally suit-

able for the Bayesian approach, which provides a rigorous gen-

eral framework for dynamic state estimation problems. In the

Bayesian approach to stochastic state estimation, the idea is to

construct the posterior probability density function (pdf) of the

state based on all the available information, including the re-

ceived observations. Since such a pdf contains all the available

statistical information, it can be considered to be the complete

solution to the estimation problem.

For many problems, some sort of recursive processing is re-

quired in that at each time an observation is received, an estimate

is required based on that observation. This may be achieved by

the use of a recursive filter. Essentially, such a filter comprises

of prediction and update stages. During the prediction stage, the
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state pdf is predicted using the state model. Since the state is usu-

ally subject to some unknown disturbances (modeled as random

noise), prediction generally deforms the state pdf. The predicted

pdf, resulting from the prediction stage, is modified by the latest

observation during the update stage. The update operation is

achieved through Bayes’ rule. The advantage of this recursive

filtering is that the received data can be processed sequentially

rather than as a batch. The posterior density is re-

cursively calculated by Bayes’ rule according to

(1)

where denotes the multispeaker state model and

represents the multispeaker measurement model. In

general, no closed-form solution exists for (1) although these

recursions can be approximated by Monte Carlo simulations of

a set of particles having associated discrete probability mass and

the generic particle filter is described in [52]. A particle filter

recursively approximates the filtering distribution

by a weighted set of particles at time , , by

using the weighted particles at the previous time-step ,

, and the new update will be

(2)

where is a normalization constant, refers to the par-

ticle, and is the number of particles, so that we have a dis-

crete approximation of the true posterior. As approaches to

infinity, this discrete formulation will converge to the true poste-

rior distribution. However, practically it is impossible to sample

infinite number of samples from any distribution and the pos-

terior distribution to be estimated is also not in a

closed form. The sampling mechanism is discussed in the se-

quel.

The three important items of the probabilistic multispeaker

3-D visual tracker, the state model, the measurement model

and the MCMC-sampling mechanism are formulated in the fol-

lowing three subsections.

A. State Model

There are several state models that can be used to represent

the state transition. In [53], we used the random walk model;

another model which is shown to work well, to represent the

time-varying location of a speaker in a typical room [53], [54],

is the Langevin model [55], also used in [31], [42], and [44].

The motion of the speakers in each coordinate is assumed to be

independent in this state model. In the coordinate this motion

is described as

(3)

where the thermal excitation process is a normally dis-

tributed random variable, i.e., , and . The

other model parameters suggested by [31] are s ,

and cm/s . The dynamics and parameters for the

other Cartesian coordinates are the same.

The above state model which includes independent single

speaker dynamics is formulated for the multispeaker state

model as

(4)

where denotes the dynamics for speaker . It is

highlighted that can be factorized for individual

speakers.

B. Measurement Model

Visual measurements used in this work are based on the

Viola-Jones face detector. The Viola-Jones face detector [51]

yields good performance and detects faces extremely rapidly,

by using a boosted cascade of features. It is a cascade of strong

classifiers, each slightly more complex than the last. The input

images are sub-sampled at multiple scales and locations to form

the sub-windows for the faces to be detected. Face detection is

performed in three stages. Initially, to minimize the effect of

illuminations, the variance of all sub-windows are normalized.

Second, the cascade of classifiers makes a decision based on

the sub-window. Finally, to merge the overlapping face can-

didates around each face and output the final results the post

processing method is used. A sub-window is detected as a face

if it successfully passed by all strong classifiers. If any classifier

fails a sub-window then no further processing is required on

that window, detailed formulation is available in [51].

The center of the detected face is determined as the approx-

imate position of the lips of the speaker in image coordinates

, where represents the number of cameras

, 2. In 3-D space, each point in each camera frame de-

fines a ray. Intersection of both rays is found by optimization

methods, which finally help in calculation of the positions

of the speakers in 3-D real world coordinates [56].

The multispeaker measurement model can be factorized in

terms of individual speakers as

(5)

where is the observation model for speaker and

is calculated as

(6)

where denotes a vector formed from the 3-D position com-

ponents of the state vector and is a standard deviation param-

eter chosen empirically, typically unity.
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C. MCMC-Sampling Mechanism

In the 1990s, MCMC-based methods attracted great attention

among researchers in the Bayesian community [57]. The ad-

vantage over alternative approaches is in the capacity to work

with a high-dimensional space and complex models. It is com-

putationally infeasible to track multiple objects in the high-di-

mensional space by using an importance sampling [52]-based

traditional particle filter [58]. In tracking the MCMC sampling

is a methodology for generating samples from a Markov chain

whose stationary distribution corresponds to a filtering distribu-

tion. In order to efficiently place samples as close as possible to

regions of high likelihood and approximate in (2)

with MCMC techniques, it is important to specifically design

a Metropolis–Hastings (MH) sampler (also known as MCMC

sampler) at each time step [40], [59], [60]. After running the

MCMC sampler for long enough at each time step the initial

part of the run, called the burn in period, is discarded to achieve

a stationary distribution [61]. The key to the efficiency of the

MCMC algorithm rests in the proposal distribution (discussed

in the sequel), in which the configuration of one single object

is modified at each step of the Markov chain, and each move in

the chain is accepted or rejected by the acceptance ratio . The

MCMC-based tracking algorithm is summarized as follows:

• Initialize the MCMC sampler: At time predict the state of

each speaker for particles, i.e., from

the particle set at time , i.e., based

on the factorized dynamic model .

• MCMC Sampling Steps: and denote the

number of particles in the burn-in period and fair sample

sets, respectively.

— Randomly select a speaker from all speakers. This will

be the speaker proposed to move.

— Sample a new state for only speaker from the

single speaker proposal density .

— Compute the acceptance ratio which involves (2) for the

evaluation of likelihood for only speaker :

(7)

— Draw .

— If then accept the move for speaker and change

the into . Otherwise, reject the move, do not

change and copy to the new sample set.

• Discard the first samples to form the particle set,

, at time step .

The output of the 3-D tracker at each state is the

mean estimate for each speaker and is calculated as

the weighted sum over the associated particles as

, where in this work as in [40]

.

1) Discussion on Algorithm Choice:

• State model (4) and measurement model (5) are indepen-

dent in terms of the speakers and therefore can be fac-

torized into the product of the marginal models for each

speaker. In teleconferencing applications within an intelli-

gent office, physical separation in speakers is always likely

to be possible as the speakers are unlikely to embrace each

other and speakers are also clearly separable in the 3-D

real world coordinates used in this paper due in part to

the height of the cameras. Therefore, in this work, there is

no requirement to incorporate interaction cues in the state

model. However, the state model could be extended with

an interaction term in future work as in [59].

• Since joint particle filtering suffers from exponential

complexity in the number of targets to be tracked [59],

therefore independent particle filters for all speakers and

an MCMC-PF are applicable for the requirement of the

work in this paper. Independent SIR-PF for each speaker

is the most optimal choice and is already used in our work

[53]. Results show no significant difference (based on Eu-

clidean error) but MCMC-PF reduces the computational

complexity in multispeaker tracking.

• Due to the limitation of importance sampling in high-di-

mensional state space, MCMC methods are used. The

MCMC method used in this work is based on [59], [60]

and has the appealing property that “the filter behaves as

a set of individual particle filters when the targets are not

interacting, but efficiently deals with complicated interac-

tions when targets approach each other”. The design of

proposal density plays an important role in the success of

an MCMC algorithm. The proposal density used is also

defined in [40] as

(8)

where a single speaker is first chosen with probability

and a move is attempted on (shown in the

algorithm summary) and the rest of the multi-speaker

configuration is left unchanged, where

(9)

and represents the whole state for all speakers ,

is a delta function, and denotes the substate for one

speaker. It is highlighted that the proposal density used in

[40] appears not to be properly formulated. This has thus

been modified in (9).

The change in the position of a speaker with respect to the

previous state (known as velocity information) also plays

a critical role to decide the method for source separation and is

discussed next.

V. SOURCE SEPARATION

The audio mixtures from the microphone sensor array are

separated with the help of visual information from the 3-D

tracker. On the basis of this visual information, we decide

either the sources should be separated as moving or stationary.
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The pseudo code to issue the command for selecting the source

separation methods are as follows.

Pseudo Code: Command for Selecting the Source Separation

Methods

• Reset the and set the

• FOR

-Find

• IF

-Update the

IF

-Command for the FastICA based method

END IF

-Set

ELSE

-Command for the beamforming based method

-Reset the

• END IF

• END FOR

THIS CODE WOULD BE USED FOR EACH SPEAKER

.

where represents the expected stationary period for the

speakers, , denotes Euclidean norm, and

is the minimum distance required for the beam-

former channel filters, which should be recalculated to separate

the sources.

When the sources are physically stationary for a certain pe-

riod we separate the sources with IIFastICA. By changing

the value of we can change the expected required stationary

period for the sources.

The other important parameter to be calculated before starting

the source separation is the angle of arrival of each speaker to

the sensor array as shown in Fig. 2. By having the position in-

formation of the microphones and the speakers at each state

from the 3-D visual tracker, we can easily calculate the angle of

arrival of speakers relative to the microphone sensor array.

With and the control command from the above de-

cision criterion at each state , we separate the sources

either by beamforming or by IIFastICA as discussed in the

following subsections.

A. Beamforming-Based Separation

In the intelligent office where our recordings are taken, the

microphones used are unidirectional. By using a short-time

discrete Fourier transform (DFT) the mixing process can be

formulated as follows: having statistically independent

real sources where denotes

discrete normalized frequency, a multichannel finite impulse

response (FIR) filter producing observed mixed sig-

nals , where is Hermitian

transpose, can be described as (we assume there is no noise

Fig. 2. Microphone and source layout.

or noise can be deemed as a source signal in the model for

simplicity)

(10)

where

...
... (11)

and the source separation can be described as

(12)

where

...
... (13)

contains the estimated sources,

and is the unmixing filter matrix. An inverse short time

Fourier transform is then used to find the estimated sources

. In this work to demonstrate the proposed approach

we consider the exactly determined convolutive BSS problem,

i.e., .

The unmixing matrix for each frequency bin can be ap-

proximated from beamforming methods. In recent years, many

beamforming methods have been proposed, such as the linearly

constrained minimum variance (LCMV) method and the min-

imum variance distortionless response (MVDR) method [62]. A

post filtering approach has also been utilized to improve these

methods [63]. However, the LCMV method and the MVDR

method need estimates of statistical information of the input or

noise signals, which are not accessible in the context of BSS

for moving sources. Furthermore, a diffuse noise field assump-

tion is used in [63], which is not valid in the context of BSS.

The postfilter method has been used in [47] to perform speech

enhancement for both stationary and moving cases; however,
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the model used in that speech enhancement is a single-input

single-output (SISO) model, which is different from the multi-

input multi-output (MIMO) model in the context of BSS; thus,

this postfiltering approach is also not suitable for the solution of

BSS. To the best of our knowledge, in the context of BSS, only

the beamforming approach that is directly obtained from the in-

verse of the mixing matrix model has been successfully used in

[64]. To compensate for noninvertibility of the mixing matrix, a

regularization term is included in [65], in which the beam pat-

tern obtained from the geometric information is incorporated in

the solution of BSS. Similar to that in [65], the unmixing matrix

in our approach is calculated as

(14)

where ,

, is a small positive constant such as

0.01 in our simulations, and represents the identity matrix.

The delay element between source and sensor , i.e.,

is calculated as

(15)

where is the distance between the sensors and is the speed

of sound in air.

Ideally, should be the sum of all echo paths, but these

cannot all be found; therefore, an approximation is used by ne-

glecting the room reverberations.

Finally, by placing in (12), we estimate the sources.

Since the scaling is not a major issue [6] and there is no permu-

tation problem, we can therefore align the estimated sources for

reconstruction in the time domain.

B. FastICA Based Separation

If the sources are stationary for at least two seconds, we ex-

tract the sources with the help of the estimated from the

above section and the whitening matrix for the mixtures, as an

initialization of the FastICA algorithm [66]. We thereby im-

prove the convergence of the algorithm and also increase the

separation performance together with mitigate the permutation

problem. Crucially, in the frequency domain convolutive BSS

(FDCBSS) approach, since the algorithm essentially fixes the

permutation at each frequency bin, there will be no problem

while aligning the estimated sources for reconstruction in the

time domain.

As an initial step, it is usual in ICA approaches to sphere or

whiten the data

(16)

where is the whitening matrix [67].

Each column of is used to initialize the fixed point al-

gorithm [66] for each frequency bin:

(17)

We have the following approximate Newton iteration for each

vector of each frequency bin [66]

(18)

where denotes the complex conjugate, and de-

note the first and second derivative of the contrast function

. In the experiments, the statistical expecta-

tion is realized as a sample average.

We have independent components, i.e., ,

, which are calculated in parallel to obtain

for each frequency bin. After

each iteration the independent components are decorrelated in

a symmetric orthogonalization scheme which is more accurate

than a deflationary orthogonalization in the exactly determined

case we are addressing. The symmetric orthogonalization takes

the form [67]

(19)

Before starting the update process, is normalized

once using , where denotes

the Frobenius norm. Finally, by placing in (12) we

recover the sources. Next, we evaluate the proposed schemes

by simulation studies.

VI. EXPERIMENTS AND RESULTS

A. Setup and Evaluation Criterion

1) Data Collection: The simulations are performed on real

recorded audio-visual signals generated from a room geometry

as illustrated in Fig. 3. Data are collected in a m

intelligent office. Two out of eight calibrated color video cam-

eras ( and shown in Fig. 3) are utilized to collect the

video data. Video cameras are fully synchronized with an ex-

ternal hardware trigger module and frames are captured at

Hz with an image size of 640 480 pixels, frames were

down-scaled if it was necessary, and reducing the resolution by

half was a good tradeoff between accuracy and resolution. Both

video cameras have overlapping fields of view. The duration be-

tween consecutive states is s. Audio recordings are

taken at kHz and are synchronized manually with video

recordings. The distance between the audio-sensors is cm.

The other important variables are selected as: number of sen-

sors and speakers , number of particles ,

, the number of images in the first and second experi-

ment are and , which respectively indicate 21 and

24 seconds of data, s, m, speed of

sound in air m/s, FFT length and filter length

, height of the cameras in the intelligent office is 2.35

m, and the room impulse duration is 130 ms. In the proposed

algorithm the nonlinearity for FastICA is ,
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Fig. 3. Two-speaker two-microphone layout for recording within a reverberant
(room) environment. Room impulse response length is 130 ms.

with . In the first experiment on tracking, speaker 2 is

stationary and speaker 1 is moving and in the second experiment

both speakers are moving around a table in a teleconference sce-

nario.

2) BSS Evaluation Criterion: In this paper, the performance

of the algorithm is evaluated on the basis of two criteria on real

room recordings. The signal-to-interference ratio (SIR) is cal-

culated as in [6]

(20)

where and represent, respectively, the diagonal and off-

diagonal elements of the frequency domain mixing filter, and

is the frequency domain representation of the source of interest.

Second, in order to evaluate the source separation with so-

lution to permutation by integrating audio-visual information in

the initialization of FastICA, we use the Performance Index (PI)

measurement which provides results at each frequency bin level.

The PI as a function of the overall system matrix is

given as

(21)

where is the th element of .

As we know the above PI based on [3] is insensitive to per-

mutation. We therefore evaluated the permutation on the basis

of the criterion, i.e., for

permutation free FDCBSS, used in our works [8], [53].

Fig. 4. 3-D tracking results 1: frames of synchronized recordings, (a) frames
of first camera, and (b) frames of second camera; the Viola-Jones face detector
[51] efficiently detected the faces in the frames.

B. Results and Discussion

1) 3-D Tracking Results: In this section, the results obtained

from tracking are discussed. Two experiments are performed to

evaluate the 3-D visual tracker. The faces of the speakers are

detected by using the Viola-Jones face detector [51] which effi-

ciently detected the faces in the frames shown in Fig. 4. Since in

the dense environment as shown in Fig. 4 it is very hard to de-

tect the lips directly, therefore the center of the detected face re-

gion as the position of the lips in each sequence is approximated.

More sophisticated and computationally efficient schemes could

also be proposed for detecting the face through a sequence of

images but the approach adopted in this work is sufficient to

verify the multimodal CBSS method, the target of this work.

The approximate 2-D position of the lips of the speaker in

both synchronized camera frames at each state is converted to

3-D world coordinates by using the calibration parameters [46]

and the optimization method [56]. With this measurement the

particle filter is updated. The number of particles in both ex-

periments for MCMC-PF was the same , ,

for SIR-PF was and results were obtained using

single runs. These parameters have been determined empirically
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Fig. 5. 3-D tracking results 1: SIR-PF-based 3-D tracking of speaker 1 while
walking around the table in the intelligent office. Speaker 2 is physically sta-
tionary in this experiment.

Fig. 6. 3-D tracking results 2: SIR-PF-based 3-D tracking of the speakers while
walking around the table in the intelligent office.

to provide a good compromise between algorithm performance

and computational complexity.

In the first experiment, speaker 2 is stationary and speaker 1

is moving around the table so the tracking results of the speaker

1 are discussed in detail in this experiment. The sampling

importance resampling particle filter (SIR-PF) is also suitable

for this case as used in our work [53]. In the second experiment,

both speakers are simultaneously moving and their motion is

more complicated as they cross over. MCMC-PF is suitable

for multispeaker tracking because it improves the sampling

efficiency with approximately the same computational cost of

the Generic-PF. In the second experiment, both SIR-PF and

MCMC-PF are used. The gait of the speakers is not smooth

and the speakers are also stationary for a while at some points

during walking around the table which provides a good test for

the evaluation of the 3-D tracker as well as for source separation

methods, and this is also clear in the 3-D tracking results shown

in Figs. 5–7.

Fig. 7. 3-D tracking results 2: MCMC-PF-based 3-D tracking of the speakers
while walking around the table in the intelligent office.

In order to view the tracking results in more detail, the

tracking results are plotted in the , , and axes separately.

Figs. 8–10 clearly show that tracking result has removed much

of the measurement uncertainty and later in this section the

error in detection for the particle filter will be quantified. The

benefit of the true 3-D tracker is clearly shown in Fig. 10. In

particular, although the speakers would approximately coalesce

in the 2-D image plane, they are clearly separable in the 3-D

real world coordinates due in part to the height of the cameras.

In 2-D tracking in the image plane this problem cannot be

avoided. The error bars for particle filters at different states

are also plotted in these results. It is highlighted that the error

bars would appear as 3-D surfaces in the pseudo-3-D plots

and would make the plots cluttered if they were displayed.

However, the behavior of the error ellipses on the 2-D plots

gives a clear indication as to how 3-D error bar surfaces would

appear on the 3-D plots.

Actually, the height of the speakers is fixed and during

walking only the movement in the heads will produce minor

change which is clear in Figs. 11–13. Since the speakers and

microphones are approximately at the same level, therefore it

is assumed that effective movement is in the plane.

In order to evaluate the performance of the tracker as in [47],

the Euclidean distance to the frame-based ground truth is gen-

erated at each state. To calculate the ground truth, a time-con-

suming manual task is performed by annotating the mouth posi-

tion of each speaker in each camera frame. Figs. 14–16 provide

the Euclidean error at each state for both experiments. In the first

experiment, the mean error is 0.05 m and standard deviation is

0.03 m. In the second experiment, the mean error is 0.055 m

and standard deviation is 0.032 m which confirm the good per-

formance of the tracker.

2) Angle of Arrival Results: The calculated posi-

tion of the center of the microphones in experiment 1

is m, the position of speaker 2 is



904 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 4, NO. 5, OCTOBER 2010

Fig. 8. 3-D tracking results 1: SIR-PF-based tracking of the speaker 1 in the �
and � axis, while walking around the table in the intelligent office. Speaker 2 is
physically stationary in this experiment. The result provides more in depth view
in the � and� axis.

Fig. 9. 3-D tracking results 2: SIR-PF-based tracking of the speakers in the �
and � axis, while walking around the table in the intelligent office. The result
provides more in depth view in the � and � axis.

m (the reference point in the room is under

the table, close to the microphones) and the tracked position

of speaker 1 in states is shown in Fig. 8. The

angle of arrival of speaker 2 is 128 and the angles of ar-

rivals of the speaker 1 are shown in Fig. 17. The calculated

position of the center of the microphones in experiment 2 is

m. The angle of arrivals of both speakers

are shown in Fig. 18. In the results of both experiments, it is

found that the effective movement of the speakers were in the

axis and axis; therefore, the effective change in the angle of

arrival was only in the plane.

Fig. 10. 3-D tracking results 2: MCMC-PF-based tracking of the speakers in
the � and y-axis, while walking around the table in the intelligent office. The
result provides more in depth view in the � and � axis.

Fig. 11. 3-D tracking results 1: SIR-PF-based tracking of the speaker 1 in the
� axis, while walking around the table in the intelligent office. Speaker 2 is
physically stationary in this experiment. The result confirms that there is very
small change in the � axis with respect to the � and � axis.

Now a successful tracker is available to provide the required

geometric information to perform multimodal blind source sep-

aration. Therefore, simulations on BSS are discussed next.

3) BSS Results: The objective evaluation of BSS is limited

by the requirement of the mixing filter; therefore, for such

testing the audio signals are convolved with real room im-

pulse responses recorded in certain positions of the room.

The separation of the real recorded signals in the intelligent

office is evaluated subjectively by listening tests and mean

opinion scores (MOSs) are provided at the end. In the context

of objective evaluation, termed moving source test (MST), it is

assumed that the moving sources remain static over a particular

time interval less than 0.5 s. The justification is that over this

interval no frequency domain CBSS algorithm could be used

as there would be insufficient number of samples to achieve
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Fig. 12. 3-D tracking results 2: SIR-PF based tracking of the speakers in the �
axis, while walking around the table in the intelligent office. The result confirms
that there is very small change in the � axis with respect to the � and � axis.

Fig. 13. 3-D tracking results 2: MCMC-PF-based tracking of the speakers in
the � axis, while walking around the table in the intelligent office. The result
confirms that there is very small change in the � axis with respect to the � and
� axis.

convergence, but the proposed beamforming is successful as it

is independent of data length.

Five simulations for comparison of the proposed algorithm

are presented.

• FastICA [66] (Matlab code available online)-based BSS

with random initialization and length of the signals is 5 s.

• FastICA based BSS with intelligent initialization and

length of the signals is 5 s.

Fig. 14. 3-D tracking results 1: SIR-PF-based tracking of the speaker 1.
Speaker 2 is physically stationary. Euclidean error is calculated against manu-
ally annotated frame-based ground truths in each camera plane of speaker 1.

Fig. 15. 3-D tracking results 2: SIR-PF-based tracking of the speakers.
Euclidean error is calculated against manually annotated frame-based ground
truths in each camera plane of the speakers.

• FastICA based BSS with intelligent initialization but

length of the signals is 0.4 s (the MST case).

• Beamforming based BSS and the length of the signals is

0.4 s (the MST case).

• Beamforming based BSS when both sources are physically

close to each other.

Initially, in the first simulation the recorded mixtures of length

of 5 s are separated by the original FastICA algorithm. The per-

formance indices and evaluation of permutation by the original

FastICA algorithm [66] with random initialization are shown in

Fig. 19. It is highlighted that 35 iterations are required for the

performance level achieved in Fig. 19(a) with no solution for

permutation as shown in Fig. 19(b). The permutation problem

in frequency domain BSS degrades significantly the separation

performance for the recorded mixtures.

In the second simulation, recorded mixtures of length of 5

s are again separated. In this simulation, the angle of arrival

of both speakers obtained from the 3-D tracker is passed

one-by-one to (15) and FastICA is intelligently initialized (as
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Fig. 16. 3-D Tracking results 2: MCMC-PF-based tracking of the speakers.
Euclidean error is calculated against manually annotated frame-based ground
truths in each camera plane of the speakers.

Fig. 17. Angle of arrival results 1: Angle of arrival of speaker 1 relative to the
sensor array. Speaker 2 is physically stationary in this experiment. The estimated
angle before tracking and corrected angle by SIR-PF are shown. The change in
angle is not smooth because of the gait of the speaker.

Fig. 18. Angle of arrival results: Angle of arrival of the speakers to the sensor
array. The estimated angle before tracking and corrected angle by MCMC-PF
are shown.

Fig. 19. BSS Results: performance index at each frequency bin for the original
Bingham and Hyvärinen algorithm on the top [66] and evaluation of permuta-
tion at the bottom, on the recorded signals of known room impulse response
with fixed iteration count � ��, length of the signals is 5 s. A lower PI refers
to a superior method and ������ � �� ����� � �� � � means no per-
mutation. Audio sampling frequency � � 	 kHz and FFT length � � 
��	.

discussed in Section V-B). The resulting performance indices

are shown in Fig. 20(a) which shows good performance, i.e.,

close to zero across the majority of the frequency bins. This

is due to visual information used in the initialization, and the

algorithm also converges in six iterations. The visual modality

therefore renders this BSS algorithm semiblind and thereby

much improves the resulting performance and the rate of con-

vergence. Permutation is evaluated on the basis of the criterion

mentioned above. In Fig. 20(b), the results confirm that the

proposed algorithm automatically mitigates the permutation

at each frequency bin. Since there is no permutation problem,

the sources are therefore finally aligned in the time domain. In

Fig. 20(a), at higher frequency bins there is less energy in the

mixtures therefore performance in those bins is deteriorated.

The SIR is also calculated as in [6] and results are shown in

Table I.

In the third simulation, the length of the mixtures is reduced

to 0.4 s, i.e., the MST case, and the performance is shown

in Fig. 21. It is obvious in the results that the performance

is poor because FastICA is based on fourth-order statistics

and is limited by the data length requirement. For signals

with length equal to 0.4 s, given the block length of the FFT,

only one sample would be available at each frequency bin

and therefore batch-wise BSS algo-

rithms cannot separate the sources of short data length due to

insufficient samples to converge, which is a common problem

when the sources are moving.

In the fourth simulation, the angles of arrival of both

speakers obtained from the 3-D tracker are passed to (15) and

the sources were separated by using beamforming (discussed

in Section V-A) and the results are shown in Fig. 22. The

resulting performance indices are shown in Fig. 22(a) and

confirm good performance and Fig. 22(b) also shows that the
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Fig. 20. BSS Results: performance index at each frequency bin for the pro-
posed intelligently initialized FastICA algorithm at the top and evaluation of per-
mutation at the bottom, on the recorded signals of known room impulse response
with fixed iteration count � �, length of the signals is 5 s. A lower PI refers to
a superior method and ������ � ������� � �� � � means no permu-
tation. Audio sampling frequency � � � kHz and FFT length � � 	�
�.

TABLE I
BSS RESULTS: COMPARISON OF SIR-IMPROVEMENT BETWEEN ALGORITHMS

AND THE PROPOSED METHOD FOR DIFFERENT SETS OF MIXTURES

beamforming mitigates the permutation. Since there is no per-

mutation problem, therefore the sources can be aligned in the

time domain. For comparison the data length of the mixtures

used in this simulation is 0.4 s and SIR in this case is 9.5 dB. It

is know that the ideal condition for beamforming is when there

is no reverberation in the room (instantaneous case), but is not

possible in a real environment; however, the beamformer still

works in a moderate reverberant environment as in this case

(room impulse response length is 130 ms).

In the last simulation, when both speakers are physically

close to each other, i.e., at state (where both speakers

are close and stationary for 0.4 s) the position of the speaker

1 is m and the position of speaker 2 is

m, the angles of arrivals of both speakers,

i.e., 81 and 91 , respectively, obtained from the above esti-

mated positions from the 3-D tracker are passed to (15) and

the sources are separated by using beamforming and the results

are shown in Fig. 23. In this case, the performance reduces

because of the limitations of the beamformer, i.e., it is unable

to discriminate spatially one speaker from another due to the

width of its mainlobe being greater than the separation of the

speakers, which is particularly clear at lower frequencies. For

comparison, the data length of the mixtures used in this simu-

lation is also 0.4 s and SIR in this case is 8.2 dB. In conclusion,

Fig. 21. BSS Results: performance index at each frequency bin for the pro-
posed intelligently initialized FastICA algorithm at the top and evaluation of
permutation at the bottom, on the recorded signals of known room impulse re-
sponse, length of the signals is 0.4 s. A lower PI refers to a superior method and
������ � �� ����� � �� � � means no permutation. Audio sampling
frequency � � � kHz and FFT length � � 	�
�.

Fig. 22. BSS Results: performance index at each frequency bin for 3-D tracking
based angle of arrival information used in beamforming at the top and evaluation
of permutation at the bottom, on the recorded signals of known room impulse
response, beamforming-based separation is independent of length of the signals.
A lower PI refers to a superior method and ������ � ������� � �� �
� means no permutation. Audio sampling frequency � � � kHz and FFT
length � � 	�
�.

beamforming provides the solution for source separation of

moving sources at an acceptable level because beamforming

is independent of the data length requirement unlike second-

or fourth-order statistics-based batch-wise BSS algorithms.

Finally, separation of real room recordings were evaluated

subjectively by listening tests, six people participated in the

listening tests and mean opinion score is provided in Table III
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Fig. 23. BSS Results: performance index at each frequency bin for 3-D tracking
based angle of arrival information used in beamforming at the top and evaluation
of permutation at the bottom, on the recorded signals of known room impulse
response, beamforming-based separation is independent of length of the signals.
Speakers are physically close to each other therefore performance is reduced. A
lower PI refers to a superior method and ������ � ������� � �� � �
means no permutation. Audio sampling frequency � � � kHz and FFT length
� � ��	�.

TABLE II
LISTENING-QUALITY SCALE

TABLE III
SUBJECTIVE EVALUATION: MOS FOR SEPARATION OF REAL ROOM

RECORDINGS, BY IIFastICA AND DIFFERENT ALGORITHMS WHEN SOURCES

ARE PHYSICALLY STATIONARY, AND BY BEAMFORMING WHEN SOURCES ARE

PHYSICALLY MOVING

(MOS tests for voice are specified by ITU-T recommendation

P.800 and listening-quality scale is shown in Table II).

VII. CONCLUSION

In this paper, a new multimodal BSS approach is proposed to

solve the moving source separation problem. A full 3-D tracker

based on MCMC-PF is implemented. Video information is uti-

lized in the 3-D tracker which provides velocity and direction

information of sources. Based on the velocity of the source, a

criterion for source separation is setup: a beamforming algo-

rithm is used when sources are moving and a BSS algorithm

is performed when sources are stationary. The direction infor-

mation is then utilized to facilitate the beamforming and source

separation. As shown by the simulation results, the proposed ap-

proach has a good performance for both stationary and moving

sources, which is not previously possible. This work provides

an important step forward towards the solution of the real cock-

tail party problem. Further evaluations with, complex motions,

multiple speakers, and postprocessing will be a future work.
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