
A Multimodal Deep Learning Method for Android Malware Detection
using Various Features
Kim, T., Kang, B., Rho, M., Sezer, S., & Im, E. G. (2018). A Multimodal Deep Learning Method for Android
Malware Detection using Various Features. IEEE Transactions on Information Forensics and Security, 14(3),
773-788. https://doi.org/10.1109/TIFS.2018.2866319

Published in:
IEEE Transactions on Information Forensics and Security

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2018 IEEE.
This work is made available online in accordance with the publisher’s policies. Please refer to any applicable terms of use of the publisher.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:27. Aug. 2022

https://doi.org/10.1109/TIFS.2018.2866319
https://pure.qub.ac.uk/en/publications/45ba32ab-1533-492c-b268-43977b793fe0

T-IFS-07942-2017

1

Abstract— With the widespread use of smartphones, the

number of malware has been increasing exponentially. Among

smart devices, Android devices are the most targeted devices by

malware because of their high popularity. This paper proposes a

novel framework for Android malware detection. Our framework

uses various kinds of features to reflect the properties of Android

applications from various aspects, and the features are refined

using our existence-based or similarity-based feature extraction

method for effective feature representation on malware detection.

Besides, a multimodal deep learning method is proposed to be used

as a malware detection model. This paper is the first study of the

multimodal deep learning to be used in the Android malware

detection. With our detection model, it was possible to maximize

the benefits of encompassing multiple feature types. To evaluate

the performance, we carried out various experiments with a total

of 41,260 samples. We compared the accuracy of our model with

that of other deep neural network models. Furthermore, we

evaluated our framework in various aspects including the

efficiency in model updates, the usefulness of diverse features, and

our feature representation method. In addition, we compared the

performance of our framework with those of other existing

methods including deep learning based methods.

Index Terms—Android malware, malware detection, intrusion

detection, machine learning, neural network.

I. INTRODUCTION

ith the growing popularity of mobile devices such as
smartphones or tablets, attacks on the mobile devices

have been increasing. Mobile malware is one of the most
dangerous threats which cause various security incidents as
well as financial damages. According to the G DATA report [1]
in 2017, security experts discovered about 750,000 new
Android malware during the first quarter of 2017. It is expected
that a large number of mobile malware will keep developed and
spread to commit various cybercrimes on mobile devices.
Android is a mobile operating system that is most targeted by

This paper was first submitted on Oct. 18th, 2017. This research was

supported by the MSIT(Ministry of Science, ICT), Korea, under the
ITRC(Information Technology Research Center) support program (IITP-2018-
2013-1-00881) supervised by the IITP(Institute for Information &
communication Technology Promotion). This work was supported by Institute
for Information & communications Technology Promotion (IITP) grant funded
by the Korea government (MSIT) (No.2017-0-00388, Development of Defense
Technologies against Ransomware). This work was supported by the National
Research Foundation of Korea(NRF) grant funded by the Korea
government(MSIP) (No. NRF-2016R1A2B4015254).

TaeGuen Kim is with the Department of Computer and Software, Hanyang
University, Seoul, 04763 Korea (e-mail: cloudio17@hanyang.ac.kr).

mobile malware because of the popularity of Android devices.
In addition to the number of Android devices, there is another
reason that leads malware authors to develop Android malware.
The reason is that the Android operating system allows users to
install applications downloaded from third-party markets and
attackers can seduce or mislead Android users to download
malicious or suspicious applications from attackers’ servers.

To mitigate the attacks by Android malware, various research
approaches have been proposed so far. The malware detection
approaches can be classified into two categories; static analysis
based detection [2-19] and dynamic analysis based detection
[20-24]. The static analysis based methods use syntactic
features that can be extracted without executing an application,
whereas the dynamic analysis based methods use semantic
features that can be monitored when an application is executed
in a controlled environment. Static analysis has an advantage
that it is unnecessary to set the execution environments, and the
computational overheads for static analysis are relatively low.
Dynamic analysis has an advantage that it is possible to handle
malicious applications which use some obfuscation techniques
such as code encryption or packing.

In this paper, we assume that obfuscated malware is
processed by dynamic analysis based methods, and we focus on
the development of a static analysis based method to distinguish
between malware and benign applications. This paper proposes
a novel malware detection framework based on various static
features. Our framework is flexible to add a new type of features,
so, it is possible to utilize dynamic features in the future.

There are many previous works that are related to Android
malware detections, but most of the previous studies use only
limited types of features to detect malware. Each type of feature
can represent only a few properties of applications. On the other
hand, we propose a framework to detect malware using many
feature information to reflect various characteristics of
applications in various aspects. Our proposed framework first
extracts and processes multiple feature types, and refines them

Boojoong Kang is with the Centre for Secure Information Technologies
(CSIT), Queen’s University of Belfast, Belfast, UK (e-mail:
B.Kang@qub.ac.uk).

Mina Rho is with the Department of Computer Science and Engineering,
Hanyang University, Seoul, 04763 Korea (e-mail: minarho@hanyang.ac.kr).

Sakir Sezer is with the Centre for Secure Information Technologies (CSIT),
Queen’s University of Belfast, Belfast, UK (e-mail: s.sezer@qub.ac.uk).

Eul Gyu Im is with the Department of Computer Science and Engineering,
Hanyang University, Seoul, 04763 Korea (e-mail: imeg@hanyang.ac.kr).

A Multimodal Deep Learning Method for Android
Malware Detection using Various Features

TaeGuen Kim, BooJoong Kang, Mina Rho, Sakir Sezer and Eul Gyu Im

W

T-IFS-07942-2017

2

using our feature vector generation methods. Our feature vector
generation method consists of an existence-based method and a
similarity-based method, and these are very effective to
distinguish between malware and benign applications even
though malware has many similar properties of benign
applications. In addition, our framework uses a classification
model that implies the degree of classification according to their
importance. Among many useful classification algorithms, we
concluded that the deep learning algorithm is the suitable
classification algorithm for our framework that uses various
types of feature.

We propose a multimodal deep neural network model to fit
the features with different properties. The multimodal deep
learning method is generally utilized to make the neural
network to reflect the properties with different kinds of feature.
For example, the multimodal deep learning method was used to
recognize human speech using both voice information and
mouth shape information [48]. The different types of the feature
are inputted and processed in different initial neural networks
separately, and each initial network is connected to a final
neural network to produce the classification results. According
to our survey, our research is the first application of the
multimodal deep learning to the Android malware detection.

We conducted many experiments using our framework with
a large dataset from VirusShare [38] and the well-known small
dataset from the Malgenome project [37]. We measured and
compared the performance of our model with that of the deep
neural network model. In addition, we evaluated our framework
in various aspects including efficiency in model updates, the
usefulness of diverse features and effects of our feature
representation method. According to the comparison results
with other deep learning based methods, we argue that our

framework has good performance on the malware detection.

Our contributions can be summarized as follows:

 We proposed a novel Android malware detection
framework using diverse features that can reflect the
characteristics of Android applications.

 We suggested feature vector generation methods that can
represent malware characteristics effectively even when
malware shares many common properties with benign
applications.

 We introduced how the multimodal neural network can be
applied in malware detection system. Model learning
strategies and an online update method for malware
detection are proposed. To the best of our knowledge, this
research is the first application of the multimodal deep
learning to the Android malware detection.

 We provided various experimental results of our
framework to evaluate the performance in various aspects.
Total seven experiments were conducted in this paper.

The rest of the paper is organized as follows: Section II
explains the overall architecture of our Android malware
detection framework and describes how the framework works
in detail, Section III presents the feature types that are used in
our framework, and the multimodal neural network algorithm
is explained in Section IV. Section V shows the experimental
results to show the performance of our framework, and Section
VI discusses related work, followed by Section VII that
summarizes our research and provides future work of this
ongoing research.

Fig. 1. The overall architecture of the proposed framework

T-IFS-07942-2017

3

II. PROPOSED FRAMEWORK

Fig.1 shows the overall architecture of our framework, and
our framework uses seven kinds of the feature; String feature,
method opcode feature, method API feature, shared library
function opcode feature, permission feature, component feature,
and environmental feature. Using those features, the seven
corresponding feature vectors are generated first, and then,
among them, the permission/component/predefined setting
feature vectors are merged into one feature vector. Finally, the
five feature vectors are fed to the classification model for
malware detection. The framework conducts four major
processes for the detection; raw data extraction process, feature
extraction process, feature vector generation process, and
detection process. These processes are explained in the next
subsections.

A. Raw Data Extraction Process

The raw data extraction process is performed to make
Android APK (Android Package Kit) files interpretable. To
extract the raw data, an APK file is unzipped, and a manifest
file, a dex file, and shared library files are extracted first. The
manifest file and the dex file are decoded or disassembled by
APKtool [32], and the shared library files (i.e. .so files) in the
package can be disassembled by IDA Pro [33].

B. Feature Extraction Process

The feature extraction process is conducted to obtain the
essential feature data from the raw data. The detailed definition
of feature types is explained in Section III.

First, method opcode features and method API features are
extracted from smali files which are the disassembled results
of a dex file. The smali file is separated into the method
blocks, and, by scanning Dalvik bytecodes, the Dalvik opcode
frequency of each method is calculated. In addition, during the
bytecode scanning, it is checked whether the invocation of the
dangerous APIs exists in the method, and the dangerous API
invocation frequency of each method is calculated. In case of
string features, strings are simply collected from the whole
smali files without considering the method separation.

Shared library function opcode features are extracted from
the instruction sequences of the disassembled code of .so files.
The instruction sequence of each function is scanned to extract
the information of the assembly opcode frequency.

The permission features, the component features, and
environmental features are extracted from the manifest XML
file. While visiting the XML tree nodes, each node’s tag is
checked to confirm whether the node contains the information
about permissions, application components, and so on.

C. Feature Vector Generation Process

The extracted features in the previous process are used to
compose feature vectors. Seven kinds of the feature vector are
generated from extracted features. The seven feature vectors are
divided into two types according to their feature representations:
existence-based feature vectors and similarity-based feature
vectors. The existence-based feature vector is the feature vector
whose elements only represent the existence of features in the

malicious feature database, and examples of these are string,
permission, component and environmental feature vectors. On
the other hand, the similarity-based feature vector is the feature
vectors whose elements are similar to the malware
representatives in the malicious feature database, and method
opcode, method API and shared library function feature vectors
are the similarity-based feature vectors.

The malicious feature database herein is a repository that
contains features and malware representatives of known
malicious applications. The structure of the database is
described in Fig. 5 in APPENDIX B, and each feature is
explained in Section III. In addition, the malware
representatives mean the centroids of the clusters which are
calculated using the K-means clustering algorithm [44].

 Algorithms I and II explain in APPENDIX A the processing
flows of the feature generation. First, as explained in Algorithm
I, the existence-based feature generation process is simple. The
feature values in the malicious feature database correspond to
the elements of the feature vector, and every feature value is
searched in the features extracted from input applications. If
there is no certain feature value in the extracted features, its
absence is represented as zero. Otherwise, the existence of the
feature value is represented as one in the vector.

Second, the similarity-based feature vectors are generated as
explained in Algorithm II. The method opcode feature, the
method API feature, and the shared library function opcode
feature used in this feature vector generation process are in the
form of a list of frequencies. The frequency values can vary
considerably, so the features of an input application are first
normalized to fit the feature values in the range of [0, 1]. The
min-max scaling method is used in the normalization [45]. Then,
each malware representative (the centroid of the cluster) in the
malicious feature database is compared with the features of the
input application using the Euclidean distance measure. Among
the distances of each malware representative, the minimum
distance is selected to convert to the similarity, and the
calculated similarity is recorded in the corresponding element
of the feature vector. By recording the highest similarity values
of the multiple malware representatives, the feature vector can
contain similarities to multiple clusters’ centroids which are
computed with known malware applications. Therefore, the
similarity-based feature vector can represent information
whether the input application’s features belong to clusters.

To improve the performance of our framework, we refined
the feature vector with a predefined threshold value. The
similarity values that exceed the predefined similarity threshold
become one. Otherwise, it is set to zero. This refinement
removes the features that are not close enough to a certain
malware representative but have small similarity values, and it
also simplifies the computation in the deep learning process.

D. Detection Process

After all the seven feature vectors are generated in the
previous process, the detection process is conducted to
determine whether the given application is malicious or not.
Before examining the feature vectors with the detection model,
the permission feature vector, the component feature vector,

T-IFS-07942-2017

4

and the environmental feature vector are merged into a single
feature vector. Therefore, our model gets the five feature
vectors and performs mathematical operations at each layer. If
all operations are conducted completely, the model produces
the estimated label for the given input application.

III. THE DEFINITION OF FEATURES

Diverse features could be helpful to reflect the characteristics
of an application. Even though some features such as
environmental information are not directly related to malicious
activities, these features may contribute to defining the
application characteristics.

Our proposed framework uses the following features:

 String feature

 Method opcode feature

 Method API feature

 Shared library function opcode feature

 Permission feature

 Component feature

 Environmental feature

In our framework, the deep learning algorithm is used to
classify the unknown samples into the malware class or the
benign class. The deep learning algorithm generates a neural
network model that can derive the best classification accuracy
by updating the weight of each neuron input. The degree of
influence of the feature on classification is determined
according to the weight of the neurons affected by the feature.
If there is an insignificant feature in the classification, the
weight of the relevant neurons is reduced. Therefore, each
feature can be used differently by their contributions.

The next subsections explain each feature type that is used in
our framework. It is noted that the features are converted to the
feature vectors to apply them to the neural network.

A. String Feature

The string feature is extracted from a set of string values in
smali files. The feature extraction module collects all operand
values with the types of const-string and const-
string/jumbo. There are also the Dalvik opcodes that move
a reference to a string into a specific register. The number of
strings in an application spans a wide range. If the number of
applications increases, then the number of strings from those
applications will increase explosively. Therefore, strings are
hashed, and the hashed values of strings are applied to the
modular operation. The hash function used in the framework is
the SHA512 hash function.

B. Method opcode and API Feature

Dalvik opcode frequency and API invocation frequency of
methods may imply application behaviors and coding habits of
the developer. For this reason, Dalvik opcode frequency and
API invocation frequency of methods are used to define the
method features. The method opcode frequency can be

calculated by scanning the bytecode in each method. In the case
of the API invocation frequency, the bytecodes for API
invocation are checked to count the API invocations in each
method. To capture malicious behaviors, invocations of only
selected APIs are counted. The APIs that might be used in
malicious activities are investigated manually using the
Android Developer reference pages [50]. Additionally, the
APIs that were introduced in [35] are also added to the selected
API list. According to [35], those selected APIs are useful to
distinguish malware and benign applications.

C. Shared Library Function Opcode Feature

Android provides the Java Native Interface (JNI) and allows
applications to incorporate native libraries. It is well known that
native code defeats Android security mechanisms because
native code is not covered by the security model. For example,
shared library files can be used to hide malicious behaviors or
to avoid countermeasure against attacks. That is the reason why
many malicious applications use the native code to attack the
Android system.

To prevent malware with native code from hiding its
behaviors, our framework defines and uses the shared library
function features in the detection. Similar to the method feature
extraction, ARM opcode frequency and system call invocation
frequency are extracted from native code. While scanning the
disassembled code of each function, the opcodes and system
call invocations in each function are counted.

D. Permission Feature

Android is a privilege-separated operating system, and an
application runs with a unique system identifier. Android
provides a permission-based access control mechanism to
restrict the operations that a process can perform. In addition,
per-URI permissions are used to grant access to specific data.
To perform a certain behavior, an application should request
necessary permissions to Android, and this means that
permissions defined in an application can indicate the behaviors
of an application.

 The manifest file in the application includes various
information related to permissions. First, the permissions to be
requested when the application is installed are defined in the
manifest file. Second, security permission that can be used to
limit accesses to specific components is also defined to protect
the application. The permission-related information can be
collected by parsing the <uses-permission> tag and the
<permission> tag in the manifest file. The request
permissions’ names are collected from the <uses-

permission> tag, and the security permissions’ names,
permission groups and protection levels are collected from the
<permission> tag. The extracted request permissions and
security permissions (the tuples of name, permission group, and
protection level) are used as permission features.

E. Component Feature

Application components are the essential building blocks of
an Android application. There are four components in an
Android application; Activity, service, broadcast receiver, and

T-IFS-07942-2017

5

content provider. The basic role of each component is explained
as follows. The activity component presents a visual user
interface that an application developer defines. The service
component does not have any visual interface but performs
background processing. The content provider component
provides database interfaces to share data with other
applications. The broadcast receiver component provides a
channel to receive messages from other applications.

Every component of an application is able to register and to
receive messages, called intents. The intent can be used to start
the component or to deliver some important data to the
component. Whenever the intent is transmitted to the
component, the predefined callback function is executed to
handle the intent. The intent can present how the components
communicate each other. The component-intent pairs are
extracted as the component feature to analyze the relationship
between the components. In the case of the content provider,
we also extract the URI path information that specifies which
data subsets of the parent content provider permission can be
granted.

The manifest file of the application is parsed to record the
declared components and their specified intents. First, the
component name is extracted from <activity>,
<service>, <provider>, and <receiver> tags, and the
names of intents are extracted from <intent-filter> tags.
The URI paths are collected from the <grant-uri-
permission> tag and are paired with the name of the content
provider and the intent.

F. Environmental Feature

In the manifest file, there is some information about the
environment settings to execute the application. Requirements
or usage of hardware and software, list of shared libraries that
the application requires, and SDK(Software Development Kit)
version for execution are extracted as environmental features.
<uses-feature>, <uses-library>, and <uses-

sdk> tags are parsed to collect the names of requested
hardware/software, the names of linked libraries, and the SDK
version respectively.

IV. MULTIMODAL NEURAL NETWORK

Fig. 2 shows the architecture of the multimodal deep neural
network for malware detection in our framework. Our proposed
neural network model uses five feature vectors, and each vector
is inputted separately to the initial networks which consist of
five DNNs (Deep Neural Network). The initial networks are not
connected to each other, and the last layers of the initial
networks are connected to the merging layer that is the first
layer of the final network. The final network is a DNN, and it
produces the classification results. Each DNN of the initial
networks consists of an input layer and two hidden layers, and
each layer only receives connections from the previous layer.
Each layer is fully-connected, and the activation functions used
in the DNNs are the rectified linear units (ReLU) activation
function [51]. The ReLU activation function is utilized to
prevent the vanishing gradient problem in training, and it also
makes our model computationally efficient.

The final network is a similar shape of the DNNs to the initial
network except for the first and the last layers. The first layer,
i.e. merging layer, is connected with the last layers of the DNNs
of the initial networks. The last layer of the final network, i.e.
output layer, produces the classification results. In the output
layer, there is only one neuron that uses the sigmoid function to
label an input application as malware or a benign application.
The parameters used in each layer in the multimodal neural
network are summarized in Table I.

A. Formal Description

In this subsection, the formal description of our multimodal
neural network model is explained. Let t ∈ {1,2,3,4,5}
indicates each initial network, 𝑙𝑡 = {1,2,3} be a layer in t initial
network, 𝑥𝑡 the input vector corresponding t initial network, 𝑧(𝑙𝑡) the incoming vector into layer 𝑙𝑡, 𝑦(𝑙𝑡) the output vector of

the layer 𝑙𝑡, 𝑊(𝑙𝑡) the weights of the layer 𝑙𝑡, 𝑏(𝑙𝑡) the biases of
the layer 𝑙𝑡, and f the activation function (ReLU). The equation
for the feed-forward operation of the initial network is as
follows:

 𝑦(0𝑡) = 𝑥 (1) 𝑧(𝑙𝑡+1) = 𝑊(𝑙𝑡+1)𝑦(𝑙𝑡) + 𝑏(𝑙𝑡+1) (2) 𝑦(𝑙𝑡+1) = 𝑓(𝑧(𝑙𝑡+1)) = max (0, 𝑧(𝑙𝑡+1)) (3)

Let 𝑙′ = {1,2,3,4} be a layer in final network, 𝑧′(𝑙′) the

Fig. 2. Multimodal deep neural network

TABLE I
THE PARAMETERS OF THE MULTIMODAL NEURAL NETWORK

Network Layer Parameter setting

Initial DNNs
Input 5000 neurons ReLU

Hidden 2500 neurons ReLU
Hidden 1000 neurons ReLU

Final DNNs

Merging 500 neurons ReLU
Hidden 100 neurons ReLU
Hidden 10 neurons ReLU
Output 1 neurons Sigmoid

T-IFS-07942-2017

6

incoming vector into layer 𝑙′ , 𝑦′(𝑙′) the output vector of the

layer 𝑙′, 𝑊′(𝑙′) the weights of the layer 𝑙′, 𝑏′(𝑙′) the biases of
the layer 𝑙′ , f the activation function (ReLU), o the output
function (Sigmoid). The equation for the feed-forward
operation of the final network is as follows:

 𝑦′(0) = [𝑦(𝑙1), 𝑦(𝑙2), 𝑦(𝑙3), 𝑦(𝑙4), 𝑦(𝑙5)] (4) 𝑧′(𝑙′+1) = 𝑊′(𝑙′+1)𝑦′(𝑙′) + 𝑏′(𝑙′+1) (5) 𝑦′(𝑙′+1) = 𝑓(𝑧′(𝑙′+1)) = max (0, 𝑧′(𝑙′+1)), where 𝑙′ ≠ 4 (6) 𝑦′(4) = 𝑜(𝑧′(4)) = 1/(1 + 𝑒−(𝑧′(4))) (7)

The labels for the input vector is determined as shown in
Equations (8) and (9). 𝐿 denotes the label of input vector, and 𝐿′ denotes the predicted label result.

 { 𝑦′(4) ≥ 0.5, 𝐿′ = 1 𝑦′(4) < 0.5, 𝐿′ = 0 (8)

During the learning process, our multimodal neural network
model is tuned to minimize the value of the loss function, i.e.
the cross-entropy function. The loss function is described as
follows:

 J(L, L′) = − ∑ 𝐿(𝑖)𝑙𝑜𝑔𝐿′(𝑖) + (1 − 𝐿(𝑖))log (1 − 𝐿′(𝑖))2𝑖=1 (9)

B. Regularization

Overfitting is one of the major problems of neural network
models. If a neural network model is overfitted with a particular
train set, then the neural network model cannot generally be
used in classification. To avoid the overfitting problem,
Dropout regularization [49] is applied to our multimodal neural
network model. Dropout is a technique to skip some units
randomly while the neural network is trained. With a fixed
probability, some incoming and outgoing connections of a
neuron in the network are removed. This makes the model
become not too dependent on a specific set of units and their
associated weights and the biases. In our model, the DNNs are
modeled with the dropout rate of 0.2. This rate is generally used
in the typical DNN based models

In addition, when tuning the neural network model, we used
the validation set as well as the training set. While the training
set is used to fit the model, the classification accuracy using the
validation set is also measured together. The validation set does
not update the weights and the biases of the model, but by
monitoring the trends of the accuracies of both of the training
set and the validation set, it can be checked whether the model
fitting is done correctly without the overfitting problem. If the
accuracy growths of both sets are not similar, then the tuning
process is terminated, and modeling parameters are changed to
avoid the overfitting problem. In the detection experiments in
Section V-D, we used the validation set for the model tuning.

C. Learning Strategy for the Multimodal Neural Network

In practice, although malware and benign applications are

given to be analyzed, it is not guaranteed that all of the features
can be extracted from the given applications. In our cases, there
were some applications that the decompiler tool or the
disassembler tool cannot analyze properly. Only 78% of dex
files, 79% of manifest files, and 69% of.so files were
translated properly. The detailed statistical information is
explained in Table II. It is possible to build the multimodal
neural network by using only applications from which all types
of features can be extracted or by padding zeros to feature
vectors when the features cannot be obtained. In order to handle
the problem of partially extracted features, when we modeled
the multimodal neural network, each initial neural network for
a specific feature type is first learned, and then the final neural
network is learned with previously built initial networks. This
learning strategy can enhance the overall accuracy of the model
as well as can reduce the training time in the situation that only
a few initial network is required to be updated.

D. Processing the Zero-Padded Feature Vectors in Detection

Unlike the learning process, in the online detection, even
though some feature vectors consist of only zeros, our
framework can still process them normally if there is at least
one non-zero feature vector. In our experiments, zero-padded
feature vectors are not excluded in the detection, but our
framework produced high detection accuracy. This is because
the zero-padded feature vectors hardly affect the final decision
since the initial networks that correspond to the zero-padded
feature vectors generate minimum output values that only
calculated with the biases of the neurons.

V. PERFORMANCE EVALUATION

A. Dataset

For the evaluation of our model, 20,000 malware samples
from VirusShare [38] and 1,260 from the Malgenome project
[37] were used. In addition, 20,000 benign samples downloaded
from Google Play App Store [39] between March 2015 and
April 2016 were used. To find out whether the downloaded
applications are benign or not, the online malware scanning
service of VirusTotal [40] was used. VirusTotal provides APIs
for the scanning service. We utilized these APIs to request the
tests and to obtain the scanning results. When all of the virus-
scanners in VirusTotal consider an application as benign, the
application is included in the benign application set.

We had many experiments for the performance evaluation,
and the size and the source of samples were slightly different,
so we summarized the information of datasets in each
experiment at Tables XI and XII in APPENDIX C.

B. Experimental Environment

We used an Ubuntu 14.04 machine with Intel Core i7-5820k
CPU, GeForce GTX TITAN X GPU and 104GB RAM to
deploy our proposed framework. In the experiments, the GPU
was utilized to accelerate machine learning algorithms
including our multimodal neural network algorithm. We
implemented the modules of the framework in Python; most of
the modules were executed on PyPy Interpreter [41] that
provides runtime optimizations. The modules that use libraries

T-IFS-07942-2017

7

such as PyCuda are executed on naïve Python because those
libraries do not support PyPy. The multimodal neural network
modeling tool is implemented using the Keras library [42].
Scikit-learn [52] and Tensorflow [53] are also utilized to
implement the clustering and other machine learning algorithms.

C. Effectiveness of the Usage of Feature in the Framework

1) Topological data analysis for the selected features

We also conducted experiments to figure out how the
features of our framework are useful. We performed the
topological data analysis (TDA) [61] that is devised for the
high-dimensional and noisy data. The malware samples used
here had been analyzed in many previous studies, so it is easy
to compare our proposed model with the other studies. In TDA,
the original data are projected, and the projected data are
clustered and visualized. Each cluster is expressed as a node,
and a node’s color and size are assigned by the cluster’s
property. The edge between the nodes represents that the
connected cluster nodes have same intersected elements. Fig. 3
and Table III shows the results of the TDA. In the figure, each
cluster node’s size means the log-scaled number of the cluster
members, and the color of the nodes means the portion of the
labels of the cluster members. The color of the cluster node with
malicious samples is red; otherwise, the color is blue. The

clustering algorithm, DBSCAN [47] was used in TDA. As
shown in Fig. 3, most of the cluster nodes are expressed as pure
red and blue. This means that the feature data have a property
that can distinguish malicious and benign samples. There are
some orange or green nodes, but the number of these nodes is
very small. To check the exact TDA clearly, we measured the
portion of the clusters that have same labels. As shown in Table
III, when we specified the original labels using the Malgenome
project reports, the average portion of clusters with same labels
was about 74.47%. Among the malicious samples, there are
some mutually-related families like DroidKungFu (1/2/3/4/
Sapp/Update). These samples share common malicious
behavior, so their features are also similar. For this reason, we
merged the labels of those samples into one and the average
portions were measured as 83.40%. Lastly, when using the
malware or benign labels, the average portion was 92.26%.
According to the results, our features are effective to capture
applications’ characteristics for the malware detection.

2) Effectiveness of the feature vector of the framework

Our framework uses complicated feature extraction methods
to analyze malware. The following are two main reasons of our
feature extractions. First, it was necessary to provide the
method that generates the fixed sized feature vector that can be
used in the detection model. The size of the raw data such as
naïve binary files of each application varies greatly, so the
resizing algorithms are necessary to provide the fixed sized
feature vectors which fit in our neural network model. The
previously proposed resizing algorithms utilize the spatial or
temporal characteristics of images or speech waveforms, and
these resizing algorithms cannot be directly used in our model,
so we developed our own resizing algorithms. Second, common
characteristics of malware should be included in the feature
vectors, so that we developed the similarity-based feature

(a) Share lib. function opcode freq. (b) Method opcode freq. (c) Method API freq.

(d) Manifest (e) String

Fig. 3. Topological data analysis (TDA) result of each feature data. Density-based spatial clustering algorithm was utilized in the TDA. (a) - (e): the visualized
result for each feature type. Malicious samples from Malgenome project were used. The size of dataset used in this experiment is described in Table XI

TABLE III
THE PORTION OF THE CLUSTERS THAT HAVE ONLY SAME LABEL

Original

family label
Merged

family label
Malware or

benign label
Shared lib. opcode freq. 74.47% 89.36% 97.87%

Method opcode freq. 73.61% 76.39% 91.67%
Method API freq. 95.53% 96.72% 98.36%

Manifest 62.60% 66.41% 79.39%
String 88.10% 88.10% 94.05%

Original family label: Malgenome project label, Merged family label: labels
of which the sub-families are merged into one, Malware or Benign label: labels
for distinguish malware or benign

T-IFS-07942-2017

8

vector generation method.
To show the effectiveness of our feature vector generation

method including feature extraction, we conducted experiments
to compare our framework with other methods: the native
binary-based detection method, the bag-of-words based
detection method, and an open-sourced opcode sequence-based
detection method [30]. The naïve binary-based method uses the
binary files such as manifest files, dex files, .so files directly
as feature vectors, and the bag-of-words based method uses the
frequencies per feature (e.g. APIs, Dalvik opcodes, and ARM
opcodes) as feature vectors. The opcode sequence-based
method uses disassembled opcode sequences as feature vectors.

Table IV shows the comparison results of the experiments.
The first row shows the experimental results when all possible
feature types are used to generate feature vectors, and the
second row shows the results when only the Android method
opcode information is used. In both cases, our framework has
higher accuracy than the other methods. Especially, the naïve
binary-based detection and the bag-of-words based detection
produced very low accuracies. The accuracy of the opcode
sequence-based detection is about 3% lower than that of our
framework with only Android method opcode information.

To find out the reason for these results, we analyzed the
malware samples that were classified correctly in our
framework but were misclassified commonly in the other
detection methods. Among the Android methods used in the
malware samples, we calculated the ratio of the Android
methods which appear in both malware samples benign samples.
The results showed that about 79.9% of Android methods in the
malware samples also appear in benign samples. Since the other
detection methods use dex files themselves or all the opcode
sequences to generate feature vectors, these 79.9% Android
methods also affect the feature vector generations. As a
consequence, the detection rate is degraded due to common
Android methods in both malware and benign applications.

In contrast, in our framework, these Android methods
appeared in benign samples have similarity values less than a
certain threshold with malware representatives, so these
methods are not used to generate feature vectors. We calculated
the ratio of the elements set as one in our similarity-based
feature vectors of the misclassified malware samples by the
other methods. Fig. 7 in APPENDIX D shows the standard
normal distribution derived from the ratio results. This figure
includes the ratio results of all the benign and malware samples
to compare with the result of the misclassified malware samples
by the other methods. As shown in the figure, we can find that

the shape of the standard normal distribution of the
misclassified malware samples is almost same with that of all
the malware samples, whereas there is a definite difference
between the shape of the standard normal distributions of all the
benign samples and the misclassified malware samples. In
conclusion, the feature vectors that are generated with naïve
binary files or with simple refined raw data are not useful to
distinguish malware and benign applications because those
feature vectors can be dominated by common characteristics of
benign applications. Our framework generates feature vectors
not only to reflect the malware characteristics but also to
exclude the benign characteristics by assigning zeros to the
values of the features that have low similarity with the feature
representatives of the malware. Due to this reason, it is expected
that our method has shown high accuracy compared with others.

D. Effectiveness of the Multimodal Neural Model

1) Comparison with different neural networks

To evaluate the effectiveness of the proposed multimodal
neural network and its learning strategy, we measured the
accuracies of three different neural network models. Our
framework uses the five feature types for detection. For the
evaluation, we measured the performance using all feature
combinations as shown in Fig. 4.

The models used in the experiments are explained below:

 MNN-z: The multimodal neural network model trained
with the zero-padded feature vectors

 MNN-s (used by our framework): The multimodal neural
network model separately trained only with the non-zero
feature vectors

 DNN: The fully-connected deep neural network model
trained with the zero-padded feature vectors

As shown in Fig. 4, when all feature types were used, each
neural network model produced the maximum accuracy. In
addition, the models detected malware more accurately when
they used more feature types. As we expected, the performance
of the multimodal neural model was best when the initial
networks were trained separately. Especially, the performance
differences with other models were increased whenever a new
feature type is added. The trend lines of the histograms in Fig.
4 shows that the accuracy of the multimodal neural network
model is improved significantly, compared with the other two
models. Even though the number of features is same, accuracy
results can be different depending on the combinations of
features used. In our experiments, accuracy results were better

TABLE IV
THE PERFORMANCE COMPARISON WITH OTHER FEATURE VECTOR GENERATION METHODS

Method Basic Feature Type Classification Model Accuracy (%)
Ours Manifest/String/Method Opcode Freq./Method API Freq./Share Lib. Func. Opcode Freq. MNN 98%

Bin.-based detection Manifest/Dex/So as like an image MNN 43%
BoW-based detection Manifest/String/App Dalvik Opcode Freq. /App API Freq. /App ARM Opcode Freq. MNN 62%

Ours Method Opcode Freq. (only sim based representation) DNN 93%
Bin.-based detection Dex as like an image DNN 57%
BoW-based detection Method Opcode Freq. (BoW representation) DNN 60%

Opseq. based detection Method Opcode Seq. as like an image CNN 90%
Ours: our proposed detection, Bin.-based detection: the method that uses a naïve binary as a feature vector, BoW-based detection: the method that uses the

frequencies of the words, Opseq-based detection: the method uses opcode sequences of an application as a feature vector. MNN: multimodal neural network, DNN:
deep neural network, CNN: convolutional neural network. The size of dataset used in this experiment is described in Table XI

T-IFS-07942-2017

9

when the manifest feature was used.
We checked whether the accuracy is increased in all the cases

when a certain feature is added. This will show that multiple
features should be used together to improve accuracy, as in the
case of our framework. From this point of view, the
experimental results showed that the MNN-s was most suitable
to learn the various feature types altogether. The average
accuracy of each model was also measured with respect to the
number of feature types, and the results are in Table V. The
average accuracy was about 89% when only one feature type
was used, and the average accuracy was increased to about 98%,
93%, and 94% respectively when all feature types were used.
In addition, there was no case that the accuracy is degraded even
when a new feature type is added to our MNN-s model. In
contrast, among 75 cases that a new feature type is added in the
classification, we found 21 degradation cases in the MNN-z
model and 17 degradation cases in the DNN model. Fig. 6 in
APPENDIX D shows that our MNN-s consistently improves
the accuracy as a new feature type is added, whereas the DNN
model does not. In the figure, the experimental results of
shallow learning models are also described to show the effect
of the MNN-s more clearly.

Two reasons why the experimental results show that MNN-s
is best can be inferred as follows: First, if features are not
extracted from samples of either class (malware class or benign
class), the corresponding feature vectors for those samples will
be zero-padded accordingly. For these feature vectors, zero-
padded feature vectors may affect the model during the learning
process. Second, in the DNN model, neurons of the different
feature types are connected with neurons in the next layer
together. When the model is trained with malicious samples like
Trojan that inject malicious code into benign applications, the
neurons of the benign features and the malicious features will

affect the neurons in the next layers together. This means that
the characteristics from the given malicious samples are
attenuated in the detection model during the learning process.

2) Learning time for updating the detection model

Many malicious applications or benign applications are
created and distributed every day. Since the malware detection
model should reflect the characteristics of those new
applications for accurate and prompt detection, it is necessary
to update the model continuously. In addition, if security
experts want to add a new type of features, the detection model
can be updated. Our proposed multimodal neural network
model is designed to respond to new malicious applications
flexibly and efficiently to handle these situations. The model
can be updated by the changing the network that needs to be
trained newly. To evaluate the efficiency of our multimodal
neural network model, we compared the performance of our
model with the deep neural network model in two cases while
updating the detection model.

We considered the following two cases:

 Case 1: when all types of features can be extracted from
given applications to update the model

 Case 2: when an additional feature type can be extracted
from given applications to update or when an additional
feature type is added to be used in the detection model

Table VI shows the learning time for model updating in two
cases. For the deep neural network model, all networks of the
model should be re-trained in both two cases. So, the learning
times for the cases are equal naturally. For the multimodal

TABLE V
AVERAGE ACCURACY OF EACH MODEL BY THE NUMBER OF FEATURE TYPES

of Feature
Types

Average Accuracy (%)
MNN-s MNN-z DNN

1 89.2 89 89
2 95.5 92.7 91.8
3 97 93.6 92.7
4 97.8 93.4 93
5 98 93 94

Fig. 4. Accuracy results of three different neural networks; Multimodal neural network tuned with zero padded vectors, multimodal neural network that uses the
separately trained initial network, and deep neural network. All the neural networks have the same number of layers that have the same number of neurons.
(validation set/ test set: 20% each, training set: 60%, the size of dataset used in this experiment is described in Table XI)

TABLE VI
THE LEARNING TIME FOR UPDATING THE MODEL

 MNN-s DNN
Case 1 1,458 seconds 1,807 seconds

Case 2

F1 update 378 seconds

1,807 seconds
F2 update 560 seconds
F3 update 484 seconds
F4 update 327 seconds
F5 update 579 seconds

F1: shared lib opcode frequency feature vector, F2: method opcode
frequency feature vector, F3: method API frequency feature vector, F4:
manifest feature vector, F5: string feature vector

T-IFS-07942-2017

10

neural network, the learning time for the case 1 is the sum of
the training time for five initial networks and a final network.
For the case 2, the only training time for one initial network and
a final network is required in model updating.

As a result, it was confirmed that the time for model updating
could be significantly reduced for the case 2. For example, the
time when the manifest feature type is added was reduced by
about 80% compared to that of the deep neural network model,
i.e. case 1. In our experiments, a small set of samples were used
in the model update; however, the number of applications that
are collected newly every day is huge in practice. Therefore,
more time is expected to be saved by training the multimodal
neural network model because only the specific initial networks
and the final network are updated.

E. Comparison with other existing detection methods

To show the performance of our framework compared with
state-of-art detection systems, we investigated the similar
approaches that have been previously proposed. From the deep
learning-based methods to the general classification-based
methods, various kinds of the Android malware detection
methods were surveyed. Table VII shows the results of the
investigations. Many existing methods utilize the malware
samples from the Malgenome project. Therefore we included
the performance results in the table when the samples from the
Malgenome project were used in the detection test. Naturally,
the accuracy and the F-measure values of previously explained
experiments were also included together. As shown in Table
VII, the detection accuracy or the F-measure values of our
framework were higher than the other methods including the
deep learning based methods [28-31]. Like DNN described in
Section V-D, all the classification models treat the feature
vectors consist of the different types of feature without any
isolation processes. The method in [29] uses two classification
models per different feature types, but there is no process to
combine the results of each model. So, the comprehensive final
decision cannot be derived from the classification models, and

the method cannot properly handle the situations that the two
models produce conflicting decisions.

As we explained in subsection 2 in Section V-C, we also
measured the performance of the deep learning based detection
method proposed in [30]. As shown in Table VIII, the detection
accuracy of our framework was 8% higher than that of their
proposed method. In detail, the precision, recall, F-measure,
and accuracy of our framework were 0.08, 0.15, 0.12, and 8%
higher each. As we described in the previous section, our
framework generates feature vectors that are not dominated by
the characteristics commonly appeared in both malware and
benign applications while the method proposed in [30] uses
naïve opcode sequences without such considerations. In
addition, our framework uses various kinds of feature type to
reflect the various aspects of Android applications and to deal
with the situations like a certain raw data cannot be extracted
properly. This is possible because our MNN model is designed
to take advantage of these various feature types in terms of the
accuracy and learning time efficiency.

F. Further Analysis to Evaluate the Framework

1) Obfuscated resilience of the framework

To show the obfuscation resilience of our proposed
framework, we experimented with two sets of malware: a naïve
malware set and an obfuscated malware set. Feature vectors are
extracted from each malware set, and we calculated the
similarities between them. We compared our similarity results
with these three previous works such as ViewDroid [57],
MassVet [58] and Droid-Sec [59]. In obfuscated malware
generation, we applied the Android-specific obfuscation
techniques that are introduced in [60] individually to samples

TABLE VII
THE PERFORMANCE COMPARISON WITH OTHER PROPOSED SYSTEMS (PAPER SURVEY)

System
Data set

Classification algorithm
Capacity for

feature diversity
Accuracy (%) /

F-measure Malware Benign

Ours
13,075 (V.S.)
1,209 (M.P.)

19,747 (G.P.)
1,300 (G.P.)

MNN-s (proposed) High
98% / 0.99
99% / 0.99

Z. Yuan [28] 1,760 (C.C./M.P.) 20,000 (G.P.) DBN Low 96.8% / NA

W. Yu [29] 92 (M.P.) 96 (G.P.) DNN/RNN (separately used) Medium 90% / NA

N. Mchaughlin [30] 9,902 (M.P./Mc.) 9,268 (G.P./Mc.) CNN Low 87% / 0.86

H. Fereidooni [31] 18,677 (M.P./M0./ V.T./D.) 11,187 (D./M0.)
XGboost(best)/Adaboost/RF/S
VM/ K-NN/LR/NB /DT/DNN

Low 97% / 0.97
(XGboost)

Ch.-Y. Huang [2] 480 (M.P.) 124,769 (G.P./3rd party) Adaboost/NB/DT(best)/SVM Low NA / 0.78

M. Zhang [5] 2,200 (M.P./Mc.) 13,500 (Mc./G.P.) NB Low 93% / NA

D. Arp [7] 5,560 (M.P./3rd party) 123,453 (G.P.) SVM Low 93.9% / NA

D-J. Wu [8] 238 (C.C.) 1,500 (G.P.) K-NN+K-Means Low NA / 0.91

S. Y. Yerima [58] 1,000 (M.P.) 1,000 (G.P. or 3rd party) Bayesian based classifier Low 92% / NA

Q. Jerome [59] 1,246 (M.P.) 1,260 (G.P.) SVM Low NA / 0.98

S. Y. Yerima [60] 2,925 (Mc.) 3,938 (Mc.) RF(best)/LR/NB/DT Low 97.5% / NA
(RF)

Abbreviation & Terms: Ours – our framework, MNN – multimodal neural network, DBN – deep belief network, DNN – deep neural network, RNN – recurrent
neural network, CNN – convolutional neural network, RF – random forest, SVM – support vector machine, K-NN – K-nearest neighbor, DT – decision tree, LR –
logistic regression, NB – Naïve Bayes, V.S. – VirusShare, M.P. – malgenome project, C.C. – contagio community, G.P. – Googleplay store, Mc. – McAfee, M0 –
M0Droid, V.T. – VirusTotal, D. – Drebin, 3rd party – third party market, M.P. – malicious repository.

TABLE VIII
THE PERFORMANCE COMPARISON WITH [30]

 Precision Recall F-measure Accuracy (%)
Ours 0.98 0.99 0.99 98%
[30] 0.90 0.84 0.87 90%

The size of dataset used in this experiment is described in Table XI.

T-IFS-07942-2017

11

in the naïve malware set to measure the impacts of each
obfuscation technique. Six obfuscation techniques in [60] and
one technique (PI) we defined were tested in the experiments.

Table IX shows the experimental results with the obfuscated
malware samples. The average similarities of our framework
exceed 0.92, and the results show that our framework is as good
as or better than previously proposed work. Our framework
shows similar results with ViewDroid, and average similarities
of the three obfuscation techniques, i.e. CR, ED, and RI, are
slightly better than ViewDroid. These three obfuscation
techniques do not change view graphs directly, but some view
graphs may be no generated because view names and invoked
functions related views are obfuscated. As a result, obfuscation
causes some similarity degradations of ViewDroid. MassVet
was implemented based on ViewDroid, and MassVet first
analyzes malware with view graphs proposed in ViewDroid,
and then analyzes reused code using their diff procedure. We
already measured the performance of ViewDroid, so we only
calculated the similarity, the code matching ratio using their diff
procedure. MassVet uses features from control flow graphs
(CFGs), and obfuscation techniques such as CR and JN affect
these features. So, MassVet has very low similarity scores when
these techniques are applied. Droid-Sec generates feature
vectors based on frequencies of declared permissions, API
invocations and dynamic behaviors. In most cases, the
similarity results are more than 0.90, but the result of JN is
lowest, because the JN technique may affect frequency
information. Our approach is slightly better than Droid-Sec
because we focused on features of centroid methods instead of
frequency features of the whole application.

Our framework uses various kinds of feature, and the
similarity-based feature vector generation process can alleviate
impacts of the obfuscation techniques even though some
features are affected by obfuscation techniques. Even though
the experimental results show that our framework is effective
against some obfuscation techniques, static analysis based
approaches still have limitations if obfuscation techniques are
developed for specific detection frameworks or methods.

2) The applicability on the unsupervised learning

Our framework is devised for the malware detection using
the supervised classification, however, we also had an
experiment to evaluate the applicability of our proposed model
to the unsupervised training-based classification. We
implemented and compared two unsupervised learning-based
classification models; The MNN shaped autoencoder and the

DNN shaped autoencoder. The detailed information about these
autoencoders is included in APPENDIX E. We followed the
general unsupervised learning based classification approach
that is introduced in [62]. Each autoencoder is trained to
reconstruct positive data, i.e. malware only, and classification
is performed by comparing its reconstruction error to a
threshold. If the error is smaller than the threshold, the input
instance is assigned to the positive class. As shown in Table X,
the detection accuracy of the MNN shaped autoencoder was
about 6% higher than the DNN shaped autoencoder.

VI. RELATED WORK

A. Static Analysis

Chun Ying Huang et al. [2] proposed a malware detection
method that uses the permission information and the number of
files with common machine learning algorithms. Zarni Aung et
al. [3] developed a system that collects the required permissions
from the applications. Their system applies clustering algorithm
and classification algorithm step by step. DroidLegacy [4]
decomposes malware into loosely coupled modules and
matches the API call frequencies of each module. DroidSIFT
[5] classifies malware and benign applications by analyzing
API dependency graphs of each application. RiskRanker [6]
analyses dangerous behaviors of the applications. DREBIN [7]
uses features like hardware or software components,
permissions, intents, and API calls to detect malware. DroidMat
[8] uses the API call traces, intent message passing, and
information of components (activity, service, and receiver) to
detect malware. DroidMoss [9] is a system that uses a fuzzy
hashing technique to measure similarities of applications to
detect the repacked malware. Junmei Sun et al. [17] presented
a method that uses keywords correlation distance in feature
vector generation for the SVM classification. Annamalai
Narayanan et al. [18] proposed a method that uses CFGs as
features, and the CFGs are applied to the online SVM algorithm
for the malware detection. Ambra Demontis et al. [19] proposed
a method to mitigate evasion attacks such as malware data
manipulation. The method utilizes a secure SVM algorithm
which enforces its features to have evenly-distributed weight.
Compared with our framework, there are some differences that

TABLE IX
THE AVERAGE SIMILARITY OF THE NAÏVE MALWARE AND THE OBFUSCATED MALWARE

Method
Call Indirection

(CI)

Code
Reordering

(CR)

Data
Encryption

(ED)

Junk
Insertion

(JN)

Permission
Insertion

(PI)

Identifier
Renaming

(RI)

Package
Renaming

(RP)
Ours 1.0 0.99 0.93 0.92 0.99 0.99 1.0

ViewDroid 1.0 0.96 0.86 1.0 1.0 0.41 1.0
MassVet 1.0 0.0003 0.45 0.004 1.0 0.99 1.0

Droid-Sec 0.95 0.95 0.95 0.90 0.92 0.95 0.92
Ours: our proposed feature vector based similarity calculation (Jaccard coefficient similarity measure used), ViewDroid [61]: view graph based similarity

calculation, MassVet [62]: CFG geometric center based similarity calculation (view graph based similarity calculation is excluded for the duplication, matching
ratio is used as similarity), Droid-Sec [63]: Their proposed feature vector based similarity calculation (Permission/API(our dangerous API list)/Dropbox Behavior
information based feature vector and Jaccard coefficient similarity measure were used), The size of dataset used in this experiment is described in Table XI. PI is
a technique that inserts additional permissions to the manifest.

TABLE X
THE ACCURACY OF MNN SHAPED AE AND DNN SHAPED AE

 FPR TPR FNR TNR ACC
MNN 15% 85% 14% 96% 85%
DNN 17% 60% 40% 89% 79%

The size of dataset used in this experiment is described in Table XI.

T-IFS-07942-2017

12

these methods use a small set of feature types and do not
consider the flexibility of the detection model for feature type
addition or partial model updates.

In addition to the above studies on signature-based detection,
there are some studies to protect benign applications from
malware. DroidAlarm [11] analyses to identify privilege
escalation attacks. This system analyses execution paths in
inter-procedural call graphs from a sensitive permission to a
public interface. Erika Chin et al. [12] proposed ComDroid that
analyses the manifest file of an application to check whether
security-critical declarations for application communications
exist. CHEX [13], DroidChecker [14], AAPL [15], and
Amandroid [16] are methods to verify Android applications to
defend against the component hijacking attacks. These studies
focus on how to detect the potentially vulnerable points. The
purpose of the researches is different from ours.

B. Dynamic Analysis

DroidScope [20] is a system that provides the semantic views
for malware analysis. The system extracts system call traces as
well as changes in environments such as processes and threads,
and Dalvik instruction traces also are extracted and used in taint
analysis in the system. TaintDroid [21] performs the data-flow
analysis of applications and detects the information leakage of
sensitive data. AASandbox [22] is a system that uses both static
analysis and dynamic analysis. In its dynamic analysis, system
call frequencies of benign applications and malware are
collected and compared. Shabtai et al. [23] and Aubrey-Derrick
et al. [24] proposed the anomaly detection systems. Each
system analyses mobile devices to identify abnormalities of the
device usage. The system uses the metrics such as CPU usage,
the number of sent packets, and so on. Even though our
framework only uses static features currently, the dynamic
features like those presented in the previous studies can be
utilized additionally.

C. Deep Learning based Malware Detection

Previous approaches that use deep learning algorithm are
explained in turn. Razvan Pascanu et al. [25] uses the recurrent
neural network to detect Windows-based malware. They use
API events as the feature in detection. DeepSign [26] is a
Windows-based malware detection method that uses dynamic
API calls and their parameters as features. The deep belief
network is used to classify malware and benign files. Joshua
Saxe et al. [27] proposed a deep neural network-based malware
detection method. In their method, PE import functions, strings,
entropy and metadata of Windows binaries are used as features.
The method uses different kinds of feature altogether, so it
seems difficult to detect malware such as Trojan which has
many features of normal programs. Droid-detector [28], a
machine learning based method, is proposed to detect Android
malware. This method extracts three types of features and uses
them in the deep belief network. Wei yu et al. [29] proposed an
Android malware detection system that models neural network
with permissions and system call traces from applications. In
their system, only permissions are used as static features, even
though there is much information that can be used and tested

for their usefulness in detection. Niall McLaughlin et al. [30]
proposed a system that uses a convolutional neural network
(CNN) for the Android malware detection. In the system, raw
opcode sequences of applications are used as a feature without
any refinement. Hossein Fereidooni et al. [31] proposed
ANASTASIA, a system to detect Android malware using
features such as intents, permissions, system commands, and
API calls. The system uses many classifiers including the deep
neural network. Even though many kinds of feature can be
extracted from Android applications, most of the previous
methods use a small number of kinds of feature in detection. In
addition, the previous methods do not consider the situations
when adding new feature types.

VII. CONCLUSION

In this paper, we propose a novel Android malware detection
framework that utilizes many static features to reflect the
properties of applications in various aspects. Total seven kinds
of feature extracted by analyzing files such as a manifest file, a
dex file, and a .so file from an APK file, and these features
enrich the extracted information to express applications’
characteristics. In addition, we suggested the effective feature
vector generation method which is appropriate to detect
malware that is similar to benign applications. Through our
proposed feature representation, it is possible to prevent feature
vector of malware from containing the common properties that
appear in benign applications. Finally, we used the multimodal
deep learning method, which is designed to deal with various
kinds of feature type. Different types of feature are exclusively
used to train the initial networks, and the results of the initial
networks are subsequently used to train the final network. This
architecture of the model is suitable for our framework to
improve the malware detection accuracy. To the best of our
knowledge, this research is the first application of the
multimodal deep learning to the Android malware detection.

In the evaluation, we carried out many experiments. We
compared the detection accuracy of many different detection
models. And, we performed an experiment to demonstrate our
detection model can be efficiently updated. In addition, we had
experiments to confirm the usefulness of the feature and our
proposed feature vector generation method. And we also carried
out experiments about the applicability on the unsupervised
learning based classification and the obfuscation resilience. As
a result, our framework was effective enough to be used in the
Android malware detection. The source code and other
auxiliaries were released in [34].

APPENDIX A
FEATURE VECTOR GENERATION ALGORITHMS

ALGORITHM I. EXISTENCE BASED FEATURE VECTOR GENERATION
Input: Feature set in DB, F_db & Feature set of an App, F_app

Output: A existence based feature vector

1: feature_vector ← [0 | 0 | … | 0]
2: index ← 0
3: for ∀f1 ∈ F_db do // for all features in database
4: if f1 ∈ F_app then
5: feature_vector[index] ← 1
6: return feature_vector

T-IFS-07942-2017

13

APPENDIX B

MALICIOUS FEATURE DATABASE

APPENDIX C

DATASET INFORMATION

APPENDIX D
EXPERIMENTAL RESULTS

Fig. 5. The structure of tables in the malicious feature DB. Tables for method
opcode frequency, method API frequency, and shared library function opcode
frequency contains the centroid in each row. The centroids are calculated by
K-Means algorithm. The other tables contain the real values of the attributes.

(a) random forest (b) support vector machine

(c) deep neural net. (d) multimodal neural net.

Fig. 6. The directed graph for detection accuracy changes according to feature
type addition in random forest/support vector machine/deep neural network/
multimodal neural network. Each node means the accuracy result of a certain
feature combination, and only nodes in inclusion relation are connected with
edges. The direction of edge is expressed as the bold line. Red edge means the
accuracy decrease and blue edge means the accuracy increase (including equal
accuracy).

TABLE XII
THE SIZE OF DATASET USED IN THE EXPERIMENTS IN SECTION V-D

Feature Combination Benign set Malware set Total
{1,2,4},{1,3,4},{1,4,5},
{1,2,3,4},{1,2,3,4,5}
{1,2,4,5},{1,3,4,5},
{1,2,3,4,5}

19,747 13,075 32,822

{1,4} 18,831 12,593 31,424
{4} 18,756 12,521 31,277
{1,5},{1,2},{1,3},
{1,2,3},{1,2,5},{1,3,5} 18,815 13,036 31,851

{2,4},{3,4},{4,5},
{2,3,4},{2,4,5},{3,4,5}
,{1,2,3,5},{2,3,4,5},

19,741 13,075 32,816

{1} 1,463 2,167 3,630
{2},{3},{5},
{2,3},{2,5},{3,5},
{2,3,5}

18,803 13,036 31,839

Feature number: 1 - Share lib. opcode feature, 2 – Method opcode feature,
3 – Method API feature, 4 – Manifest feature, 5 – String feature

Fig. 7. The standard normal distribution of the total benign apps, the total
malware, and the malware missed by binary-based detection method and bag-
of-words based detection method. The standard normal distribution is
computed using the ratio of the elements set as one in our similarity-based
feature vector. The samples from VirusShare and Google Play Store were used.

ALGORITHM II. SIMILARITY BASED FEATURE VECTOR GENERATION
Input: Feature set in DB, F_db & Feature set of an App, F_app

Output: A similarity based feature vector

1: Centroids ← k_means(k, F_db) // preprocessing

2: feature_vector ← [0 | 0 | … | 0]
3: index ← 0
4: for ∀c ∈ Centroids do // for all centroids
5: min_sim ← 0
6: for ∀f ∈ F_app do // for all features

7: dist ← get_euclidean_dist(c, f)
8: sim ← 1/(dist+1)
9: if sim < min_sim then

10: min_sim ← sim

13: if min_sum > threshold then

14: feature_vector[index] ← 1

15: else

16: feature_vector[index] ← 0
17: index ← index+1
19: return feature_vector

TABLE XI
THE DATASET INFORMATION USED IN ALL THE EXPERIMENTS

Exp.
(Section)

Test
Validati

on
Train Dataset size

(malware/benign)
Dataset
Source

V-C-1
Not classification experiment

1,260/2,000 M.P./G.P.

V-C-2 13,036/18,803
(in all the cases) V.S./G.P.

V-D-1 20% 20% 60% shown in Table XII V.S./G.P.

V-D-2 0% 0% 100% 1,209/1,791 V.S./G.P.

V-E 20% 20% 60% 13,036/18,803
(comparison to [30]) V.S./G.P.

V-F-1 Not classification experiment 1,000/0 M.P./G.P.

V-F-2 20% 0%
80%
(only-

malware)
1,209/1,791 V.S./G.P.

V.S – VirusShare, M.P. – Malgenome project, G.P. – Google Play Store

T-IFS-07942-2017

14

APPENDIX E
AUTOENCODERS

Acknowledgment
This work was supported by Institute for Information & comm
unications Technology Promotion (IITP) grant funded by the
Korea government (MSIT) (No.2017-0-00388, Development o
f Defense Technologies against Ransomware)

This research was supported by the MSIT(Ministry of Science,
 ICT), Korea, under the ITRC(Information Technology Resear
ch Center) support program (IITP-2018-2013-1-00881) superv
ised by the IITP(Institute for Information & communication Te
chnology Promotion)
This work was supported by the National Research Foundation
 of Korea(NRF) grant funded by the Korea government(MSIP)
 (No. NRF-2016R1A2B4015254).

REFERENCES

[1] G DATA Report, “8,400 new android malware samples every day”.
[2] Ch.-Y. Huang, Y.-T. Tsai, and C-H. Hsu, “Performance evaluation on

permission-based detection for android malware,” Advances in

Intelligent Systems and Applications, vol. 2, pp. 111-120, 2013.
[3] A. Zarni, and W. Zaw, “Permission-based android malware detection,”

International Journal of Scientific and Technology Research, vol. 2,
no. 3, pp. 228-234, 2013.

[4] D. Luke, V. Notani, and A. Lakhotia, “Droidlegacy: Automated
familial classification of android malware,” In Proc. of the ACM

SIGPLAN on Program Protection and Reverse Engineering Workshop,
pp. 3, 2014.

Fig. 8. Accuracy results of the multimodal neural network model, the support vector machine model, and the random forest model. (validation set/ test set: 20%
each, training set: 60%, the size of dataset used in this experiment is described in Table XI)

(a) Share lib. function opcode frequency (b) Method opcode frequency (c) Method API frequency

(d) Manifest (e) String (f) Final (merging)

Fig. 9. Accuracy growth of the training set and the validation set by epochs. (a) - (e): initial networks of feature types, (f): final network (validation set: 20%,
training set: 80%, the size of dataset used in this experiment is described in Table IX)

TABLE XIII
THE STRUCTURE OF THE AUTOENCODERS

MNN shaped AE (No. of neurons) DNN shaped

AE (No. of
neurons)

Init
net1

Init
net2

Init
net3

Init
net4

Init
net5

Layer1/1 200 200 200 200 200 1,000
Layer2/2 100 100 100 100 100 500
Layer3/3 20 20 20 20 20 100
 Final network
Layer1/4 500 500
Layer2/5 1,000 1000
Layer3/6 3,400 17,000

 All the layers use the ReLU function except for the last layer. The last layer
uses the sigmoid function.

T-IFS-07942-2017

15

[5] M. Zhang, Y. Duan, H. Yin, and Z. Zhao, “Semantics-aware Android
malware classification using weighted contextual API dependency
graphs,” In Proc. of the ACM Conference on Computer and

Communications Security (CCS), pp. 1105-1116, 2014.
[6] M. Grace, Y. Zhou, Q. Zhang, S. Zou, X. Jiang, “Riskranker: scalable

and accurate zero-day android malware detection,” In Proc. of the

ACM International Conference on Mobile Systems, Applications, and

Service (Mobisys), pp. 281-294, 2012.
[7] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck,

“DREBIN: Effective and Explainable Detection of Android Malware
in Your Pocket,” In Proc. the Network and Distributed System Security

Symposium (NDSS), vol. 14, pp. 23-26, 2014.
[8] D-J. Wu, C-H. Mao, T-E. Wei, H-M. Lee, K-P. Wu, “Droidmat:

Android malware detection through manifest and api calls tracing,” In
Proc. of the Asia Joint Conference on Information Security (Asia JCIS),
pp. 62-69, 2012.

[9] W. Zhou, Y. Zhou, X. Jiang, P. Ning, “Detecting repackaged
smartphone applications in third-party android marketplaces,” In Proc.

of the ACM conference on Data and Application Security and Privacy,
pp. 317-326, 2012.

[10] S. Hao, B. Liu, S. Nath, W. G. Halfond, and R. Govindan, “PUMA:
Programmable UI-automation for Large-scale Dynamic Analysis of
Mobile Apps,” In Proc. of the ACM International Conference on

Mobile Systems, Applications, and Services (MobiSys), pp. 204-217,
2014.

[11] Y. Zhongyang, Z. Xin, B. Mao, L. Xie, “DroidAlarm: an all-sided static
analysis tool for Android privilege-escalation malware,” In Proc. of the

8th ACM SIGSAC symposium on Information, computer and

communications security, pp. 353-358, 2013.
[12] E. Chin, A. P. Felt, K. Greenwood, D. Wagner, “Analyzing inter-

application communication in Android,” In Proc. of the international

conference on Mobile systems, applications, and services, pp.239-252,
2011.

[13] L. Lu, Z. Li, Z. Wu, W. Lee, G. Jiang, “Chex: statically vetting android
apps for component hijacking vulnerabilities,” In Proc. of the ACM

conference on Computer and communications security, pp. 229-240,
2012.

[14] P. PF Chan, L. CK Hui, SM. Yiu, “Droidchecker: analyzing android
applications for capability leak,” In Proc. of the ACM conference on

Security and Privacy in Wireless and Mobile Networks, pp. 125-136,
2012.

[15] K. Lu, Z. Li, V. P. Kemerlis, Z. Wu, L. Lu, “Checking More and
Alerting Less: Detecting Privacy Leakages via Enhanced Data-flow
Analysis and Peer Voting,” In Proc. of the Network and Distributed

System Security Symposium (NDSS), 2015.
[16] W., Fengguo, S. Roy, X. Ou. “Amandroid: A precise and general inter-

component data flow analysis framework for security vetting of
android apps,” In Proc. of the 2014 ACM Conference on Computer and

Communications Security, pp. 1329-1341, 2014.
[17] J. Sum, K. Yan, X. Liu, Ch. Yang, Y. Fu, “Malware Detection on

Android Smartphones using Keywords Vector and SVM,” In Proc. of

the IEEE/ACIS Conference on Computer and Information Science, pp.
833-838, 2017.

[18] A. Narayanan, L. Yang, L. Chen, L. Jinliang, “Adaptive and Scalable
Android Malware Detection through Online Learning,” In Proc. of the

International Joint Conference on Neural Networks (IJCNN), pp.
2484-2491, 2016.

[19] A. Demontis, M. Melis, B. Biggio, D. Maiorca, D. Arp, K. Rieck, I. C
orona, G. Giacinto, F. Roli, “Yes, Machine Learning Can Be More Se
cure! A Case Study on Android Malware Detection,” IEEE Transacti

on on Dependable and Secure Computing, 2016.
[20] L. K. Yan, H. Yin, “DroidScope: Seamlessly Reconstructing the OS

and Dalvik Semantic Views for Dynamic Android Malware Analysis,”
In Proc. of the USENIX Security Symposium, pp. 569-584, 2012.

[21] W. Enck., P. Gilbert, S. Han, V. Tendulkar, B-G. Chun, L. P. Cox, J.
Jung, P. Macdaniel, A. N. Sheth, “TaintDroid: an information-flow
tracking system for realtime privacy monitoring on smartphones,”
ACM Transaction on Computer Systems, vol. 32, no. 5, 2014.

[22] T. Bläsing, L. Batyuk, A-D. Schmidt, S. A. Camtepe, S. Albayrak, “An
android application sandbox system for suspicious software detection,”
In Proc. of the Malicious and unwanted software (MALWARE), pp. 55-
62, 2010.

[23] A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer, Y. Weiss, “Andromaly:
a behavioral malware detection framework for Android devices,”

Journal of Intelligent Information Systems, vol. 38, no. 1, pp. 161-190,
2012.

[24] A- D.Schmidt, F. Peters, F. Lamour, C. Scheel, S. A. Camtepe, S.
Albayrak, “Monitoring smartphones for anomaly detection,” Mobile

Network sand Applications, vol. 14, no. 1, pp. 92-106, 2009.
[25] R. Pascanu, J. W. Stroke, H. Sanossian, M. Marinescu, A. Thomas,

“Malware classification with recurrent networks,” In Proc. of the IEEE

International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 1916-1920, 2015.

[26] O. E. David, N. S. Netanyahu, “Deepsign: Deep learning for automatic
malware signature generation and classification,” In Proc. of the

International Joint Conference on Neural Networks (IJCNN), pp. 1-8,
2015.

[27] J. Saxe, K. Berlin, “Deep neural network based malware detection
using two dimensional binary program features,” In Proc. of the 10th

International Conference on Malicious and Unwanted Software
(MALWARE), pp. 11-20, 2015.

[28] Z. Yuan, Y. Lu, Y. Xue, “Droiddetector: android malware
characterization and detection using deep learning,” Tsinghua Science

and Technology, vol. 21, no. 1, pp. 114-123, 2016.
[29] W. Yu, L. Ge, G. Xu, X. Fu, “Towards Neural Network Based Malware

Detection on Android Mobile Devices,” Cybersecurity Systems for

Human Cognition Augmentation, pp. 99-117, 2014.
[30] N. Mchaughlin, J. Martinez del Rincon, B-J. Kang, S. Yerima, Y.

Safaei, E. Trickel, Z. Zhao, A. Doupe, G. Joon Ahn, “Deep Android
Malware Detection,” In Proc of the ACM on Conference on Data and

Application Security and Privacy (CODASPY), pp. 301-308, 2017.
[31] H. Fereidooni, M. Conti, D. Yao, A. Sperduti, “ANASTASIA:

ANdroid mALware detection using STAtic analysis of Applications,”
In Proc. of the IFIP International Conference on New Technologies,

Mobility and Security, pp. 1-5, 2016.
[32] APKtool. (September , 2017) [Online]. Available: https://ibotpeaches.

github.io/Apktool/
[33] IDA pro. (September , 2017) [Online]. Available: https://www.hex-

rays.com/products/ida/
[34] Released Code (September, 2017) [Online]. Available:

https://github.com/cloudio17/A-Multimodal-Deep-Learning-Method-
for-Android-Malware-Detection.

[35] A. Yousra, W. Du, H. Yin, “DroidAPIMiner: Mining API-level
features for robust malware detection in android,” In Proc. of the

International Conference on Security and Privacy in Communication

Systems, pp. 86-103, 2013.
[36] Y. Bengio, “Learning deep architectures for AI,” Foundations and

Trends in Machine Learning, vol. 2, no. 1, 2009.
[37] Mal-Genome project. (September, 2017) [Online]. Available: http://w

ww.Malgenomeproject.org/
[38] VirusShare. (September, 2017) [Online]. Available: https://virusshar

e.com/
[39] Googleplay Store. (September, 2017) [Online]. Available: https://pla

y.google.com/store/
[40] VirusTotal. (September, 2017) [Online]. Available: https://www.viru

stotal.com/ko/
[41] PyPy Interpreter. (September, 2017) [Online]. Available: http://pypy.

org/
[42] Keras. (September, 2017) [Online]. Available: https://keras.io/
[43] T. Abou-Assaleh, N. Cercone, V. Keselj, R. Sweidan, “N-gram-based

detection of new malicious code,” In Proc. of the Computer Software

and Applications Conference, vol. 2, pp. 41-42, 2004.
[44] M. Ismail Bin, D. Usman, “Standardization and Its Effects on K-Means

Clustering Algorithm,” Research Journal of Applied Sciences,

Engineering and Technology, vol. 6, no. 17, 2013.
[45] Ch. Robert, “Machine learning: a probabilistic perspective,” MIT press.

2012.
[46] D. P. King ma, J. Ba, “Adam: A method for stochastic optimization,”

arXiv preprint arXiv:1412.6980, 2014.
[47] M. Ester, H. P. Kriegel, J. Sander, X. Xu, "A density-based algorithm

for discovering clusters in large spatial databases with noise," KDD,
vol. 96, no. 34, pp. 226-231, 1996.

[48] J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, A. Y. Ng, “Multimodal
deep learning,” In Proc. of the international conference on machine

learning, pp. 689-696, 2011.
[49] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R.

Salakhutdinov, “Dropout: a simple way to prevent neural networks
from overfitting,” Journal of machine learning research, vol. 15, no.
1, pp. 1929-1958.

T-IFS-07942-2017

16

[50] Android Developer Reference Page, (September, 2017) [Online].
https://developer.android.com/reference /packages.html

[51] V. Nair, G. E. Hinton, “Rectified Linear Units Improve Restricted
Boltzmann Machines,” In Proc. of the International Conference on

Machine Learning, pp. 807-814, 2010.
[52] Scikit-lean. (September, 2017) [Online]. Available: https://scikit-

learn.org
[53] Tensorflow. (September, 2017) [Online]. Available: https://tensorflow.

org
[54] S. Y. Yerima, S. Sezer, G. McWilliams, I. Muttik, “A New Android

Malware Detection Approach using Bayesian Classification”, In Proc

.of Advanced Information Networking and Applications, pp. 121-
128, 2013.

[55] Q. Jerome, K. Allix, R. State, T. Engel, “Using Opcode-
sequences to Detect Malicious Android Applications”, In Proc. of the

IEEE Int. Conf. on Communicaions, pp. 914-919, 2014
[56] S. Y. Yerima, S. Sezer, I. Muttik, “High Accuracy Android Malware

Detection using Ensemble Learning”, IET Information Security, vol.
9, no. 6, pp. 313-320, 2015

[57] F. Zhang, , H. Huang, S. Zhu, D. Wu, P. Liu, “ViewDroid: Towards
obfuscation-resilient mobile application repackaging detection,” In
Proc. of the 2014 ACM conference on Security and privacy in wireless

& mobile networks, pp. 25-36. 2014
[58] K. Chen, P. Wang, Y. Lee, X. Wang, N. Zhang, H. Huang, W. Zou, P.

Liu, “Finding Unknown Malice in 10 Seconds: Mass Vetting for New
Threats at the Google-Play Scale,” In Proc. of the USENIX Security

Symposium, pp. 659-674, 2014.
[59] Z. Yuan, Y. Lu, Z. Wang, Y. Xue, “Droid-Sec: deep learning in

android malware detection,” ACM SIGCOMM Computer

Communication Review, vol. 44, no. 4, pp. 371-372, 2014.
[60] V. Rastogi, Y. Chen, X. Jiang, “Droidchameleon: evaluating android

anti-malware against transformation attacks,” In Proc. of the 8th ACM

SIGSAC symposium on Information, computer and communications

security, pp. 329-334, 2013.
[61] A. Zomorodian, “Topological data analysis,” Advances in applied and

computational topology, vol. 70, pp. 1-39, 2012.
[62] J. Nathalie, “Supervised versus unsupervised binary-learning by

feedforward neural networks”, Machine Learning, vol. 42, no. 1-2, pp.
97-122, 2001.

TaeGuen Kim received the B.S. degree in
the electronics and computer engineering
and M.S. degree in the computer and
software from the Hanyang University,
Korea, in 2011 and 2013, respectively. His
research interests include malware
analysis, machine learning.

BooJoong Kang is currently a Research
Fellow at the Centre for Secure Information
Technologies in the Queen’s University
Belfast, UK. He received the B.S., M.S.,
and Ph.D. degrees in electronics and
computer engineering from the Hanyang
University, Korea, in 2007, 2009, and 2013,
respectively. His research interests include

malware analysis, threat analysis, intrusion detection, cyber-
physical resilience measures.

 Mina Rho is a faculty member of the
Department of Computer Science and
Engineering at Hanyang University, Seoul,
Korea. She received a B.S. degree in
Computer Science from Ewha Womans
University, Seoul, Korea, a M.S. degree in
Computer Engineering from Boston

University, Boston, USA, and a Ph.D. degree in Computer
Science from Indiana University, Bloomington, USA. From
2012 to 2013, she was an Assistant Professor at Roswell Park
Cancer Institute, Buffalo, USA. Her research interests include
the development of algorithms for analyzing genomic sequence
data, and application of machine learning to analyze big data.

Sakir Sezer received the Ph.D. degree in
electronic engineering from Queen’s
University Belfast. He is currently a
Professor and the Head of network and
cyber-security research with the Center for
Secure Information Technologies, Queen’s
University Belfast. He is also a Co-Founder
and the CTO of Titan IC Systems and a

member of various research and executive committees,
including the IEEE International System-on-Chip Conference
Executive Committee. His research is leading major advances
in the field of high-performance content and security processing.

Eul Gyu Im is a faculty member of the
Division of Computer Science and
Engineering at Hanyang University, Seoul,
Korea. He received the B.S. and M.S.
degrees from Seoul National University in
1992 and 1994, respectively, and the Ph.D.
degree from University of Southern
California in 2002. Before joining Hanyang

University, he worked for National Security Research Institute
in Daejeon, Korea. His research interests include malware
analysis, malicious traffic analysis, and smart grid security.

