
A Multimodal Deep Learning Method for Android Malware Detection
using Various Features
Kim, T., Kang, B., Rho, M., Sezer, S., & Im, E. G. (2018). A Multimodal Deep Learning Method for Android
Malware Detection using Various Features. IEEE Transactions on Information Forensics and Security, 14(3),
773-788. https://doi.org/10.1109/TIFS.2018.2866319

Published in:
IEEE Transactions on Information Forensics and Security

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2018 IEEE.
This work is made available online in accordance with the publisher’s policies. Please refer to any applicable terms of use of the publisher.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:27. Aug. 2022

https://doi.org/10.1109/TIFS.2018.2866319
https://pure.qub.ac.uk/en/publications/45ba32ab-1533-492c-b268-43977b793fe0


T-IFS-07942-2017 
 

1 

 
Abstract— With the widespread use of smartphones, the 

number of malware has been increasing exponentially. Among 

smart devices, Android devices are the most targeted devices by 

malware because of their high popularity. This paper proposes a 

novel framework for Android malware detection. Our framework 

uses various kinds of features to reflect the properties of Android 

applications from various aspects, and the features are refined 

using our existence-based or similarity-based feature extraction 

method for effective feature representation on malware detection. 

Besides, a multimodal deep learning method is proposed to be used 

as a malware detection model. This paper is the first study of the 

multimodal deep learning to be used in the Android malware 

detection. With our detection model, it was possible to maximize 

the benefits of encompassing multiple feature types. To evaluate 

the performance, we carried out various experiments with a total 

of 41,260 samples. We compared the accuracy of our model with 

that of other deep neural network models. Furthermore, we 

evaluated our framework in various aspects including the 

efficiency in model updates, the usefulness of diverse features, and 

our feature representation method. In addition, we compared the 

performance of our framework with those of other existing 

methods including deep learning based methods. 

 
Index Terms—Android malware, malware detection, intrusion 

detection, machine learning, neural network. 

 

I. INTRODUCTION 

ith the growing popularity of mobile devices such as 
smartphones or tablets, attacks on the mobile devices 

have been increasing. Mobile malware is one of the most 
dangerous threats which cause various security incidents as 
well as financial damages. According to the G DATA report [1] 
in 2017, security experts discovered about 750,000 new 
Android malware during the first quarter of 2017. It is expected 
that a large number of mobile malware will keep developed and 
spread to commit various cybercrimes on mobile devices. 
Android is a mobile operating system that is most targeted by 
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mobile malware because of the popularity of Android devices. 
In addition to the number of Android devices, there is another 
reason that leads malware authors to develop Android malware. 
The reason is that the Android operating system allows users to 
install applications downloaded from third-party markets and 
attackers can seduce or mislead Android users to download 
malicious or suspicious applications from attackers’ servers.  

To mitigate the attacks by Android malware, various research 
approaches have been proposed so far. The malware detection 
approaches can be classified into two categories; static analysis 
based detection [2-19] and dynamic analysis based detection 
[20-24]. The static analysis based methods use syntactic 
features that can be extracted without executing an application, 
whereas the dynamic analysis based methods use semantic 
features that can be monitored when an application is executed 
in a controlled environment. Static analysis has an advantage 
that it is unnecessary to set the execution environments, and the 
computational overheads for static analysis are relatively low. 
Dynamic analysis has an advantage that it is possible to handle 
malicious applications which use some obfuscation techniques 
such as code encryption or packing. 

In this paper, we assume that obfuscated malware is 
processed by dynamic analysis based methods, and we focus on 
the development of a static analysis based method to distinguish 
between malware and benign applications. This paper proposes 
a novel malware detection framework based on various static 
features. Our framework is flexible to add a new type of features, 
so, it is possible to utilize dynamic features in the future.  

There are many previous works that are related to Android 
malware detections, but most of the previous studies use only 
limited types of features to detect malware. Each type of feature 
can represent only a few properties of applications. On the other 
hand, we propose a framework to detect malware using many 
feature information to reflect various characteristics of 
applications in various aspects. Our proposed framework first 
extracts and processes multiple feature types, and refines them 
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using our feature vector generation methods. Our feature vector 
generation method consists of an existence-based method and a 
similarity-based method, and these are very effective to 
distinguish between malware and benign applications even 
though malware has many similar properties of benign 
applications. In addition, our framework uses a classification 
model that implies the degree of classification according to their 
importance. Among many useful classification algorithms, we 
concluded that the deep learning algorithm is the suitable 
classification algorithm for our framework that uses various 
types of feature.  

We propose a multimodal deep neural network model to fit 
the features with different properties. The multimodal deep 
learning method is generally utilized to make the neural 
network to reflect the properties with different kinds of feature. 
For example, the multimodal deep learning method was used to 
recognize human speech using both voice information and 
mouth shape information [48]. The different types of the feature 
are inputted and processed in different initial neural networks 
separately, and each initial network is connected to a final 
neural network to produce the classification results. According 
to our survey, our research is the first application of the 
multimodal deep learning to the Android malware detection. 

We conducted many experiments using our framework with 
a large dataset from VirusShare [38] and the well-known small 
dataset from the Malgenome project [37]. We measured and 
compared the performance of our model with that of the deep 
neural network model. In addition, we evaluated our framework 
in various aspects including efficiency in model updates, the 
usefulness of diverse features and effects of our feature 
representation method. According to the comparison results 
with other deep learning based methods, we argue that our 

framework has good performance on the malware detection. 
 

Our contributions can be summarized as follows: 

 We proposed a novel Android malware detection 
framework using diverse features that can reflect the 
characteristics of Android applications. 

 We suggested feature vector generation methods that can 
represent malware characteristics effectively even when 
malware shares many common properties with benign 
applications. 

 We introduced how the multimodal neural network can be 
applied in malware detection system. Model learning 
strategies and an online update method for malware 
detection are proposed. To the best of our knowledge, this 
research is the first application of the multimodal deep 
learning to the Android malware detection. 

 We provided various experimental results of our 
framework to evaluate the performance in various aspects. 
Total seven experiments were conducted in this paper. 

 

The rest of the paper is organized as follows: Section II 
explains the overall architecture of our Android malware 
detection framework and describes how the framework works 
in detail, Section III presents the feature types that are used in 
our framework, and the multimodal neural network algorithm 
is explained in Section IV. Section V shows the experimental 
results to show the performance of our framework, and Section 
VI discusses related work, followed by Section VII that 
summarizes our research and provides future work of this 
ongoing research. 

 

 
 

 
Fig. 1.  The overall architecture of the proposed framework 
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II. PROPOSED FRAMEWORK 

Fig.1 shows the overall architecture of our framework, and 
our framework uses seven kinds of the feature; String feature, 
method opcode feature, method API feature, shared library 
function opcode feature, permission feature, component feature, 
and environmental feature. Using those features, the seven 
corresponding feature vectors are generated first, and then, 
among them, the permission/component/predefined setting 
feature vectors are merged into one feature vector. Finally, the 
five feature vectors are fed to the classification model for 
malware detection. The framework conducts four major 
processes for the detection; raw data extraction process, feature 
extraction process, feature vector generation process, and 
detection process. These processes are explained in the next 
subsections. 

A. Raw Data Extraction Process 

The raw data extraction process is performed to make 
Android APK (Android Package Kit) files interpretable. To 
extract the raw data, an APK file is unzipped, and a manifest 
file, a dex file, and shared library files are extracted first. The 
manifest file and the dex file are decoded or disassembled by 
APKtool [32], and the shared library files (i.e. .so files) in the 
package can be disassembled by IDA Pro [33].  

B. Feature Extraction Process 

The feature extraction process is conducted to obtain the 
essential feature data from the raw data. The detailed definition 
of feature types is explained in Section III.  

First, method opcode features and method API features are 
extracted from smali files which are the disassembled results 
of a dex file. The smali file is separated into the method 
blocks, and, by scanning Dalvik bytecodes, the Dalvik opcode 
frequency of each method is calculated. In addition, during the 
bytecode scanning, it is checked whether the invocation of the 
dangerous APIs exists in the method, and the dangerous API 
invocation frequency of each method is calculated. In case of 
string features, strings are simply collected from the whole 
smali files without considering the method separation.  

Shared library function opcode features are extracted from 
the instruction sequences of the disassembled code of .so files. 
The instruction sequence of each function is scanned to extract 
the information of the assembly opcode frequency. 

The permission features, the component features, and 
environmental features are extracted from the manifest XML 
file. While visiting the XML tree nodes, each node’s tag is 
checked to confirm whether the node contains the information 
about permissions, application components, and so on. 

C. Feature Vector Generation Process 

The extracted features in the previous process are used to 
compose feature vectors. Seven kinds of the feature vector are 
generated from extracted features. The seven feature vectors are 
divided into two types according to their feature representations: 
existence-based feature vectors and similarity-based feature 
vectors. The existence-based feature vector is the feature vector 
whose elements only represent the existence of features in the 

malicious feature database, and examples of these are string, 
permission, component and environmental feature vectors. On 
the other hand, the similarity-based feature vector is the feature 
vectors whose elements are similar to the malware 
representatives in the malicious feature database, and method 
opcode, method API and shared library function feature vectors 
are the similarity-based feature vectors. 

The malicious feature database herein is a repository that 
contains features and malware representatives of known 
malicious applications. The structure of the database is 
described in Fig. 5 in APPENDIX B, and each feature is 
explained in Section III. In addition, the malware 
representatives mean the centroids of the clusters which are 
calculated using the K-means clustering algorithm [44].  

 Algorithms I and II explain in APPENDIX A the processing 
flows of the feature generation. First, as explained in Algorithm 
I, the existence-based feature generation process is simple. The 
feature values in the malicious feature database correspond to 
the elements of the feature vector, and every feature value is 
searched in the features extracted from input applications. If 
there is no certain feature value in the extracted features, its 
absence is represented as zero. Otherwise, the existence of the 
feature value is represented as one in the vector. 

Second, the similarity-based feature vectors are generated as 
explained in Algorithm II. The method opcode feature, the 
method API feature, and the shared library function opcode 
feature used in this feature vector generation process are in the 
form of a list of frequencies. The frequency values can vary 
considerably, so the features of an input application are first 
normalized to fit the feature values in the range of [0, 1]. The 
min-max scaling method is used in the normalization [45]. Then, 
each malware representative (the centroid of the cluster) in the 
malicious feature database is compared with the features of the 
input application using the Euclidean distance measure. Among 
the distances of each malware representative, the minimum 
distance is selected to convert to the similarity, and the 
calculated similarity is recorded in the corresponding element 
of the feature vector. By recording the highest similarity values 
of the multiple malware representatives, the feature vector can 
contain similarities to multiple clusters’ centroids which are 
computed with known malware applications. Therefore, the 
similarity-based feature vector can represent information 
whether the input application’s features belong to clusters. 

To improve the performance of our framework, we refined 
the feature vector with a predefined threshold value. The 
similarity values that exceed the predefined similarity threshold 
become one. Otherwise, it is set to zero. This refinement 
removes the features that are not close enough to a certain 
malware representative but have small similarity values, and it 
also simplifies the computation in the deep learning process. 

D. Detection Process 

After all the seven feature vectors are generated in the 
previous process, the detection process is conducted to 
determine whether the given application is malicious or not. 
Before examining the feature vectors with the detection model, 
the permission feature vector, the component feature vector, 
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and the environmental feature vector are merged into a single 
feature vector. Therefore, our model gets the five feature 
vectors and performs mathematical operations at each layer. If 
all operations are conducted completely, the model produces 
the estimated label for the given input application.  

III. THE DEFINITION OF FEATURES 

Diverse features could be helpful to reflect the characteristics 
of an application. Even though some features such as 
environmental information are not directly related to malicious 
activities, these features may contribute to defining the 
application characteristics.  

 

Our proposed framework uses the following features:  
 

 String feature 

 Method opcode feature 

 Method API feature 

 Shared library function opcode feature 

 Permission feature 

 Component feature 

 Environmental feature 
 

In our framework, the deep learning algorithm is used to 
classify the unknown samples into the malware class or the 
benign class. The deep learning algorithm generates a neural 
network model that can derive the best classification accuracy 
by updating the weight of each neuron input. The degree of 
influence of the feature on classification is determined 
according to the weight of the neurons affected by the feature. 
If there is an insignificant feature in the classification, the 
weight of the relevant neurons is reduced. Therefore, each 
feature can be used differently by their contributions. 

The next subsections explain each feature type that is used in 
our framework. It is noted that the features are converted to the 
feature vectors to apply them to the neural network. 

A. String Feature 

The string feature is extracted from a set of string values in 
smali files. The feature extraction module collects all operand 
values with the types of const-string and const-
string/jumbo. There are also the Dalvik opcodes that move 
a reference to a string into a specific register. The number of 
strings in an application spans a wide range. If the number of 
applications increases, then the number of strings from those 
applications will increase explosively. Therefore, strings are 
hashed, and the hashed values of strings are applied to the 
modular operation. The hash function used in the framework is 
the SHA512 hash function. 

B. Method opcode and API Feature 

Dalvik opcode frequency and API invocation frequency of 
methods may imply application behaviors and coding habits of 
the developer. For this reason, Dalvik opcode frequency and 
API invocation frequency of methods are used to define the 
method features. The method opcode frequency can be 

calculated by scanning the bytecode in each method. In the case 
of the API invocation frequency, the bytecodes for API 
invocation are checked to count the API invocations in each 
method. To capture malicious behaviors, invocations of only 
selected APIs are counted. The APIs that might be used in 
malicious activities are investigated manually using the 
Android Developer reference pages [50]. Additionally, the 
APIs that were introduced in [35] are also added to the selected 
API list. According to [35], those selected APIs are useful to 
distinguish malware and benign applications. 

C. Shared Library Function Opcode Feature 

Android provides the Java Native Interface (JNI) and allows 
applications to incorporate native libraries. It is well known that 
native code defeats Android security mechanisms because 
native code is not covered by the security model. For example, 
shared library files can be used to hide malicious behaviors or 
to avoid countermeasure against attacks. That is the reason why 
many malicious applications use the native code to attack the 
Android system.  

To prevent malware with native code from hiding its 
behaviors, our framework defines and uses the shared library 
function features in the detection. Similar to the method feature 
extraction, ARM opcode frequency and system call invocation 
frequency are extracted from native code. While scanning the 
disassembled code of each function, the opcodes and system 
call invocations in each function are counted. 

D. Permission Feature 

Android is a privilege-separated operating system, and an 
application runs with a unique system identifier. Android 
provides a permission-based access control mechanism to 
restrict the operations that a process can perform. In addition, 
per-URI permissions are used to grant access to specific data. 
To perform a certain behavior, an application should request 
necessary permissions to Android, and this means that 
permissions defined in an application can indicate the behaviors 
of an application.  

 The manifest file in the application includes various 
information related to permissions. First, the permissions to be 
requested when the application is installed are defined in the 
manifest file. Second, security permission that can be used to 
limit accesses to specific components is also defined to protect 
the application. The permission-related information can be 
collected by parsing the <uses-permission> tag and the 
<permission> tag in the manifest file. The request 
permissions’ names are collected from the <uses-

permission> tag, and the security permissions’ names, 
permission groups and protection levels are collected from the 
<permission> tag. The extracted request permissions and 
security permissions (the tuples of name, permission group, and 
protection level) are used as permission features. 

E. Component Feature 

Application components are the essential building blocks of 
an Android application. There are four components in an 
Android application; Activity, service, broadcast receiver, and 
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content provider. The basic role of each component is explained 
as follows. The activity component presents a visual user 
interface that an application developer defines. The service 
component does not have any visual interface but performs 
background processing. The content provider component 
provides database interfaces to share data with other 
applications. The broadcast receiver component provides a 
channel to receive messages from other applications.  

Every component of an application is able to register and to 
receive messages, called intents. The intent can be used to start 
the component or to deliver some important data to the 
component. Whenever the intent is transmitted to the 
component, the predefined callback function is executed to 
handle the intent. The intent can present how the components 
communicate each other. The component-intent pairs are 
extracted as the component feature to analyze the relationship 
between the components. In the case of the content provider, 
we also extract the URI path information that specifies which 
data subsets of the parent content provider permission can be 
granted. 

The manifest file of the application is parsed to record the 
declared components and their specified intents. First, the 
component name is extracted from <activity>, 
<service>, <provider>, and <receiver> tags, and the 
names of intents are extracted from <intent-filter> tags. 
The URI paths are collected from the <grant-uri-
permission> tag and are paired with the name of the content 
provider and the intent. 

F. Environmental Feature 

In the manifest file, there is some information about the 
environment settings to execute the application. Requirements 
or usage of hardware and software, list of shared libraries that 
the application requires, and SDK(Software Development Kit) 
version for execution are extracted as environmental features. 
<uses-feature>, <uses-library>, and <uses-

sdk> tags are parsed to collect the names of requested 
hardware/software, the names of linked libraries, and the SDK 
version respectively. 

IV. MULTIMODAL NEURAL NETWORK 

Fig. 2 shows the architecture of the multimodal deep neural 
network for malware detection in our framework. Our proposed 
neural network model uses five feature vectors, and each vector 
is inputted separately to the initial networks which consist of 
five DNNs (Deep Neural Network). The initial networks are not 
connected to each other, and the last layers of the initial 
networks are connected to the merging layer that is the first 
layer of the final network. The final network is a DNN, and it 
produces the classification results. Each DNN of the initial 
networks consists of an input layer and two hidden layers, and 
each layer only receives connections from the previous layer.  
Each layer is fully-connected, and the activation functions used 
in the DNNs are the rectified linear units (ReLU) activation 
function [51]. The ReLU activation function is utilized to 
prevent the vanishing gradient problem in training, and it also 
makes our model computationally efficient.  

The final network is a similar shape of the DNNs to the initial 
network except for the first and the last layers. The first layer, 
i.e. merging layer, is connected with the last layers of the DNNs 
of the initial networks. The last layer of the final network, i.e. 
output layer, produces the classification results. In the output 
layer, there is only one neuron that uses the sigmoid function to 
label an input application as malware or a benign application. 
The parameters used in each layer in the multimodal neural 
network are summarized in Table I.  

A. Formal Description 

In this subsection, the formal description of our multimodal 
neural network model is explained. Let t ∈ {1,2,3,4,5} 
indicates each initial network, 𝑙𝑡 = {1,2,3} be a layer in t initial 
network, 𝑥𝑡  the input vector corresponding t  initial network, 𝑧(𝑙𝑡) the incoming vector into layer 𝑙𝑡, 𝑦(𝑙𝑡) the output vector of 

the layer 𝑙𝑡, 𝑊(𝑙𝑡) the weights of the layer 𝑙𝑡, 𝑏(𝑙𝑡) the biases of 
the layer 𝑙𝑡, and f the activation function (ReLU). The equation 
for the feed-forward operation of the initial network is as 
follows: 

 𝑦(0𝑡) = 𝑥    (1) 𝑧(𝑙𝑡+1) = 𝑊(𝑙𝑡+1)𝑦(𝑙𝑡) + 𝑏(𝑙𝑡+1)    (2) 𝑦(𝑙𝑡+1) = 𝑓(𝑧(𝑙𝑡+1)) = max (0, 𝑧(𝑙𝑡+1))    (3) 

 

Let 𝑙′ = {1,2,3,4}  be a layer in final network, 𝑧′(𝑙′)  the 

 

 
 

 
Fig. 2.  Multimodal deep neural network 

TABLE I 
THE PARAMETERS OF THE MULTIMODAL NEURAL NETWORK 

Network Layer Parameter setting 

Initial DNNs 
Input 5000 neurons ReLU 

Hidden 2500 neurons ReLU 
Hidden 1000 neurons ReLU 

Final DNNs 

Merging 500 neurons ReLU 
Hidden 100 neurons ReLU 
Hidden 10 neurons ReLU 
Output 1 neurons Sigmoid 
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incoming vector into layer 𝑙′ , 𝑦′(𝑙′)  the output vector of the 

layer 𝑙′, 𝑊′(𝑙′) the weights of the layer 𝑙′, 𝑏′(𝑙′)  the biases of 
the layer 𝑙′ , f the activation function (ReLU), o the output 
function (Sigmoid). The equation for the feed-forward 
operation of the final network is as follows: 

 𝑦′(0) = [𝑦(𝑙1), 𝑦(𝑙2), 𝑦(𝑙3), 𝑦(𝑙4), 𝑦(𝑙5)]    (4) 𝑧′(𝑙′+1) = 𝑊′(𝑙′+1)𝑦′(𝑙′) + 𝑏′(𝑙′+1)    (5) 𝑦′(𝑙′+1) = 𝑓(𝑧′(𝑙′+1)) = max (0, 𝑧′(𝑙′+1)), where 𝑙′ ≠ 4   (6) 𝑦′(4) = 𝑜(𝑧′(4)) = 1/(1 + 𝑒−( 𝑧′(4)))    (7) 

 

The labels for the input vector is determined as shown in 
Equations (8) and (9). 𝐿 denotes the label of input vector, and 𝐿′ denotes the predicted label result. 

 {  𝑦′(4) ≥ 0.5, 𝐿′ = 1  𝑦′(4) < 0.5, 𝐿′ = 0    (8) 

 

During the learning process, our multimodal neural network 
model is tuned to minimize the value of the loss function, i.e. 
the cross-entropy function. The loss function is described as 
follows: 

 J(L, L′) = − ∑ 𝐿(𝑖)𝑙𝑜𝑔𝐿′(𝑖) + (1 − 𝐿(𝑖))log (1 − 𝐿′(𝑖))2𝑖=1  (9) 
 

B. Regularization 

Overfitting is one of the major problems of neural network 
models. If a neural network model is overfitted with a particular 
train set, then the neural network model cannot generally be 
used in classification. To avoid the overfitting problem, 
Dropout regularization [49] is applied to our multimodal neural 
network model. Dropout is a technique to skip some units 
randomly while the neural network is trained. With a fixed 
probability, some incoming and outgoing connections of a 
neuron in the network are removed. This makes the model 
become not too dependent on a specific set of units and their 
associated weights and the biases. In our model, the DNNs are 
modeled with the dropout rate of 0.2. This rate is generally used 
in the typical DNN based models 

In addition, when tuning the neural network model, we used 
the validation set as well as the training set. While the training 
set is used to fit the model, the classification accuracy using the 
validation set is also measured together. The validation set does 
not update the weights and the biases of the model, but by 
monitoring the trends of the accuracies of both of the training 
set and the validation set, it can be checked whether the model 
fitting is done correctly without the overfitting problem. If the 
accuracy growths of both sets are not similar, then the tuning 
process is terminated, and modeling parameters are changed to 
avoid the overfitting problem. In the detection experiments in 
Section V-D, we used the validation set for the model tuning.  

C. Learning Strategy for the Multimodal Neural Network 

In practice, although malware and benign applications are 

given to be analyzed, it is not guaranteed that all of the features 
can be extracted from the given applications. In our cases, there 
were some applications that the decompiler tool or the 
disassembler tool cannot analyze properly. Only 78% of dex 
files, 79% of manifest files, and 69% of.so files were 
translated properly. The detailed statistical information is 
explained in Table II. It is possible to build the multimodal 
neural network by using only applications from which all types 
of features can be extracted or by padding zeros to feature 
vectors when the features cannot be obtained. In order to handle 
the problem of partially extracted features, when we modeled 
the multimodal neural network, each initial neural network for 
a specific feature type is first learned, and then the final neural 
network is learned with previously built initial networks. This 
learning strategy can enhance the overall accuracy of the model 
as well as can reduce the training time in the situation that only 
a few initial network is required to be updated.  

D. Processing the Zero-Padded Feature Vectors in Detection 

Unlike the learning process, in the online detection, even 
though some feature vectors consist of only zeros, our 
framework can still process them normally if there is at least 
one non-zero feature vector. In our experiments, zero-padded 
feature vectors are not excluded in the detection, but our 
framework produced high detection accuracy. This is because 
the zero-padded feature vectors hardly affect the final decision 
since the initial networks that correspond to the zero-padded 
feature vectors generate minimum output values that only 
calculated with the biases of the neurons.     

V. PERFORMANCE EVALUATION 

A. Dataset 

For the evaluation of our model, 20,000 malware samples 
from VirusShare [38] and 1,260 from the Malgenome project 
[37] were used. In addition, 20,000 benign samples downloaded 
from Google Play App Store [39] between March 2015 and 
April 2016 were used. To find out whether the downloaded 
applications are benign or not, the online malware scanning 
service of VirusTotal [40] was used. VirusTotal provides APIs 
for the scanning service. We utilized these APIs to request the 
tests and to obtain the scanning results. When all of the virus-
scanners in VirusTotal consider an application as benign, the 
application is included in the benign application set.  

We had many experiments for the performance evaluation, 
and the size and the source of samples were slightly different, 
so we summarized the information of datasets in each 
experiment at Tables XI and XII in APPENDIX C.  

B. Experimental Environment 

We used an Ubuntu 14.04 machine with Intel Core i7-5820k 
CPU, GeForce GTX TITAN X GPU and 104GB RAM to 
deploy our proposed framework. In the experiments, the GPU 
was utilized to accelerate machine learning algorithms 
including our multimodal neural network algorithm. We 
implemented the modules of the framework in Python; most of 
the modules were executed on PyPy Interpreter [41] that 
provides runtime optimizations. The modules that use libraries 
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such as PyCuda are executed on naïve Python because those 
libraries do not support PyPy. The multimodal neural network 
modeling tool is implemented using the Keras library [42]. 
Scikit-learn [52] and Tensorflow [53] are also utilized to 
implement the clustering and other machine learning algorithms. 

C. Effectiveness of the Usage of Feature in the Framework 

1) Topological data analysis for the selected features 

We also conducted experiments to figure out how the 
features of our framework are useful. We performed the 
topological data analysis (TDA) [61] that is devised for the 
high-dimensional and noisy data. The malware samples used 
here had been analyzed in many previous studies, so it is easy 
to compare our proposed model with the other studies. In TDA, 
the original data are projected, and the projected data are 
clustered and visualized. Each cluster is expressed as a node, 
and a node’s color and size are assigned by the cluster’s 
property. The edge between the nodes represents that the 
connected cluster nodes have same intersected elements. Fig. 3 
and Table III shows the results of the TDA. In the figure, each 
cluster node’s size means the log-scaled number of the cluster 
members, and the color of the nodes means the portion of the 
labels of the cluster members. The color of the cluster node with 
malicious samples is red; otherwise, the color is blue. The 

clustering algorithm, DBSCAN [47] was used in TDA. As 
shown in Fig. 3, most of the cluster nodes are expressed as pure 
red and blue. This means that the feature data have a property 
that can distinguish malicious and benign samples. There are 
some orange or green nodes, but the number of these nodes is 
very small. To check the exact TDA clearly, we measured the 
portion of the clusters that have same labels. As shown in Table 
III, when we specified the original labels using the Malgenome 
project reports, the average portion of clusters with same labels 
was about 74.47%. Among the malicious samples, there are 
some mutually-related families like DroidKungFu (1/2/3/4/ 
Sapp/Update). These samples share common malicious 
behavior, so their features are also similar. For this reason, we 
merged the labels of those samples into one and the average 
portions were measured as 83.40%. Lastly, when using the 
malware or benign labels, the average portion was 92.26%. 
According to the results, our features are effective to capture 
applications’ characteristics for the malware detection. 

 

2) Effectiveness of the feature vector of the framework 

Our framework uses complicated feature extraction methods 
to analyze malware. The following are two main reasons of our 
feature extractions. First, it was necessary to provide the 
method that generates the fixed sized feature vector that can be 
used in the detection model. The size of the raw data such as 
naïve binary files of each application varies greatly, so the 
resizing algorithms are necessary to provide the fixed sized 
feature vectors which fit in our neural network model. The 
previously proposed resizing algorithms utilize the spatial or 
temporal characteristics of images or speech waveforms, and 
these resizing algorithms cannot be directly used in our model, 
so we developed our own resizing algorithms. Second, common 
characteristics of malware should be included in the feature 
vectors, so that we developed the similarity-based feature 

 

                                         
(a)  Share lib. function opcode freq.           (b)  Method opcode freq.                            (c)  Method API freq. 

 

                 
(d)  Manifest                                           (e)  String 

 

Fig. 3. Topological data analysis (TDA) result of each feature data. Density-based spatial clustering algorithm was utilized in the TDA. (a) - (e): the visualized 
result for each feature type. Malicious samples from Malgenome project were used. The size of dataset used in this experiment is described in Table XI  

TABLE III 
THE PORTION OF THE CLUSTERS THAT HAVE ONLY SAME LABEL 

 
Original 

family label 
Merged 

family label 
Malware or 

benign label 
Shared lib. opcode freq. 74.47% 89.36% 97.87% 

Method opcode freq. 73.61% 76.39% 91.67% 
Method API freq. 95.53% 96.72% 98.36% 

Manifest 62.60% 66.41% 79.39% 
String 88.10% 88.10% 94.05% 

Original family label: Malgenome project label, Merged family label: labels 
of which the sub-families are merged into one, Malware or Benign label: labels 
for distinguish malware or benign 
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vector generation method.  
To show the effectiveness of our feature vector generation 

method including feature extraction, we conducted experiments 
to compare our framework with other methods: the native 
binary-based detection method, the bag-of-words based 
detection method, and an open-sourced opcode sequence-based 
detection method [30]. The naïve binary-based method uses the 
binary files such as manifest files, dex files, .so files directly 
as feature vectors, and the bag-of-words based method uses the 
frequencies per feature (e.g. APIs, Dalvik opcodes, and ARM 
opcodes) as feature vectors. The opcode sequence-based 
method uses disassembled opcode sequences as feature vectors. 

Table IV shows the comparison results of the experiments. 
The first row shows the experimental results when all possible 
feature types are used to generate feature vectors, and the 
second row shows the results when only the Android method 
opcode information is used. In both cases, our framework has 
higher accuracy than the other methods. Especially, the naïve 
binary-based detection and the bag-of-words based detection 
produced very low accuracies. The accuracy of the opcode 
sequence-based detection is about 3% lower than that of our 
framework with only Android method opcode information.  

To find out the reason for these results, we analyzed the 
malware samples that were classified correctly in our 
framework but were misclassified commonly in the other 
detection methods. Among the Android methods used in the 
malware samples, we calculated the ratio of the Android 
methods which appear in both malware samples benign samples. 
The results showed that about 79.9% of Android methods in the 
malware samples also appear in benign samples. Since the other 
detection methods use dex files themselves or all the opcode 
sequences to generate feature vectors, these 79.9% Android 
methods also affect the feature vector generations. As a 
consequence, the detection rate is degraded due to common 
Android methods in both malware and benign applications.  

In contrast, in our framework, these Android methods 
appeared in benign samples have similarity values less than a 
certain threshold with malware representatives, so these 
methods are not used to generate feature vectors. We calculated 
the ratio of the elements set as one in our similarity-based 
feature vectors of the misclassified malware samples by the 
other methods. Fig. 7 in APPENDIX D shows the standard 
normal distribution derived from the ratio results. This figure 
includes the ratio results of all the benign and malware samples 
to compare with the result of the misclassified malware samples 
by the other methods. As shown in the figure, we can find that 

the shape of the standard normal distribution of the 
misclassified malware samples is almost same with that of all 
the malware samples, whereas there is a definite difference 
between the shape of the standard normal distributions of all the 
benign samples and the misclassified malware samples. In 
conclusion, the feature vectors that are generated with naïve 
binary files or with simple refined raw data are not useful to 
distinguish malware and benign applications because those 
feature vectors can be dominated by common characteristics of 
benign applications. Our framework generates feature vectors 
not only to reflect the malware characteristics but also to 
exclude the benign characteristics by assigning zeros to the 
values of the features that have low similarity with the feature 
representatives of the malware. Due to this reason, it is expected 
that our method has shown high accuracy compared with others. 

D. Effectiveness of the Multimodal Neural Model 

1) Comparison with different neural networks 

To evaluate the effectiveness of the proposed multimodal 
neural network and its learning strategy, we measured the 
accuracies of three different neural network models.  Our 
framework uses the five feature types for detection.  For the 
evaluation, we measured the performance using all feature 
combinations as shown in Fig. 4.  

 

The models used in the experiments are explained below:  
 

 MNN-z: The multimodal neural network model trained 
with the zero-padded feature vectors  

 MNN-s (used by our framework): The multimodal neural 
network model separately trained only with the non-zero 
feature vectors  

 DNN: The fully-connected deep neural network model 
trained with the zero-padded feature vectors 

 

As shown in Fig. 4, when all feature types were used, each 
neural network model produced the maximum accuracy. In 
addition, the models detected malware more accurately when 
they used more feature types.  As we expected, the performance 
of the multimodal neural model was best when the initial 
networks were trained separately. Especially, the performance 
differences with other models were increased whenever a new 
feature type is added. The trend lines of the histograms in Fig. 
4 shows that the accuracy of the multimodal neural network 
model is improved significantly, compared with the other two 
models. Even though the number of features is same, accuracy 
results can be different depending on the combinations of 
features used. In our experiments, accuracy results were better 

TABLE IV 
THE PERFORMANCE COMPARISON WITH OTHER FEATURE VECTOR GENERATION METHODS 

Method Basic Feature Type Classification Model Accuracy (%) 
Ours Manifest/String/Method Opcode Freq./Method API Freq./Share Lib. Func. Opcode Freq. MNN 98% 

Bin.-based detection Manifest/Dex/So as like an image MNN 43% 
BoW-based detection Manifest/String/App Dalvik Opcode Freq. /App API Freq. /App ARM Opcode Freq. MNN 62% 

Ours Method Opcode Freq. (only sim based representation) DNN 93% 
Bin.-based detection Dex as like an image DNN 57% 
BoW-based detection Method Opcode Freq. (BoW representation) DNN 60% 

Opseq. based detection Method Opcode Seq. as like an image CNN 90% 
Ours: our proposed detection, Bin.-based detection: the method that uses a naïve binary as a feature vector, BoW-based detection: the method that uses the 

frequencies of the words, Opseq-based detection: the method uses opcode sequences of an application as a feature vector. MNN: multimodal neural network, DNN: 
deep neural network, CNN: convolutional neural network. The size of dataset used in this experiment is described in Table XI 
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when the manifest feature was used. 
We checked whether the accuracy is increased in all the cases 

when a certain feature is added. This will show that multiple 
features should be used together to improve accuracy, as in the 
case of our framework. From this point of view, the 
experimental results showed that the MNN-s was most suitable 
to learn the various feature types altogether. The average 
accuracy of each model was also measured with respect to the 
number of feature types, and the results are in Table V. The 
average accuracy was about 89% when only one feature type 
was used, and the average accuracy was increased to about 98%, 
93%, and 94% respectively when all feature types were used. 
In addition, there was no case that the accuracy is degraded even 
when a new feature type is added to our MNN-s model. In 
contrast, among 75 cases that a new feature type is added in the 
classification, we found 21 degradation cases in the MNN-z 
model and 17 degradation cases in the DNN model. Fig. 6 in 
APPENDIX D shows that our MNN-s consistently improves 
the accuracy as a new feature type is added, whereas the DNN 
model does not. In the figure, the experimental results of 
shallow learning models are also described to show the effect 
of the MNN-s more clearly.     

Two reasons why the experimental results show that MNN-s 
is best can be inferred as follows: First, if features are not 
extracted from samples of either class (malware class or benign 
class), the corresponding feature vectors for those samples will 
be zero-padded accordingly. For these feature vectors, zero-
padded feature vectors may affect the model during the learning 
process. Second, in the DNN model, neurons of the different 
feature types are connected with neurons in the next layer 
together. When the model is trained with malicious samples like 
Trojan that inject malicious code into benign applications, the 
neurons of the benign features and the malicious features will 

affect the neurons in the next layers together. This means that 
the characteristics from the given malicious samples are 
attenuated in the detection model during the learning process.  
 

 

2) Learning time for updating the detection model 

Many malicious applications or benign applications are 
created and distributed every day. Since the malware detection 
model should reflect the characteristics of those new 
applications for accurate and prompt detection, it is necessary 
to update the model continuously. In addition, if security 
experts want to add a new type of features, the detection model 
can be updated. Our proposed multimodal neural network 
model is designed to respond to new malicious applications 
flexibly and efficiently to handle these situations. The model 
can be updated by the changing the network that needs to be 
trained newly. To evaluate the efficiency of our multimodal 
neural network model, we compared the performance of our 
model with the deep neural network model in two cases while 
updating the detection model. 

 

We considered the following two cases: 

 Case 1: when all types of features can be extracted from 
given applications to update the model 

 Case 2: when an additional feature type can be extracted 
from given applications to update or when an additional 
feature type is added to be used in the detection model 

 

Table VI shows the learning time for model updating in two 
cases. For the deep neural network model, all networks of the 
model should be re-trained in both two cases. So, the learning 
times for the cases are equal naturally. For the multimodal 

TABLE V 
AVERAGE ACCURACY OF EACH MODEL BY THE NUMBER OF FEATURE TYPES  

# of Feature 
Types 

Average Accuracy (%) 
MNN-s MNN-z DNN 

1 89.2 89 89 
2 95.5 92.7 91.8 
3 97 93.6 92.7 
4 97.8 93.4 93 
5 98 93 94 

 

 

 
Fig. 4.  Accuracy results of three different neural networks; Multimodal neural network tuned with zero padded vectors, multimodal neural network that uses the 
separately trained initial network, and deep neural network. All the neural networks have the same number of layers that have the same number of neurons. 
(validation set/ test set: 20% each, training set: 60%, the size of dataset used in this experiment is described in Table XI)  
 

TABLE VI 
THE LEARNING TIME FOR UPDATING THE MODEL 

 MNN-s DNN 
Case 1 1,458 seconds 1,807 seconds 

Case 2 

F1 update 378 seconds 

1,807 seconds 
F2 update 560 seconds 
F3 update 484 seconds 
F4 update 327 seconds 
F5 update 579 seconds 

F1: shared lib opcode frequency feature vector, F2: method opcode 
frequency feature vector, F3: method API frequency feature vector, F4: 
manifest feature vector, F5: string feature vector 
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neural network, the learning time for the case 1 is the sum of 
the training time for five initial networks and a final network. 
For the case 2, the only training time for one initial network and 
a final network is required in model updating. 

As a result, it was confirmed that the time for model updating 
could be significantly reduced for the case 2. For example, the 
time when the manifest feature type is added was reduced by 
about 80% compared to that of the deep neural network model, 
i.e. case 1. In our experiments, a small set of samples were used 
in the model update; however, the number of applications that 
are collected newly every day is huge in practice. Therefore, 
more time is expected to be saved by training the multimodal 
neural network model because only the specific initial networks 
and the final network are updated.  

E. Comparison with other existing detection methods 

To show the performance of our framework compared with 
state-of-art detection systems, we investigated the similar 
approaches that have been previously proposed. From the deep 
learning-based methods to the general classification-based 
methods, various kinds of the Android malware detection 
methods were surveyed. Table VII shows the results of the 
investigations. Many existing methods utilize the malware 
samples from the Malgenome project. Therefore we included 
the performance results in the table when the samples from the 
Malgenome project were used in the detection test. Naturally, 
the accuracy and the F-measure values of previously explained 
experiments were also included together. As shown in Table 
VII, the detection accuracy or the F-measure values of our 
framework were higher than the other methods including the 
deep learning based methods [28-31]. Like DNN described in  
Section V-D, all the classification models treat the feature 
vectors consist of the different types of feature without any 
isolation processes. The method in [29] uses two classification 
models per different feature types, but there is no process to 
combine the results of each model. So, the comprehensive final 
decision cannot be derived from the classification models, and 

the method cannot properly handle the situations that the two 
models produce conflicting decisions.  

As we explained in subsection 2 in Section V-C, we also 
measured the performance of the deep learning based detection 
method proposed in [30].  As shown in Table VIII, the detection 
accuracy of our framework was 8% higher than that of their 
proposed method. In detail, the precision, recall, F-measure, 
and accuracy of our framework were 0.08, 0.15, 0.12, and 8% 
higher each. As we described in the previous section, our 
framework generates feature vectors that are not dominated by 
the characteristics commonly appeared in both malware and 
benign applications while the method proposed in [30] uses 
naïve opcode sequences without such considerations. In 
addition, our framework uses various kinds of feature type to 
reflect the various aspects of Android applications and to deal 
with the situations like a certain raw data cannot be extracted 
properly. This is possible because our MNN model is designed 
to take advantage of these various feature types in terms of the 
accuracy and learning time efficiency. 

F. Further Analysis to Evaluate the Framework 

1)  Obfuscated resilience of the framework 

To show the obfuscation resilience of our proposed 
framework, we experimented with two sets of malware: a naïve 
malware set and an obfuscated malware set. Feature vectors are 
extracted from each malware set, and we calculated the 
similarities between them. We compared our similarity results 
with these three previous works such as ViewDroid [57], 
MassVet [58] and Droid-Sec [59]. In obfuscated malware 
generation, we applied the Android-specific obfuscation 
techniques that are introduced in [60] individually to samples 

TABLE VII 
THE PERFORMANCE COMPARISON WITH OTHER PROPOSED SYSTEMS (PAPER SURVEY) 

System 
Data set 

Classification algorithm 
Capacity for 

feature diversity 
Accuracy (%) / 

F-measure Malware Benign 

Ours 
13,075 (V.S.) 
1,209 (M.P.) 

19,747 (G.P.) 
1,300 (G.P.) 

MNN-s (proposed) High 
98% / 0.99 
99% / 0.99 

Z. Yuan [28] 1,760 (C.C./M.P.) 20,000 (G.P.) DBN Low 96.8% / NA 

W. Yu [29] 92 (M.P.) 96 (G.P.) DNN/RNN (separately used) Medium 90% / NA 

N. Mchaughlin [30] 9,902 (M.P./Mc.) 9,268 (G.P./Mc.) CNN Low 87% / 0.86 

H. Fereidooni [31] 18,677 (M.P./M0./ V.T./D.) 11,187 (D./M0.) 
XGboost(best)/Adaboost/RF/S
VM/ K-NN/LR/NB /DT/DNN 

Low 97% / 0.97 
(XGboost) 

Ch.-Y. Huang [2] 480 (M.P.) 124,769 (G.P./3rd party) Adaboost/NB/DT(best)/SVM Low NA / 0.78 

M. Zhang [5] 2,200 (M.P./Mc.) 13,500 (Mc./G.P.) NB Low 93% / NA 

D. Arp [7] 5,560 (M.P./3rd party) 123,453 (G.P.) SVM Low 93.9% / NA 

D-J. Wu [8] 238 (C.C.) 1,500 (G.P.) K-NN+K-Means Low NA / 0.91 

S. Y. Yerima [58] 1,000 (M.P.) 1,000 (G.P. or 3rd party) Bayesian based classifier Low 92% / NA 

Q. Jerome [59] 1,246 (M.P.) 1,260 (G.P.) SVM Low NA / 0.98 

S. Y. Yerima [60] 2,925 (Mc.) 3,938 (Mc.) RF(best)/LR/NB/DT Low 97.5% / NA 
(RF) 

Abbreviation & Terms: Ours – our framework, MNN – multimodal neural network, DBN – deep belief network, DNN – deep neural network, RNN – recurrent 
neural network, CNN – convolutional neural network, RF – random forest, SVM – support vector machine, K-NN – K-nearest neighbor, DT – decision tree, LR – 
logistic regression, NB – Naïve Bayes, V.S. – VirusShare, M.P. – malgenome project, C.C. – contagio community, G.P. – Googleplay store, Mc. – McAfee, M0 – 
M0Droid, V.T. – VirusTotal, D. – Drebin, 3rd party – third party market, M.P. – malicious repository.  

 

TABLE VIII 
THE PERFORMANCE COMPARISON WITH [30] 

 Precision Recall F-measure Accuracy (%) 
Ours  0.98 0.99 0.99 98% 
[30] 0.90 0.84 0.87 90% 

The size of dataset used in this experiment is described in Table XI.  
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in the naïve malware set to measure the impacts of each 
obfuscation technique. Six obfuscation techniques in [60] and 
one technique (PI) we defined were tested in the experiments.  

Table IX shows the experimental results with the obfuscated 
malware samples. The average similarities of our framework 
exceed 0.92, and the results show that our framework is as good 
as or better than previously proposed work. Our framework 
shows similar results with ViewDroid, and average similarities 
of the three obfuscation techniques, i.e. CR, ED, and RI, are 
slightly better than ViewDroid. These three obfuscation 
techniques do not change view graphs directly, but some view 
graphs may be no generated because view names and invoked 
functions related views are obfuscated. As a result, obfuscation 
causes some similarity degradations of ViewDroid. MassVet 
was implemented based on ViewDroid, and MassVet first 
analyzes malware with view graphs proposed in ViewDroid, 
and then analyzes reused code using their diff procedure. We 
already measured the performance of ViewDroid, so we only 
calculated the similarity, the code matching ratio using their diff 
procedure. MassVet uses features from control flow graphs 
(CFGs), and obfuscation techniques such as CR and JN affect 
these features. So, MassVet has very low similarity scores when 
these techniques are applied. Droid-Sec generates feature 
vectors based on frequencies of declared permissions, API 
invocations and dynamic behaviors. In most cases, the 
similarity results are more than 0.90, but the result of JN is 
lowest, because the JN technique may affect frequency 
information. Our approach is slightly better than Droid-Sec 
because we focused on features of centroid methods instead of 
frequency features of the whole application. 

Our framework uses various kinds of feature, and the 
similarity-based feature vector generation process can alleviate 
impacts of the obfuscation techniques even though some 
features are affected by obfuscation techniques. Even though 
the experimental results show that our framework is effective 
against some obfuscation techniques, static analysis based 
approaches still have limitations if obfuscation techniques are 
developed for specific detection frameworks or methods.  

 

2) The applicability on the unsupervised learning 

Our framework is devised for the malware detection using 
the supervised classification, however, we also had an 
experiment to evaluate the applicability of our proposed model 
to the unsupervised training-based classification. We 
implemented and compared two unsupervised learning-based 
classification models; The MNN shaped autoencoder and the 

DNN shaped autoencoder. The detailed information about these 
autoencoders is included in APPENDIX E. We followed the 
general unsupervised learning based classification approach 
that is introduced in [62]. Each autoencoder is trained to 
reconstruct positive data, i.e. malware only, and classification 
is performed by comparing its reconstruction error to a 
threshold. If the error is smaller than the threshold, the input 
instance is assigned to the positive class. As shown in Table X, 
the detection accuracy of the MNN shaped autoencoder was 
about 6% higher than the DNN shaped autoencoder.  

VI. RELATED WORK 

A. Static Analysis 

Chun Ying Huang et al. [2] proposed a malware detection 
method that uses the permission information and the number of 
files with common machine learning algorithms. Zarni Aung et 
al. [3] developed a system that collects the required permissions 
from the applications. Their system applies clustering algorithm 
and classification algorithm step by step. DroidLegacy [4] 
decomposes malware into loosely coupled modules and 
matches the API call frequencies of each module. DroidSIFT 
[5] classifies malware and benign applications by analyzing 
API dependency graphs of each application. RiskRanker [6] 
analyses dangerous behaviors of the applications. DREBIN [7] 
uses features like hardware or software components, 
permissions, intents, and API calls to detect malware. DroidMat 
[8] uses the API call traces, intent message passing, and 
information of components (activity, service, and receiver) to 
detect malware. DroidMoss [9] is a system that uses a fuzzy 
hashing technique to measure similarities of applications to 
detect the repacked malware. Junmei Sun et al. [17] presented 
a method that uses keywords correlation distance in feature 
vector generation for the SVM classification.  Annamalai 
Narayanan et al. [18] proposed a method that uses CFGs as 
features, and the CFGs are applied to the online SVM algorithm 
for the malware detection. Ambra Demontis et al. [19] proposed 
a method to mitigate evasion attacks such as malware data 
manipulation. The method utilizes a secure SVM algorithm 
which enforces its features to have evenly-distributed weight. 
Compared with our framework, there are some differences that 

TABLE IX 
THE AVERAGE SIMILARITY OF THE NAÏVE MALWARE AND THE OBFUSCATED MALWARE 

Method 
Call Indirection 

(CI) 

Code 
Reordering 

(CR) 

Data 
Encryption 

(ED) 

Junk 
Insertion 

(JN) 

Permission 
Insertion 

(PI) 

Identifier 
Renaming 

(RI) 

Package 
Renaming 

(RP) 
Ours 1.0 0.99 0.93 0.92 0.99 0.99 1.0 

ViewDroid 1.0 0.96 0.86 1.0 1.0 0.41 1.0 
MassVet 1.0 0.0003 0.45 0.004 1.0 0.99 1.0 

Droid-Sec 0.95 0.95 0.95 0.90 0.92 0.95 0.92 
Ours: our proposed feature vector based similarity calculation (Jaccard coefficient similarity measure used), ViewDroid [61]: view graph based similarity 

calculation, MassVet [62]: CFG geometric center based similarity calculation (view graph based similarity calculation is excluded for the duplication, matching 
ratio is used as similarity), Droid-Sec [63]: Their proposed feature vector based similarity calculation (Permission/API(our dangerous API list)/Dropbox Behavior 
information based feature vector and Jaccard coefficient similarity measure were used), The size of dataset used in this experiment is described in Table XI. PI is 
a technique that inserts additional permissions to the manifest. 

TABLE X 
THE ACCURACY OF MNN SHAPED AE AND DNN SHAPED AE 

 FPR TPR FNR TNR ACC 
MNN   15% 85% 14% 96% 85% 
DNN 17% 60% 40% 89% 79% 

The size of dataset used in this experiment is described in Table XI.  
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these methods use a small set of feature types and do not 
consider the flexibility of the detection model for feature type 
addition or partial model updates. 

In addition to the above studies on signature-based detection, 
there are some studies to protect benign applications from 
malware. DroidAlarm [11] analyses to identify privilege 
escalation attacks. This system analyses execution paths in 
inter-procedural call graphs from a sensitive permission to a 
public interface. Erika Chin et al. [12] proposed ComDroid that 
analyses the manifest file of an application to check whether 
security-critical declarations for application communications 
exist. CHEX [13], DroidChecker [14], AAPL [15], and 
Amandroid [16] are methods to verify Android applications to 
defend against the component hijacking attacks. These studies 
focus on how to detect the potentially vulnerable points. The 
purpose of the researches is different from ours. 

B. Dynamic Analysis 

DroidScope [20] is a system that provides the semantic views 
for malware analysis. The system extracts system call traces as 
well as changes in environments such as processes and threads, 
and Dalvik instruction traces also are extracted and used in taint 
analysis in the system.  TaintDroid [21] performs the data-flow 
analysis of applications and detects the information leakage of 
sensitive data. AASandbox [22] is a system that uses both static 
analysis and dynamic analysis. In its dynamic analysis, system 
call frequencies of benign applications and malware are 
collected and compared. Shabtai et al. [23] and Aubrey-Derrick 
et al. [24] proposed the anomaly detection systems. Each 
system analyses mobile devices to identify abnormalities of the 
device usage. The system uses the metrics such as CPU usage, 
the number of sent packets, and so on. Even though our 
framework only uses static features currently, the dynamic 
features like those presented in the previous studies can be 
utilized additionally.  

C. Deep Learning based Malware Detection 

Previous approaches that use deep learning algorithm are 
explained in turn. Razvan Pascanu et al. [25] uses the recurrent 
neural network to detect Windows-based malware. They use 
API events as the feature in detection. DeepSign [26] is a 
Windows-based malware detection method that uses dynamic 
API calls and their parameters as features. The deep belief 
network is used to classify malware and benign files. Joshua 
Saxe et al. [27] proposed a deep neural network-based malware 
detection method. In their method, PE import functions, strings, 
entropy and metadata of Windows binaries are used as features. 
The method uses different kinds of feature altogether, so it 
seems difficult to detect malware such as Trojan which has 
many features of normal programs. Droid-detector [28], a 
machine learning based method, is proposed to detect Android 
malware. This method extracts three types of features and uses 
them in the deep belief network. Wei yu et al. [29] proposed an 
Android malware detection system that models neural network 
with permissions and system call traces from applications. In 
their system, only permissions are used as static features, even 
though there is much information that can be used and tested 

for their usefulness in detection. Niall McLaughlin et al. [30] 
proposed a system that uses a convolutional neural network 
(CNN) for the Android malware detection. In the system, raw 
opcode sequences of applications are used as a feature without 
any refinement. Hossein Fereidooni et al. [31] proposed 
ANASTASIA, a system to detect Android malware using 
features such as intents, permissions, system commands, and 
API calls. The system uses many classifiers including the deep 
neural network. Even though many kinds of feature can be 
extracted from Android applications, most of the previous 
methods use a small number of kinds of feature in detection. In 
addition, the previous methods do not consider the situations 
when adding new feature types.  

VII. CONCLUSION 

In this paper, we propose a novel Android malware detection 
framework that utilizes many static features to reflect the 
properties of applications in various aspects. Total seven kinds 
of feature extracted by analyzing files such as a manifest file, a 
dex file, and a .so file from an APK file, and these features 
enrich the extracted information to express applications’ 
characteristics.  In addition, we suggested the effective feature 
vector generation method which is appropriate to detect 
malware that is similar to benign applications. Through our 
proposed feature representation, it is possible to prevent feature 
vector of malware from containing the common properties that 
appear in benign applications. Finally, we used the multimodal 
deep learning method, which is designed to deal with various 
kinds of feature type. Different types of feature are exclusively 
used to train the initial networks, and the results of the initial 
networks are subsequently used to train the final network. This 
architecture of the model is suitable for our framework to 
improve the malware detection accuracy. To the best of our 
knowledge, this research is the first application of the 
multimodal deep learning to the Android malware detection. 

In the evaluation, we carried out many experiments. We 
compared the detection accuracy of many different detection 
models. And, we performed an experiment to demonstrate our 
detection model can be efficiently updated. In addition, we had 
experiments to confirm the usefulness of the feature and our 
proposed feature vector generation method. And we also carried 
out experiments about the applicability on the unsupervised 
learning based classification and the obfuscation resilience. As 
a result, our framework was effective enough to be used in the 
Android malware detection. The source code and other 
auxiliaries were released in [34]. 
 

APPENDIX A 
FEATURE VECTOR GENERATION ALGORITHMS 

ALGORITHM I.      EXISTENCE BASED FEATURE VECTOR GENERATION   
Input: Feature set in DB, F_db & Feature set of an App, F_app 

Output: A existence based feature vector 

1: feature_vector ← [0 | 0 | … | 0 ] 
2: index ← 0 
3: for ∀f1 ∈ F_db do           // for all features in database 
4: if f1 ∈ F_app then 
5: feature_vector[index] ← 1 
6: return feature_vector 
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APPENDIX B 

MALICIOUS FEATURE DATABASE  
 

 
APPENDIX C 

DATASET INFORMATION  
 

APPENDIX D 
EXPERIMENTAL RESULTS  

 

                                       

 
Fig. 5. The structure of tables in the malicious feature DB. Tables for method 
opcode frequency, method API frequency, and shared library function opcode 
frequency contains the centroid in each row. The centroids are calculated by 
K-Means algorithm. The other tables contain the real values of the attributes. 
 

 
(a) random forest                (b) support vector machine 

 
(c) deep neural net.            (d) multimodal neural net. 

 
Fig. 6. The directed graph for detection accuracy changes according to feature 
type addition in random forest/support vector machine/deep neural network/ 
multimodal neural network. Each node means the accuracy result of a certain 
feature combination, and only nodes in inclusion relation are connected with 
edges. The direction of edge is expressed as the bold line. Red edge means the 
accuracy decrease and blue edge means the accuracy increase (including equal 
accuracy).  
 

TABLE XII 
THE SIZE OF DATASET USED IN THE EXPERIMENTS IN SECTION V-D 

Feature Combination Benign set Malware set Total 
{1,2,4},{1,3,4},{1,4,5}, 
{1,2,3,4},{1,2,3,4,5} 
{1,2,4,5},{1,3,4,5}, 
{1,2,3,4,5} 

19,747 13,075 32,822 

{1,4} 18,831 12,593 31,424 
{4} 18,756 12,521 31,277 
{1,5},{1,2},{1,3}, 
{1,2,3},{1,2,5},{1,3,5} 18,815 13,036 31,851 

{2,4},{3,4},{4,5}, 
{2,3,4},{2,4,5},{3,4,5} 
,{1,2,3,5},{2,3,4,5}, 

19,741 13,075 32,816 

{1} 1,463 2,167 3,630 
{2},{3},{5}, 
{2,3},{2,5},{3,5}, 
{2,3,5} 

18,803 13,036 31,839 

Feature number: 1 - Share lib. opcode feature, 2 – Method opcode feature,  
3 – Method API feature, 4 – Manifest feature, 5 – String feature   

  

 
Fig. 7. The standard normal distribution of the total benign apps, the total 
malware, and the malware missed by binary-based detection method and bag-
of-words based detection method. The standard normal distribution is 
computed using the ratio of the elements set as one in our similarity-based 
feature vector. The samples from VirusShare and Google Play Store were used. 
 

ALGORITHM II.    SIMILARITY BASED FEATURE VECTOR GENERATION 
Input: Feature set in DB, F_db & Feature set of an App, F_app 

Output: A similarity based feature vector 

1: Centroids ← k_means(k, F_db)       // preprocessing 

2: feature_vector ← [0 | 0 | … | 0 ] 
3: index ← 0 
4: for ∀c ∈ Centroids do             // for all centroids 
5: min_sim ← 0 
6: for ∀f ∈ F_app do              // for all features 

7: dist ← get_euclidean_dist(c, f) 
8: sim ← 1/(dist+1) 
9: if sim < min_sim then 

10: min_sim ← sim 

13: if min_sum > threshold then 

14: feature_vector[index] ← 1 

15: else 

16: feature_vector[index] ← 0 
17: index ← index+1 
19: return feature_vector 

 

TABLE XI  
THE DATASET INFORMATION USED IN ALL THE EXPERIMENTS  

Exp. 
(Section) 

Test 
Validati

on 
Train Dataset size 

(malware/benign) 
Dataset 
Source 

V-C-1 
Not classification experiment 

1,260/2,000 M.P./G.P. 

V-C-2 13,036/18,803 
(in all the cases) V.S./G.P. 

V-D-1 20% 20% 60% shown in Table XII V.S./G.P. 

V-D-2 0% 0% 100% 1,209/1,791 V.S./G.P. 

V-E 20% 20% 60% 13,036/18,803 
(comparison to [30]) V.S./G.P. 

V-F-1 Not classification experiment 1,000/0 M.P./G.P. 

V-F-2 20% 0% 
80% 
(only-

malware) 
1,209/1,791 V.S./G.P. 

V.S – VirusShare, M.P. – Malgenome project, G.P. – Google Play Store 



T-IFS-07942-2017 
 

14 

 

APPENDIX E 
AUTOENCODERS  

 
Acknowledgment 
This work was supported by Institute for Information & comm
unications Technology Promotion (IITP) grant funded by the 
Korea government (MSIT) (No.2017-0-00388, Development o
f Defense Technologies against Ransomware) 

This research was supported by the MSIT(Ministry of Science,
 ICT), Korea, under the ITRC(Information Technology Resear
ch Center) support program (IITP-2018-2013-1-00881) superv
ised by the IITP(Institute for Information & communication Te
chnology Promotion) 
This work was supported by the National Research Foundation
 of Korea(NRF) grant funded by the Korea government(MSIP)
 (No. NRF-2016R1A2B4015254). 

 
REFERENCES 

 
[1] G DATA Report, “8,400 new android malware samples every day”. 
[2] Ch.-Y. Huang, Y.-T. Tsai, and C-H. Hsu, “Performance evaluation on 

permission-based detection for android malware,” Advances in 

Intelligent Systems and Applications, vol. 2, pp. 111-120, 2013. 
[3] A. Zarni, and W. Zaw, “Permission-based android malware detection,” 

International Journal of Scientific and Technology Research, vol. 2, 
no. 3, pp. 228-234, 2013. 

[4] D. Luke, V. Notani, and A. Lakhotia, “Droidlegacy: Automated 
familial classification of android malware,” In Proc. of the ACM 

SIGPLAN on Program Protection and Reverse Engineering Workshop, 
pp. 3, 2014. 

 
Fig. 8. Accuracy results of the multimodal neural network model, the support vector machine model, and the random forest model. (validation set/ test set: 20% 
each, training set: 60%, the size of dataset used in this experiment is described in Table XI) 
   

 
(a)  Share lib. function opcode frequency          (b)  Method opcode frequency                          (c)  Method API frequency 

 

 
(d)  Manifest                                                      (e)  String                                                             (f)  Final (merging) 

 

Fig. 9. Accuracy growth of the training set and the validation set by epochs. (a) - (e): initial networks of feature types,  (f): final network (validation set: 20%, 
training set: 80%, the size of dataset used in this experiment is described in Table IX) 
 

TABLE XIII 
THE STRUCTURE OF THE AUTOENCODERS 

 
MNN shaped AE (No. of neurons) DNN shaped 

AE (No. of 
neurons) 

Init 
net1 

Init 
net2 

Init 
net3 

Init 
net4 

Init 
net5 

Layer1/1 200 200 200 200 200 1,000 
Layer2/2 100 100 100 100 100 500 
Layer3/3 20 20 20 20 20 100 
 Final network  
Layer1/4 500 500 
Layer2/5 1,000 1000 
Layer3/6 3,400 17,000 

 All the layers use the ReLU function except for the last layer. The last layer 
uses the sigmoid function. 



T-IFS-07942-2017 
 

15 

[5] M. Zhang, Y. Duan, H. Yin, and Z. Zhao, “Semantics-aware Android 
malware classification using weighted contextual API dependency 
graphs,” In Proc. of the ACM Conference on Computer and 

Communications Security (CCS), pp. 1105-1116, 2014. 
[6] M. Grace, Y. Zhou, Q. Zhang, S. Zou, X. Jiang, “Riskranker: scalable 

and accurate zero-day android malware detection,” In Proc. of the 

ACM International Conference on Mobile Systems, Applications, and 

Service (Mobisys), pp. 281-294, 2012. 
[7] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, 

“DREBIN: Effective and Explainable Detection of Android Malware 
in Your Pocket,” In Proc. the Network and Distributed System Security 

Symposium (NDSS), vol. 14, pp. 23-26, 2014. 
[8] D-J. Wu, C-H. Mao, T-E. Wei, H-M. Lee, K-P. Wu, “Droidmat: 

Android malware detection through manifest and api calls tracing,” In 
Proc. of the Asia Joint Conference on Information Security (Asia JCIS), 
pp. 62-69, 2012. 

[9] W. Zhou, Y. Zhou, X. Jiang, P. Ning, “Detecting repackaged 
smartphone applications in third-party android marketplaces,” In Proc. 

of the ACM conference on Data and Application Security and Privacy, 
pp. 317-326, 2012. 

[10] S. Hao, B. Liu, S. Nath, W. G. Halfond, and R. Govindan, “PUMA: 
Programmable UI-automation for Large-scale Dynamic Analysis of 
Mobile Apps,” In Proc. of the ACM International Conference on 

Mobile Systems, Applications, and Services (MobiSys), pp. 204-217, 
2014. 

[11] Y. Zhongyang, Z. Xin, B. Mao, L. Xie, “DroidAlarm: an all-sided static 
analysis tool for Android privilege-escalation malware,” In Proc. of the 

8th ACM SIGSAC symposium on Information, computer and 

communications security, pp. 353-358, 2013. 
[12] E. Chin, A. P. Felt, K. Greenwood, D. Wagner, “Analyzing inter-

application communication in Android,” In Proc. of the international 

conference on Mobile systems, applications, and services, pp.239-252, 
2011. 

[13] L. Lu, Z. Li, Z. Wu, W. Lee, G. Jiang, “Chex: statically vetting android 
apps for component hijacking vulnerabilities,” In Proc. of the ACM 

conference on Computer and communications security, pp. 229-240, 
2012. 

[14] P. PF Chan, L. CK Hui, SM. Yiu, “Droidchecker: analyzing android 
applications for capability leak,” In Proc. of the ACM conference on 

Security and Privacy in Wireless and Mobile Networks, pp. 125-136, 
2012. 

[15] K. Lu, Z. Li, V. P. Kemerlis, Z. Wu, L. Lu, “Checking More and 
Alerting Less: Detecting Privacy Leakages via Enhanced Data-flow 
Analysis and Peer Voting,” In Proc. of the Network and Distributed 

System Security Symposium (NDSS), 2015. 
[16] W., Fengguo, S. Roy, X. Ou. “Amandroid: A precise and general inter-

component data flow analysis framework for security vetting of 
android apps,” In Proc. of the 2014 ACM Conference on Computer and 

Communications Security, pp. 1329-1341, 2014. 
[17] J. Sum, K. Yan, X. Liu, Ch. Yang, Y. Fu, “Malware Detection on 

Android Smartphones using Keywords Vector and SVM,” In Proc. of 

the IEEE/ACIS Conference on Computer and Information Science, pp. 
833-838, 2017. 

[18] A. Narayanan, L. Yang, L. Chen, L. Jinliang, “Adaptive and Scalable 
Android Malware Detection through Online Learning,” In Proc. of the 

International Joint Conference on Neural Networks (IJCNN), pp. 
2484-2491, 2016. 

[19] A. Demontis, M. Melis, B. Biggio, D. Maiorca, D. Arp, K. Rieck, I. C
orona, G. Giacinto, F. Roli, “Yes, Machine Learning Can Be More Se
cure! A Case Study on Android Malware Detection,” IEEE Transacti

on on Dependable and Secure Computing, 2016. 
[20] L. K. Yan, H. Yin, “DroidScope: Seamlessly Reconstructing the OS 

and Dalvik Semantic Views for Dynamic Android Malware Analysis,” 
In Proc. of the USENIX Security Symposium, pp. 569-584, 2012. 

[21] W. Enck., P. Gilbert, S. Han, V. Tendulkar, B-G. Chun, L. P. Cox, J. 
Jung, P. Macdaniel, A. N. Sheth, “TaintDroid: an information-flow 
tracking system for realtime privacy monitoring on smartphones,” 
ACM Transaction on Computer Systems, vol. 32, no. 5, 2014. 

[22] T. Bläsing, L. Batyuk, A-D. Schmidt, S. A. Camtepe, S. Albayrak, “An 
android application sandbox system for suspicious software detection,” 
In Proc. of the Malicious and unwanted software (MALWARE), pp. 55-
62, 2010. 

[23] A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer, Y. Weiss, “Andromaly: 
a behavioral malware detection framework for Android devices,” 

Journal of Intelligent Information Systems, vol. 38, no. 1, pp. 161-190, 
2012. 

[24] A- D.Schmidt, F. Peters, F. Lamour, C. Scheel, S. A. Camtepe, S. 
Albayrak, “Monitoring smartphones for anomaly detection,” Mobile 

Network sand Applications, vol. 14, no. 1, pp. 92-106, 2009. 
[25] R. Pascanu, J. W. Stroke, H. Sanossian, M. Marinescu, A. Thomas, 

“Malware classification with recurrent networks,” In Proc. of the IEEE 

International Conference on Acoustics, Speech and Signal Processing 
(ICASSP), pp. 1916-1920, 2015. 

[26] O. E. David, N. S. Netanyahu, “Deepsign: Deep learning for automatic 
malware signature generation and classification,” In Proc. of the 

International Joint Conference on Neural Networks (IJCNN), pp. 1-8, 
2015. 

[27] J. Saxe, K. Berlin, “Deep neural network based malware detection 
using two dimensional binary program features,” In Proc. of the 10th 

International Conference on Malicious and Unwanted Software 
(MALWARE), pp. 11-20, 2015. 

[28] Z. Yuan, Y. Lu, Y. Xue, “Droiddetector: android malware 
characterization and detection using deep learning,” Tsinghua Science 

and Technology, vol. 21, no. 1, pp. 114-123, 2016. 
[29] W. Yu, L. Ge, G. Xu, X. Fu, “Towards Neural Network Based Malware 

Detection on Android Mobile Devices,” Cybersecurity Systems for 

Human Cognition Augmentation, pp. 99-117, 2014. 
[30] N. Mchaughlin, J. Martinez del Rincon, B-J. Kang, S. Yerima, Y. 

Safaei, E. Trickel, Z. Zhao, A. Doupe, G. Joon Ahn, “Deep Android 
Malware Detection,” In Proc of the ACM on Conference on Data and 

Application Security and Privacy (CODASPY), pp. 301-308, 2017. 
[31] H. Fereidooni, M. Conti, D. Yao, A. Sperduti, “ANASTASIA: 

ANdroid mALware detection using STAtic analysis of Applications,” 
In Proc. of the IFIP International Conference on New Technologies, 

Mobility and Security, pp. 1-5, 2016. 
[32] APKtool. (September , 2017) [Online].  Available: https://ibotpeaches.

github.io/Apktool/ 
[33] IDA pro. (September , 2017) [Online].  Available: https://www.hex-

rays.com/products/ida/ 
[34] Released Code (September, 2017) [Online]. Available: 

https://github.com/cloudio17/A-Multimodal-Deep-Learning-Method-
for-Android-Malware-Detection. 

[35] A. Yousra, W. Du, H. Yin, “DroidAPIMiner: Mining API-level 
features for robust malware detection in android,” In Proc. of the 

International Conference on Security and Privacy in Communication 

Systems, pp. 86-103, 2013. 
[36] Y. Bengio, “Learning deep architectures for AI,” Foundations and 

Trends in Machine Learning, vol. 2, no. 1, 2009. 
[37] Mal-Genome project. (September, 2017) [Online].  Available: http://w

ww.Malgenomeproject.org/ 
[38] VirusShare. (September, 2017) [Online].  Available: https://virusshar

e.com/ 
[39] Googleplay Store. (September, 2017) [Online].  Available: https://pla

y.google.com/store/ 
[40] VirusTotal. (September, 2017) [Online].  Available: https://www.viru

stotal.com/ko/ 
[41] PyPy Interpreter. (September, 2017) [Online].  Available: http://pypy.

org/ 
[42] Keras. (September, 2017) [Online].  Available: https://keras.io/ 
[43] T. Abou-Assaleh, N. Cercone, V. Keselj, R. Sweidan, “N-gram-based 

detection of new malicious code,” In Proc. of the Computer Software 

and Applications Conference, vol. 2, pp. 41-42, 2004. 
[44] M. Ismail Bin, D. Usman, “Standardization and Its Effects on K-Means 

Clustering Algorithm,” Research Journal of Applied Sciences, 

Engineering and Technology, vol. 6, no. 17, 2013.  
[45] Ch. Robert, “Machine learning: a probabilistic perspective,” MIT press. 

2012.  
[46] D. P. King ma, J. Ba, “Adam: A method for stochastic optimization,” 

arXiv preprint arXiv:1412.6980, 2014. 
[47] M. Ester, H. P. Kriegel, J. Sander, X. Xu, "A density-based algorithm 

for discovering clusters in large spatial databases with noise," KDD, 
vol. 96, no. 34, pp. 226-231, 1996. 

[48] J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, A. Y. Ng, “Multimodal 
deep learning,” In Proc. of the international conference on machine 

learning, pp. 689-696, 2011. 
[49] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. 

Salakhutdinov, “Dropout: a simple way to prevent neural networks 
from overfitting,” Journal of machine learning research,  vol. 15, no. 
1, pp. 1929-1958. 



T-IFS-07942-2017 
 

16 

[50] Android Developer Reference Page, (September, 2017) [Online]. 
https://developer.android.com/reference /packages.html 

[51] V. Nair, G. E. Hinton, “Rectified Linear Units Improve Restricted 
Boltzmann Machines,” In Proc. of the International Conference on 

Machine Learning, pp. 807-814, 2010. 
[52] Scikit-lean. (September, 2017) [Online]. Available: https://scikit-

learn.org 
[53] Tensorflow. (September, 2017) [Online]. Available: https://tensorflow.

org 
[54] S. Y. Yerima, S. Sezer, G. McWilliams, I. Muttik, “A New Android 

Malware Detection Approach using Bayesian Classification”, In Proc

.of Advanced Information Networking and Applications, pp. 121-
128, 2013. 

[55] Q. Jerome, K. Allix, R. State, T. Engel, “Using Opcode-
sequences to Detect Malicious Android Applications”, In Proc. of the 

IEEE Int. Conf. on Communicaions, pp. 914-919, 2014 
[56] S. Y. Yerima, S. Sezer, I. Muttik, “High Accuracy Android Malware 

Detection using Ensemble Learning”, IET Information Security, vol. 
9, no. 6, pp. 313-320, 2015 

[57] F. Zhang, , H. Huang, S. Zhu, D. Wu, P. Liu, “ViewDroid: Towards 
obfuscation-resilient mobile application repackaging detection,” In 
Proc. of the 2014 ACM conference on Security and privacy in wireless 

& mobile networks, pp. 25-36. 2014 
[58] K. Chen, P. Wang, Y. Lee, X. Wang, N. Zhang, H. Huang, W. Zou, P. 

Liu, “Finding Unknown Malice in 10 Seconds: Mass Vetting for New 
Threats at the Google-Play Scale,” In Proc. of the USENIX Security 

Symposium, pp. 659-674, 2014. 
[59] Z. Yuan, Y. Lu, Z. Wang, Y. Xue, “Droid-Sec: deep learning in 

android malware detection,” ACM SIGCOMM Computer 

Communication Review, vol. 44, no. 4, pp. 371-372, 2014. 
[60] V. Rastogi, Y. Chen, X. Jiang, “Droidchameleon: evaluating android 

anti-malware against transformation attacks,” In Proc. of the 8th ACM 

SIGSAC symposium on Information, computer and communications 

security, pp. 329-334, 2013. 
[61] A. Zomorodian, “Topological data analysis,” Advances in applied and 

computational topology, vol. 70, pp. 1-39, 2012. 
[62] J. Nathalie, “Supervised versus unsupervised binary-learning by 

feedforward neural networks”, Machine Learning, vol. 42, no. 1-2, pp. 
97-122, 2001. 

 
 

TaeGuen Kim received the B.S. degree in 
the electronics and computer engineering 
and M.S. degree in the computer and 
software from the Hanyang University, 
Korea, in 2011 and 2013, respectively. His 
research interests include malware 
analysis, machine learning. 
 

 

BooJoong Kang is currently a Research 
Fellow at the Centre for Secure Information 
Technologies in the Queen’s University 
Belfast, UK. He received the B.S., M.S., 
and Ph.D. degrees in electronics and 
computer engineering from the Hanyang 
University, Korea, in 2007, 2009, and 2013, 
respectively. His research interests include 

malware analysis, threat analysis, intrusion detection, cyber-
physical resilience measures. 
 
 

 Mina Rho is a faculty member of the 
Department of Computer Science and 
Engineering at Hanyang University, Seoul, 
Korea. She received a B.S. degree in 
Computer Science from Ewha Womans 
University, Seoul, Korea, a M.S. degree in 
Computer Engineering from Boston 

University, Boston, USA, and a Ph.D. degree in Computer 
Science from Indiana University, Bloomington, USA. From 
2012 to 2013, she was an Assistant Professor at Roswell Park 
Cancer Institute, Buffalo, USA. Her research interests include 
the development of algorithms for analyzing genomic sequence 
data, and application of machine learning to analyze big data.  
 
 

Sakir Sezer received the Ph.D. degree in 
electronic engineering from Queen’s 
University Belfast. He is currently a 
Professor and the Head of network and 
cyber-security research with the Center for 
Secure Information Technologies, Queen’s 
University Belfast. He is also a Co-Founder 
and the CTO of Titan IC Systems and a 

member of various research and executive committees, 
including the IEEE International System-on-Chip Conference 
Executive Committee. His research is leading major advances 
in the field of high-performance content and security processing. 
 
 

Eul Gyu Im is a faculty member of the 
Division of Computer Science and 
Engineering at Hanyang University, Seoul, 
Korea. He received the B.S. and M.S. 
degrees from Seoul National University in 
1992 and 1994, respectively, and the Ph.D. 
degree from University of Southern 
California in 2002. Before joining Hanyang 

University, he worked for National Security Research Institute 
in Daejeon, Korea. His research interests include malware 
analysis, malicious traffic analysis, and smart grid security. 
 


