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RESEARCH Open Access

A multimodal tempo and beat-tracking system
based on audiovisual information from live guitar
performances
Tatsuhiko Itohara*, Takuma Otsuka, Takeshi Mizumoto, Angelica Lim, Tetsuya Ogata and Hiroshi G Okuno

Abstract

The aim of this paper is to improve beat-tracking for live guitar performances. Beat-tracking is a function to

estimate musical measurements, for example musical tempo and phase. This method is critical to achieve a

synchronized ensemble performance such as musical robot accompaniment. Beat-tracking of a live guitar

performance has to deal with three challenges: tempo fluctuation, beat pattern complexity and environmental

noise. To cope with these problems, we devise an audiovisual integration method for beat-tracking. The auditory

beat features are estimated in terms of tactus (phase) and tempo (period) by Spectro-Temporal Pattern Matching

(STPM), robust against stationary noise. The visual beat features are estimated by tracking the position of the hand

relative to the guitar using optical flow, mean shift and the Hough transform. Both estimated features are

integrated using a particle filter to aggregate the multimodal information based on a beat location model and a

hand’s trajectory model. Experimental results confirm that our beat-tracking improves the F-measure by 8.9 points

on average over the Murata beat-tracking method, which uses STPM and rule-based beat detection. The results

also show that the system is capable of real-time processing with a suppressed number of particles while

preserving the estimation accuracy. We demonstrate an ensemble with the humanoid HRP-2 that plays the

theremin with a human guitarist.

1 Introduction
Our goal is to improve beat-tracking for human guitar

performances. Beat-tracking is one way to detect musi-

cal measurements such as beat timing, tempo, body

movement, head nodding, and so on. In this paper, the

proposed beat-tracking method estimates tempo, beats

per minute (bpm), and tactus, often referred to as the

foot tapping timing or the beat [1], of music pieces.

Toward the advancement of beat-tracking, we are

motivated with an application to musical ensemble

robots, which enable synchronized play with human per-

formers, not only expressively but also interactively.

Only a few attempts, however, have been made so far

with interactive musical ensemble robots. For example,

Weinberg et al. [2] reported a percussionist robot that

imitates a co-player’s playing to play according to the

co-player’s timing. Murata et al. [3] addressed a musical

robot ensemble with robot noise suppression with the

Spectro-Temporal Pattern Matching (STPM) method.

Mizumoto et al. [4] report a thereminist robot that per-

forms a trio with a human flutist and a human percus-

sionist. This robot adapts to the changing tempo of the

human’s play, such as accelerando and fermata.

We focus on the beat-tracking of a guitar played by a

human. The guitar is one of the most popular instru-

ments used for casual musical ensembles consisting of a

melody and a backing part. Therefore, the improvement

of beat-tracking of guitar performances enables guitarist,

from novices to experts, to enjoy applications such as a

beat-tracking computer teacher or an ensemble with

musical robots.

In this paper, we discuss three problems in beat-track-

ing of live human guitar performances: (1) tempo fluc-

tuation, (2) complexity of beat patterns, and (3)

environmental noise. The first is caused by the irregular-

ity of humans. The second is illustrated in Figure 1;

some patterns consist of upbeats, that is, syncopation.

These patterns are often observed in guitar playing.

Moreover, beat-tracking of one instrument, especially in
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syncopated beat patterns, is challenging since beat-track-

ing of one instrument has less onset information than

with many instruments. For the third, we focus on sta-

tionary noise, for example, small perturbations in the

room, and robot fan noise. It degrades the signal-to-

noise ratio of the input signal, so we cannot disregard

such noise.

To solve these problems, this paper presents a parti-

cle-filter-based audiovisual beat-tracking method for

guitar playing. Figure 2 shows the architecture of our

method. The core of our method is a particle-filter-

based integration of the audio and visual information

based on a strong correlation between motions and beat

timings of guitar playing. We modeled their relationship

in the probabilistic distribution of our particle-filter

method. Our method uses the following audio and

visual beat features: the audio beat features are the nor-

malized cross-correlation and increments obtained from

the audio signal using Spectro-Temporal Pattern Match-

ing (STPM), a method robust against stationary noise,

and the visual beat features are the relative hand posi-

tions from the neck of the guitar.

We implement a human-robot ensemble system as an

application of our beat-tracking method. The robot

plays its instrument according to the guitar beat and

tempo. The task is challenging because the robot fan

and motor noise interfere with the guitar’s sound. All of

our experiments are conducted in the situation with the

robot.

Section 2 discusses the problems with guitar beat-

tracking, and Section 3 presents our audiovisual beat-

tracking approach. Section 4 shows that the experimen-

tal results demonstrate the superiority of our beat-track-

ing to Murata’s method in tempo changes, beat

structures and real-time performance. Section 5 con-

cludes this paper.

2 Assumptions and problems
2.1 Definition of the musical ensemble with guitar

Our targeted musical ensemble consists of a melody

player and a guitarist and assumes quadruple rhythm

for simplicity of the system. Our beat-tracking method

can accept other rhythms by adjusting the hand’s trajec-

tory model explained in Section 3.2.3.

At the beginning of a musical ensemble, the guitarist

gives some counts to synchronize with a co-player as

he would in real ensembles. These counts are usually

given by voice, gestures or hit sounds from the guitar.

We determine the number of counts as four and con-

sider that the tempo of the musical ensemble can be

only altered moderately from the tempo implied by

counts.

1.

2.

3.

4.

5.

6.

7.

8.

Figure 1 Typical guitar beat patterns. The symbol × represents guitar-cutting, a percussive sound made with quick muting sounds. The >

denotes accented, ↑ and ↓ denote the directions of strokes, and (↑) and (↓) denote air strokes.
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Our method estimates the beat timings without prior

knowledge of the co-player’s score. This is because (1)

many guitar scores do not specify beat patterns but only

melody and chord names, and (2) our main goal focuses

on improvisational sessions.

Guitar playing is mainly categorized into two styles:

stroke and arpeggio. Stroke style consists of hand wav-

ing motions. In arpeggio style, however, a guitarist pulls

strings with their fingers mostly without moving their

arms. Unlike most beat-trackers in the literature, our

current system is designed for a much more limited

case where the guitar is strummed, not in a finger

picked situation. This limitation allows our system to

perform well in a noisy environment, to follow sudden

tempo changes more reliably and to address single

instrument music pieces.

Stroke motion has two implicit rules, (1) beginning

with a down stroke and (2) air strokes, that is, strokes

with a soundless tactus, to keep the tempo stable. These

can be found in the scores, especially pattern 4 for air

strokes, in Figure 1. The arrows in the figure denote the

stroke direction, common enough to appear on instruc-

tion books for guitarists. The scores say that strokes at

the beginning of each bar go downward, and the cycle

of a stroke usually lasts the length of a quarter note

(eight beats) or of an eighth note (sixteen beats). We

assume music with eight-beat measures and model the

hand’s trajectory and beat locations.

No prior knowledge on the color of hands is assured

in our visual-tracking. This is because humans have var-

ious hand colors and such colors vary according to the

lighting conditions. The motion of the guitarist’s arm,

on the other hand, is modeled with prior knowledge:

the stroking hand makes the largest movement in the

body of a playing guitarist. The conditions and assump-

tions for guitar ensemble are summarized below:

Conditions and assumptions for beat-tracking

Conditions:

(1) Stroke (guitar-playing style)

(2) Take counts at the beginning of the performance

(3) Unknown guitar-beat patterns

(4) With no prior knowledge of hand color

Assumptions:

(1) Quadruple rhythm

(2) Not much variance from the tempo implied by

counts

(3) Hand movement and beat locations according to

eight beats

(4) Stroking hand makes the largest movement in

the body of a guitarist

2.2 Beat-tracking conditions

Our beat-tracking method estimates the tempo and bar-

position, the location in the bar at which the performer

is playing at a given time from audio and visual beat

features. We use a microphone and a camera embedded

in the robot’s head for the audio and visual input signal,

respectively. We summarize the input and output speci-

fications in the following box:

Input-output

Input:

- Guitar sounds captured with robot’s microphone

- Images of guitarist captured with robot’s camera

Audio process STPM

STFT
Sobel

Filter

STPM

Visual process Hand tracking

Optical 

flow

Mean 

shift Obtain Hand 

PositionHough

transform

Integration

Particle filter

Sum  for

frequencyOnset vector

Audio

signal

Visual

signal Hand Position

Tempo

Position

in bar

Guitar leaning

Hand position

from guitar

Correlation 

between time scale

Figure 2 Architecture underlying our beat-tracking technique.
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Output:

- Bar-position

- Tempo

2.3 Challenges for guitar beat-tracking

A human guitar beat-tracking must overcome three pro-

blems to cope with tempo fluctuation, beat pattern com-

plexity, and environmental noise. The first problem is

that, since we do not assume a professional guitarist, a

player is allowed to play fluid tempos. Therefore, the

beat-tracking method should be robust to such changes

of tempo.

The second problem is caused by (1) beat patterns

complicated by upbeats (syncopation) and (2) the spar-

seness of onsets. We give eight typical beat patterns in

Figure 1. Patterns 1 and 2 often appear in popular

music. Pattern 3 contains triplet notes. All of the

accented notes in these three patterns are down beats.

However, the other patterns contain accented upbeats.

Moreover, all of the accented notes of patterns 7 and 8

are upbeats. Based on these observations, we have to

take into account how to estimate the tempos and bar-

positions of the beat patterns with accented upbeats.

The sparseness is defined as the number of onsets per

time unit. We illustrate the sparseness of onsets in Fig-

ure 3. In this paper, guitar sounds consist of a simple

strum, meaning low onset density, while popular music

has many onsets as is shown in the Figures. The figure

shows a 62-dimension mel-scaled spectrogram of music

after the Sobel filter [5]. The Sobel filter is used for the

enhancement of onsets. Here, the negative values are set

to zero. The concentration of darkness corresponds to

strength of onset. The left one, from popular music, has

equal interval onsets including some notes between the

onsets. On the other hand, the right one shows an

absent note compared with the tactus. Such absences

mislead a listener of the piece as per the blue marks in

the figure. What is worse, it is difficult to detect the tac-

tus in a musical ensemble with few instruments because

there are few supporting notes to complement the syn-

copation; for example, the drum part may complement

the notes in larger ensembles.

As for the third problem, the audio signal in beat-

tracking of live performances includes two types of

noise: stationary and non-stationary noise. In our robot

application, the non-stationary noise is mainly caused by

the robot joints’ movement. This noise, however, does

not affect beat-tracking, because it is small–6.68 dB in

signal-to-noise ratio (SNR)–based on our experience so

far. If the robot makes loud noise when moving, we may

apply Ince’s method [6] to suppress such ego noise. The

stationary noise is mainly caused by fans on the compu-

ter in the robot and environmental sounds including

air-conditioning. Such noise degrades the signal-to-noise
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Figure 3 The strength of onsets in each frequency bin with the power spectrogram after Sobel filtering. a Popular music (120 BPM), b

guitar backing performance (110 bpm). Red ballets, red triangles, blue ballet denote tactuses of the pieces, absent notes at tactuses, error

candidates of tactuses. In this paper, a frame is equivalent to 0.0116 sec. Detailed parameter values about time frame are shown in Section 3.1.
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ratio of the input signal, for example, 5.68dB in SNR, in

our experiments with robots. Therefore, our method

should include a stationary noise suppression method.

We have two challenges for visual hand tracking: false

recognition of the moving hand and low time resolution

compared with the audio signal. A naive application of

color histogram-based hand trackers is vulnerable to

false detections caused by the varying luminance of the

skin color and thus captures other nearly skin-colored

objects. While optical-flow-based methods are consid-

ered suitable for hand tracking, we have difficulty in

employing this method because flow vectors include

some noise from the movements of other parts of the

body. Usually, audio and visual signals have different

sampling rates from one another. According to our set-

ting, the temporal resolution of a visual signal is about

one-quarter compared to an audio signal. Therefore, we

have to synchronize these two signals to integrate them.

problems

Audio signal:

(1) Complexity of beat patterns

(2) Sparseness of onsets

(3) Fluidity of human playing tempos

(4) Antinoise signal

Visual signal:

(1) Distinguishing hand from other parts of body

(2) Variations in hand color depend on individual

humans and their surroundings

(3) Low visual resolution

2.4 Related research and solution of the problems

2.4.1 Beat-tracking

Beat-tracking has been extensively studied in music

processing. Some beat-tracking methods use agents

[7,8] that independently extract the inter-onset inter-

vals of music and estimate tempos. They are robust

against beat pattern complexity but vulnerable to

tempo changes because their target music consists of

complex beat patterns with a stable tempo. Other

methods are based on statistical methods like a particle

filter using a MIDI signal [9,10]. Hainsworth improves

the particle-filter-based method to address raw audio

data [11].

For the adaptation to robots, Murata achieved a beat-

tracking method using the SPTM method [3], which

suppresses robot stationary noise. While this STPM-

based method is designed to adapt to sudden tempo

changes, the method is likely to mistake upbeats for

down beats. This is partly because the method fails to

estimate the correct note lengths and partly because no

distinctions can be made between the down and upbeats

with its beat-detecting rule.

In order to robustly track the human’s performance,

Otsuka et al. [12] use a musical score. They have

reported an audio-to-score alignment method based on

a particle filter and revealed its effectiveness despite

tempo changes.

2.4.2 Visual-tracking

We use two methods for visual-tracking, one based on

optical flow and one based on color information. With

the optical-flow method, we can detect the displacement

of pixels between frames. For example, Pan et al. [13]

use the method to extract a cue of exchanged initiatives

for their musical ensemble.

With color information, we can compute the prior

probabilistic distribution for tracked objects, for exam-

ple, with a method based on particle filters [14]. There

have been many other methods for extracting the posi-

tions of instruments. Lim et al. [15] use a Hough trans-

form to extract the angle of a flute. Pan et al. [13] use a

mean shift [16,17] to estimate the position of the mal-

let’s endpoint. These detected features are used as the

cue for the robot movement. In Section 3.2.2, we give a

detailed explanation of Hough transform and mean shift.

2.4.3 Multimodal integration

Integrating the results of elemental methods is a filtering

problem, where observations are input features extracted

with some preprocessing methods and latent states are

the results of integration. The Kalman filter [18] pro-

duces estimates of latent state variables with linear rela-

tionships between observation and the state variables

based on a Gaussian distribution. The Extended Kalman

Filter [19] adjusts the state relationships of non-linear

representations but only for differentiable functions.

These methods are, however, unsuitable for the beat-

tracking we face because of the highly non-linear model

of the hand’s trajectory of guitarists.

Particle filters, on the other hand, which are also

known as Sequential Monte Carlo methods, estimate the

state space of latent variables with highly nonlinear rela-

tionships, for example, a non-Gaussian distribution. At

frame t, zt and xt denote the variables of the observation

and latent states, respectively. The probability density

function (PDF) of latent state variables p(xt|z1:t-1) is

approximated as follows:

p(xt|z1:t) ≈
I

∑

i=1

ω
(i)
t δ

(

xt − x
(i)
t

)

, (1)

where the sum of weights w
(i)
t

is 1. I is the number of

particles and w
(i)
t

and x
(i)
t

correspond to the weight and

state variables of the ith particle, respectively. The

δ(xt − x
(i)
t ) is the Dirac delta function. Particle filters
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are commonly used for beat-tracking [9-12] and visual-

tracking [14] as is shown in Section 2.4.1 and 2.4.2.

Moreover, Nickel et al. [20] applied a particle filter as a

method of audiovisual integration for the 3D identifica-

tion of a talker. We will present the solution for these

problems in the next section.

3 Audio and visual beat features extraction
3.1 Audio beat feature extraction with STPM

We apply the STPM [3] for calculating the audio beat

features, that is, inter-frame correlation Rt(k) and the

normalized summation of onsets Ft, where t is the

frame index. Spectra are consecutively obtained by

applying a short time Fourier transform (STFT) to an

input signal sampled at 44.1kHz. A Hamming window

of 4,096 points with the shift size of 512 points is used

as a window function. The 2,049 linear frequency bins

are reduced to 64 mel-scaled frequency bins by a mel-

scaled filter bank. Then, the Sobel filter [5] is applied to

the spectra to enhance its edges and to suppress the sta-

tionary noise. Here, the negative values of its result are

set to zero. The resulting vector, d(t,f), is called an onset

vector. Its element at the tth time frame and f-th mel-

frequency bank is defined as follow:

d(t, f ) =
psobel(t, f ) if psobel(t, f ) > 0,

0 otherwise
(2)

psobel(t, f ) = −pmel(t − 1, f + 1) + pmel(t + 1, f + 1)

− pmel(t − 1, f − 1) + pmel(t + 1, f − 1)

− 2pmel(t − 1, f ) + 2pmel(t + 1, f ),

(3)

where psobel is the spectra to which the Sobel filter is

applied to. Rt(k), the inter-frame correlation with the

frame k frames behind, is calculated by the normalized

cross-correlation (NCC) of onset vectors defined in Eq.

(4). This is the result for STPM. In addition, we define

Ft as the sum of the values of the onset vector at the tth

time frame in Eq. (5). Ft refers to the peak time of

onsets. Rt(k) relates to the musical tempo (period) and

Ft to the tactus (phase).

Rt(k) =

NF
∑

j=1

NP−1
∑

i=0

d(t − i, j)d(t − k − i, j)

√

NF
∑

j=1

NP−1
∑

i=0

d(t − i, j)2
NF
∑

j=1

NP−1
∑

i=0

d(t − k − i, j)2

(4)

Ft = log

⎛

⎝

NF
∑

f=1

d(t, f )

⎞

⎠ peak, (5)

where peak is a variable for normalization and is

updated under the local peak of onsets. The NF denotes

the number of dimensions of onset vectors used in

NCC and NP denotes the frame size of pattern match-

ing. We set these parameters to 62 dimensions and 87

frames (equivalent to 1 sec.) according to Murata et al.

[3].

3.2 Visual beat feature extraction with hand tracking

We extract the visual beat features, that is, the temporal

sequences of hand positions with these three methods:

(1) hand candidate area estimation by optical flow, (2)

hand position estimation by mean shift, and (3) hand

position tracking.

3.2.1 Hand candidate area estimation by optical flow

We use Lucas-Kanade (LK) method [21] for fast opti-

cal-flow calculation. Figure 4 shows an example of the

result of optical-flow calculation. We define the center

of hand candidate area as a coordinate of the flow vec-

tor, which has the length and angle nearest from the

middle values of flow vectors. This is because the hand

motion should have the largest flow vector according

to the assumption (3) in Section 2.1, and this allows us

to remove noise vectors with calculating the middle

values.

3.2.2 Hand position estimation by mean shift

We estimate a precise hand position using mean shift

[16,17], a local maximum detection method. Mean shift

has two advantages: low computational costs and

robustness against outliers. We used the hue histogram

as a kernel function in the color space which is robust

against shadows and specular reflections [22] defined by:

⎛

⎝

Ix

Iy

Iz

⎞

⎠ =

⎛

⎝

2 −1/2 −1/2

0
√

3/2 −
√

3/2
1/3 1/3 1/3

⎞

⎠

⎛

⎝

r

g

b

⎞

⎠ (6)

hue = tan−1(Iy/Ix). (7)

3.2.3 Hand position tracking

Let (hx,t, hy,t) be the hand coordination calculated by the

mean shift. Since a guitarist usually moves their hand

near the neck of their guitar, we define rt, a hand posi-

tion at t time frame, as the relative distance between the

hand and the neck as follows:

rt = ρt − (hx,t cos θt + hy,t sin θt), (8)

where rt and θt are the parameters of the line of the

neck computed with Hough transform [23] (see Figure

5a for an example). In Hough transform, we compute

100 candidate lines, remove outliers with RANSAC [24],

and get the average of Hough parameters. Positive

values indicate that a hand is above the guitar; negative

values indicate below. Figure 5b shows an example of

the sequential hand positions.
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Now, let ωt and θt be a beat interval and bar-position

at the tth time frame, where a bar is modeled as a circle,

0 ≤ θt < 2π and ωt is inversely proportional to the angle

rate, that is, tempo. With assumption 3 in Section 2.1,

we presume that down strokes are at θt = nπ/2 and up

strokes are at θt = nπ/2 + π/4(n = 0,1,2,3). In other

words, zero crossover points of hand position are at

these θ. In addition, since a hand stroking is in a

smooth motion to keep the tempo stable, we assume

that the sequential hand position can be represented

with a continuous function. Thus, hand position rt is

defined by

rt = −a sin(4θt), (9)

where a is a constant value of hand amplitude and is

set to 20 in this paper.

4 Particle-filter-based audiovisual integration
4.1 Overview of the particle-filter model

The graphical representation of the particle-filter model

is outlined in Figure 6. The state variables, ωt and θt,

denote the beat interval and bar-position, respectively.

The observation variables, Rt(k), Ft, and rt denote inter-

frame correlation with k frames back, normalized onset

summation, and hand position, respectively. The w
(i)
t

and θ
(i)
t

are parameters of the ith particle. Now, we will

explain the estimation process with the particle filter.

4.2 State transition with sampling

The state variables at the tth time frame
[

ω
(i)
t θ

(i)
t

]

are

sampled from Eqs. (10) and (11) with the observations

at the (t - 1)th time frame. We use the following propo-

sal distributions:

ω
(i)
t ∼ q

(

ωt|ω(i)
t−1, Rt(ωt), ωinit

)

∝ Rt(ωt) × Gauss
(

ωt|ω(i)
t−1, σwq

)

× Gauss
(

ωt|ωinit, σwinit

)

(10)

θ
(i)
t ∼ q

(

θt|rt , Ft, ω
(i)
t−1, θ

(i)
t−1

)

= Mises
(

θt|�̂(i)
t , βθq,1

)

× penalty(θ
(i)
t |rt , Ft),

(11)

Gauss(x|μ, s) represents the PDF of a Gaussian distri-

bution where x is a variable and parameters μ and s

correspond to the mean and standard deviation,

Figure 4 Optical flow. a is the previous frame, b is the current frame, and c indicates flow vecto The horizontal axis and the vertical axis

correspond to the time frame and hand positio respectively.

Hand position 

Hand position 
0

30
from guitar [pixel]

-30

[frame]

from guitar

(a) (b)
Figure 5 Hand position from guitar. a Definition image. b Example of sequential data.
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respectively. The σω∗ denotes the standard deviation for

the sampling of the beat interval. The ωinit denotes the

beat interval estimated and fixed with the counts. Mises

(θ|μ, b, τ) represents the PDF of a von Mises distribu-

tion [25], also known as the circular normal distribution,

which is modified to have τ peaks. This PDF is defined

by

Mises(θ |μ, β , τ ) =
exp(β cos(τ (θ − μ)))

2π I0(β)
, (12)

where I0(b) is a modified Bessel function of the first

kind of order 0. The μ denotes the location of the peak.

The b denotes the concentration; that is, 1/b is analo-

gous to s2 of a normal distribution. Note that the distri-

bution approaches a normal distribution as b increases.

Let �̂
(i)
t

be a prediction of θ
(i)
t

defined by:

�̂
(i)
t = θ

(i)
t−1 + b/ω

(i)
t−1, (13)

where b denotes a constant for transforming from

beat interval into an angle rate of the bar-position.

We will now discuss Eqs. (10) and (11). In Eq. (10),

the first term Rt(k) is multiplied with two window func-

tions of different means. The first is calculated from the

previous frame and the second is from the counts. In

Eq. (11), penalty(θ|r, F) is the result of five multiplied

multipeaked window functions. Each function has a con-

dition. If it is satisfied, the function is defined by the von

Mises distribution; otherwise, it shows 1 in any θ. This

penalty function pulls the peak of the θ distribution into

its own peak and modifies the distribution to match it

with the assumptions and the models. Figure 7 shows

the change in the θ distribution by multiplying the pen-

alty function.

In the following, we present the conditions for each

window function and the definition of the distribution.

rt−1 > 0 ∩ rt < 0 ⇒ Mises(0, 2.0, 4) (14)

rt−1 < 0 ∩ rt > 0 ⇒ Mises(
π

4
,1.9,4) (15)

rt−1 > rt ⇒ Mises(0,3.0,4) (16)

rt−1 < rt ⇒ Mises(
π

4
,1.5,4) (17)

Ft > thresh. ⇒ Mises(0, 20.0, 8). (18)

All b parameters are set experimentally through a trial

and error process. thresh. is a threshold that determines

whether Ft is constant noise or not. Eqs. (14) and (15)

are determined with the assumption of zero crossover

points of stroking. Eqs. (16) and (17) are determined

with the stroking directions. These four equations are

based on the model of the hand’s trajectory presented in

kRtkRt 1

tF1tF

1tr tr

1t t

1t t

kR1

2F1F

1r 2r

1 2

1 2

kR2

Figure 6 Graphical model. ○ denotes state and □ denotes observation variable.
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Eq. (9). Equation (18) is based on eight beats; that is,

notes should be on the tops of the modified von Mises

function which has eight peaks.

4.3 Weight calculation

Let the weight of the ith particle at tth time frame be

w
(i)
t
. The weights are calculated using observations and

state variables:

w
(i)
t = w

(i)
t−1

p
(

ω
(i)
t , θ

(i)
t |ω(i)

t−1, θ
(i)
t−1

)

p
(

Rt(ω
(i)
t ), Ft, rt|ω(i)

t , θ
(i)
t

)

q
(

ωt|ω(i)
t−1, Rt(ω

(i)
t ), ωinit

)

q
(

θt|rt, Ft , ω
(i)
t−1, θ

(i)
t−1

) . (19)

The terms of the numerator in Eq. (19) are called a

state transition model function and a observation model

function. The more the values of a particle match each

model, the larger value its weight has with the high

probabilities of these functions. The denominator is

called a proposal distribution. When a particle of low

probability is sampled, its weight increases with the low

value of the denominator.

The two equations below give the derivation of the

state transition model function.

ωt = ωt−1 + nω (20)

θt = �̂t + nθ , (21)

where nω denotes the noise of the beat interval dis-

tributed with a normal distribution and nθ denotes the

one of the bar-position distributed with a von Mises dis-

tribution. Therefore, the state transition model function

is expressed as the product of the PDF of these distribu-

tions.

p
(

ω
(i)
t , θ

(i)
t |ω(i)

t−1, θ
(i)
t−1

)

= Mises(�̂t, βnθ
, t)Gauss(ωt−1, σnω

)
(22)

We give the deviation of the observation model func-

tion. The Rt(ω) and rt are distributed according to the

normal distributions where the means are w
(i)
t

and -asin

Frp ,|

)()( ,,,| i

t

i

tttt Frp

0 2

0 2

0 2

)()( ,,,| i

t

i

tttt Frp

The distribution

before being

multiplied

An example of

penalty function

The distribution

after being

multiplied

Figure 7 Example of changes in θ distribution while multiplying penalty function. Beginning the top, we show the distribution before

being multiplied, an example of the penalty functio and the distribution after being multiplied. This penalty function is expressed by the von Mis

distribution of the cycle of π/2.
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, respectively. The Ft is empirically approximated with

the values of the observation as:

Ft ≈ f (θbeatt
, σf )

≡ Gauss(θ
(i)
t ; θbeat,t, σf ) ∗ rate + bias,

(23)

where θbeat,t is the bar-position of the nearest beat in

the model of eight beats from �̂
(i)
t
. rate is a constant

value for the maximum of approximated Ft to be 1, and

is set to 4. bias is uniformly distributed from 0.35 to

0.5. Thus, the observation model function is expressed

as the product of these three functions (Eq. (27)).

p
(

Rt(ωt)|ω(i)
t

)

= Gauss
(

ωt; ω
(i)
t , σω

)

(24)

p
(

Ft|ω(i)
t , θ

(i)
t

)

= Gauss
(

Ft; f (θbeat,t, σf ), σf

)

(25)

p
(

rt|ω(i)
t , θ

(i)
t

)

= Gauss
(

rt ; −a sin(4�̂
(i)
t ), σr

)

(26)

p
(

Rt

(

ω
(i)
t

)

, Ft , rt|ω(i)
t , θ

(i)
t

)

= p
(

Rt(ωt)|ω(i)
t

)

p
(

Ft|ω(i)
t , θ

(i)
t

)

p
(

rt|ω(i)
t , θ

(i)
t

) (27)

We finally estimate the state variables at the tth time

frame from the average with the weights of particles.

ω̄t =

I
∑

i=1

w
(i)
t ω

(i)
t (28)

θ̄t = arctan

(

I
∑

i=1

w
(i)
t sin θ

(i)
t /

I
∑

i=1

w
(i)
t cos θ

(i)
t

)

(29)

Finally we resample the particles to avoid degeneracy;

that is, almost all weights become zero except for a few

when the weight values satisfy the following equation:

1
∑I

i=1

(

w
(i)
t

)2
< Nth,

(30)

where Nth is a threshold for resampling and is set to 1.

5 Experiments and results
In this section, we evaluate our beat-tracking system in

the following four points:

1. Effect of audiovisual integration based on the parti-

cle filter,

2. Effect of the number of particles in the particle

filter,

3. Difference between subjects, and

4. Demonstration.

Section 5.1 describes the experimental materials and

the parameters used in our method for the experiments.

In Section 5.2, we compare the estimation accuracies of

our method and Murata’s method [3], to evaluate the

statistical approach. Since both methods share STPM,

the main difference is caused by either the heuristic

rule-based approach or statistical one. In addition, we

evaluate the effect of adding the visual beat features by

comparing with a particle filter using only audio beat

features. In Section 5.3, we discuss the relationship

between the number of particles versus computational

costs and the accuracy of the estimates. In Section 5.4,

we present the difference among subjects. In Section

5.5, we give an example of musical robot ensemble with

a human guitarist.

5.1 Experimental setup

We asked four guitarists to perform one of each eight

kinds of the beat patterns given in Figure 1, at three dif-

ferent tempos (70, 90, and 110), for total of 96 samples.

The beat patterns are enumerated in order of beat pat-

tern complexity; a smaller index number indicates that

the pattern includes more accented down beats which is

easily tracked, while a larger index number indicates

that the pattern includes more accented upbeats that

confuse the beat-tracker. A performance consists of four

counts, seven repetitions of the beat pattern, one whole

note and one short note, shown in Figure 8. The average

length of each sample was 30.8[sec] for 70 bpm, 24.5

[sec] for 90 bpm and 20.7[sec] for 110. The camera

recorded frames at about 19 [fps]. The distance between

the robot and a guitarist was about 3 [m] so that the

entirety of the guitar could be placed inside the camera

frame. We use a one-channel microphone and the sam-

pling parameters shown in Section 3.1 Our method uses

200 particles unless otherwise stated. It was implemen-

ted in C++ on a Linux system with an Intel Core2 pro-

cessor. Table 1 shows the parameters of this

experiment. The unit of the parameter relevant to θ is

[deg] that ranges from 0 to 360. They all are defined

experimentally through a trial and error process.

In order to evaluate the accuracy of beat-tracking

methods, we use the following thresholds to define suc-

cessful beat detection and tempo estimations from

ground truth: 150 msec for detected beats and 10 bpm

for estimated tempos, respectively.

Two evaluative standard are used, F-measure and

AMLc. F-measure is a harmonic mean of precision

(rprec) and recall (rrecall) of each pattern. They are calcu-

lated by

F − measure = 2/
(

1/rprec + 1/rrecall

)

, (31)
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rprec = Ne/Nd, (32)

rrecall = Ne/Nc, (33)

where Ne, Nd, and Nc correspond to the number of

correct estimates, whole estimates and correct beats,

respectively. AMLc is the ratio of the longest continuous

correctly tracked section to the length of the music,

with beats at allowed metrical levels. For example, one

inaccuracy in the middle of a piece leads to 50% perfor-

mance. This represents that the continuity is in correct

beat detections and is critical factor in the evaluation of

musical ensembles.

The beat detection errors are divided into three

classes: substitution, insertion and deletion errors. Sub-

stitution error means that a beat is poorly estimated in

terms of the tempo or bar-position. Insertion errors and

deletion errors are false-positive and false-negative esti-

mations. We assume that a player does not know the

other’s score, thus one estimates score position by num-

ber of beats from the beginning of the performance.

Beat insertions or deletions undermine the musical

ensemble because the cumulative number of beats

should be correct or the performers will lose

synchronization. Algorithm 1 shows how to detect

inserted and deleted beats. Suppose that a beat-tracker

correctly detects two beats with a certain false estima-

tion between them. When the method just incorrectly

estimates a beat there, we regard it as a substitution

error. In the case of no beat or two beats there, they are

counted as a deleted or inserted beats, respectively.

5.2 Comparison of audiovisual particle filter, audio only

particle filter, and Murata’s method

Table 2 and Figure 9 summarize the precision, recall

and F-measure of each pattern with our audiovisual

integrated beat-tracking (Integrated), audio only particle

filter (Audio only) and Murata’s method (Murata).

Murata does not show any variance in its result, that is,

no error bars in result figures because its estimation is a

deterministic algorithm, while the first two plots show

Count

~

Pattern

(Pattern)

Figure 8 The score used in our experiments. X denotes the counts given by the hit soun from the guitar. White box denotes a whole note.

Black box in the last of the score denot a short note.

Table 1 Parameter settings: abbreviations are SD for

standard deviation, and dist. for distribution

Denotation Value

Concentration of dist. of sampling θt βθq 36,500

Concentration of dist. of θt transition βnθ
3,650

SD of dist. of ωinit
σωinit 15

SD of dist. of sampling ωt
σωq 11

SD of dist. of ωt transition σnω 1

SD of the approximation of Ft sf 0.2

SD of the observation model of Rt sω 1

SD of the observation model of rt sr 2

Ft threshold of beat or noise thresh. 0.7

Table 2 Results of the accuracy of beat-tracking

estimations

(a) Precision
(%)

Beat Pattern 1 2 3 4 5 6 7 8 Ave.

Integrated 69.9 75.7 71.1 65.1 48.3 46.8 74.0 40.1 61.4

Audio only 43.6 46.6 45.6 28.7 24.7 18.1 43.6 41.5 36.5

Murata 86.3 82.4 83.2 44.1 39.9 22.4 25.5 22.3 50.8

(b) Recall (%)

Beat Pattern 1 2 3 4 5 6 7 8 Ave.

Integrated 70.3 75.8 71.9 66.0 47.7 45.6 74.5 39.7 61.4

Audio only 40.8 43.9 42.5 28.7 23.4 17.9 41.6 38.8 34.7

Murata 89.6 87.1 87.0 48.8 43.7 26.7 27.2 24.4 54.3

(c) F-measure
(%)

Beat Pattern 1 2 3 4 5 6 7 8 Ave.

Integrated 70.1 75.7 71.5 65.5 48.0 46.1 74.2 39.9 61.4

Audio only 42.2 45.2 44.0 28.7 24.0 18.0 42.6 40.1 35.6

Murata 87.9 84.7 85.1 46.3 41.7 24.3 26.3 23.3 52.5

Bold numbers represent the largest results for each beat pattern.
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variance due to the stochastic nature of particle filters.

Our method Integrated stably produces moderate

results and outperforms Murata for patterns 4-8. These

patterns are rather complex with syncopations and

downbeat absences. This demonstrates that Integrated

is more robust against beat patterns than Murata. The

comparison between Integrated and Audio only con-

firms that the visual beat features improve the beat-

tracking performance; Integrated improves precision,

recall, and F-measure by 24.9, 26.7, and 25.8 points in

average from Audio only, respectively.

The F-measure scores of the patterns 5, 6, and 8

decrease for Integrated. The following mismatch causes

this degradation; though these patterns contain sixteenth

beats that make the hand move at double speed, our

method assumes that the hand always moves downward

only at quarter note positions as Eq. (9) indicates. To

cope with this problem, we should allow for downward

arm motions at eighth notes, that is, sixteen beats. How-

ever, a naive extension of the method would result in

degraded performances with other patterns.

The average of F-measure for Integrated shows about

61%. The score is deteriorated due to these two reasons:

(1) the hand’s trajectory model does not match the six-

teen-beat patterns, and (2) the low resolution and the

error in estimating visual beat feature extraction do not

make the penalty function effective in modifying the θ

distribution.

Table 3 and Figure 10 present the AMLc comparison

among the three method. As well as the F-measure result,

Integrated is superior to Murata for patterns 4-8. The

AMLc results of patterns 1 and 3 are not so high despite

the high F-measure score. Here, we define result rate as

the ratio of the AMLc score to the F-measure one. In pat-

terns 1 and 3, the result rates are not so high, 72.7 and

70.8. Likewise the F-measure results, the result rates of

patterns 4 and 5 remark lower scores, 48.9 and 55.8. On

the other hand, the result rates of patterns 2 and 7 show

100

1 2 3 4 5 6 7 8

0

F
-m

e
a

su
re

(%
)

[Beat Pattern Index]

20

40

60

80

Integrated

Audio only

Murata

Figure 9 Results: F-measure of each method. Exact values are shown in Table 2.

Table 3 Results of AMLc

Beat Pattern 1 2 3 4 5 6 7 8 Ave.

Integrated 49.9 64.2 50.0 43.6 22.8 25.3 54.8 26.5 42.1

Audio only 18.6 18.0 17.6 16.8 14.7 18.5 18.3 16.6 17.4

Murata 84.2 68.9 78.6 24.1 11.0 8.4 19.4 16.9 38.9

Bold numbers represent the largest results for each beat pattern.
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still high percentage as 85.0 and 74.7. The hand’s trajec-

tory of patterns 2 and 7 is approximately the same with

our model, a sign curve. In pattern 3, however, the triplet

notes affect the trajectory to be late in the upward move-

ment. In pattern 1, no upbeats, that is, no constraints in

the upward movement allow the hand to move loosely

upward in comparison with the trajectories in other pat-

terns. To conclude, the result rate has a relationship with

the similarity of a hand’s trajectory of each pattern with

our model. The model should be refined to raise scores in

our future work.

In Figure 11, Integrated demonstrates less errors than

Murata with regard to the total errors of insertions and

deletions. A detailed analysis shows that Integrated has

less deletion errors than Murata in some patterns. On

the other hand, Integrated has more insertion errors

than Murata, especially in sixteen beats. However, the

adaption to sixteen beats would produce fewer inser-

tions in Integrated.

5.3 The influence of the number of particles

As a criterion of the computational cost, we use a real-

time factor to evaluate our system in terms of a real-

time system. The real-time factor is defined as computa-

tion time divided by data length; for example, when the

system takes 0.5s to process 2 s data, the real-time fac-

tor is 0.5/2 = 0.25. The realtime factor must be less

than 1 to run the system in real-time. Table 4 shows

the real-time factors with various numbers of particles.

The real-time factor increases in proportion to the num-

ber of particles. The real-time factor is kept under 1

with 300 particles or less. We therefore conclude that

our method works well as a real-time system with fewer

than 300 particles.

Table 4 also shows that the F-measures differ by only

about 1.3% between 400 particles showing the maximum

result and 200 particles where the system works in real-

time. This suggests that our system is capable of real-

time processing with almost saturated performance.

5.4 Results with various subjects

Figure 12 indicates that we can observe only little differ-

ence among the subjects except Subject 3. In the case of

Subject 3, the similarity of the skin color to the guitar

caused frequent loss of the hand’s trajectory. To

improve the estimation accuracy, we should tune the

100
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Figure 10 Results: AMLc of each method. Exact values are shown in Table 3.
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algorithm or parameters to be more robust against such

confusion.

5.5 Evaluation using a robot

Our system was implemented on a humanoid robot

HRP-2 that plays an electronic instrument called the

theremin as in Figure 13. The video is available on You-

tube [26]. The humanoid robot HRP-2 plays the there-

min with a feed-forward motion control developed by

Mizumoto et al. [27]. HRP-2 captures a mixture of

sound consisting of its own theremin performance and

human partner’s guitar performance with its micro-

phones. HRP-2 first suppresses its own theremin sounds

by using the semi-blind ICA [28] to obtain the audio

signal played by the human guitarist. Then, our beat-

tracker estimates the tempo of the human performance

and predicts the tactus. According to the predicted tac-

tus, HRP-2 plays the theremin. Needless to say, this pre-

diction is coordinated to absorb the delay of the actual

movement of the arm.

6 Conclusions and future works
We presented an audiovisual integration method for

beat-tracking of live guitar performances using a particle

filter. Beat-tracking of guitar performances has three fol-

lowing problems: tempo fluctuation, beat pattern

complexity and environmental noise. The auditory beat

features are the autocorrelation of the onsets and the

onset summation extracted with a noise-robust beat

estimation method, called STPM. The visual beat feature

is the distance of the hand position from the guitar

neck, extracted with the optical flow and mean shift and

by Hough line detection, respectively. We modeled the

stroke and the beat location based on an eight-beat

assumption to address the single instrument situation.

Experimental results show the robustness of our method

against such problems. The F-measure of beat-tracking

estimation improves by 8.9 points on average compared

with an existing beat-tracking method. Furthermore, we

confirmed that our method is capable of real-time pro-

cessing by suppressing the number of particles while

preserving beat-tracking accuracy. In addition, we

demonstrate a musical robot ensemble with a human

guitarist.

We still have two main problems to improve the qual-

ity of synchronized musical ensembles: beat-tracking

with higher accuracy and robustness against estimation

errors. For the first problem, we have to get rid of the

assumption of quadruple rhythm and eight beats. The

hand-tracking method should be also refined. One pos-

sible way for improved hand tracking is the use of infra-

red sensors that are recently gathering many

researchers’ interest. In fact, our preliminary experi-

ments suggest that the use of an infrared sensor instead

of an RGB camera would enable more robust hand

tracking. Thus, we can also expect an improvement of

the beat-tracking itself by using this sensor.

We suggest two extensions as future works to increase

robustness to estimation errors: audio-to-score align-

ment with reduced score information, and the beat-

tracking with prior knowledge of rhythm patterns.
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Figure 11 Results: Number of inserted and deleted beats.

Table 4 Influence of the number of particles on the

estimation accuracy and computational speed

Number of particles 50 100 200 300 400

Real-time factor 0.18 0.33 0.64 0.94 1.25

Precision (%) 57.7 59.7 61.4 62.2 62.5

Recall (%) 57.0 59.5 61.4 62.4 62.9

F-measure (%) 57.3 59.6 61.4 62.3 62.7
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Figure 13 An example image of musical robot ensemble with a human guitarist.
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While standard audio-to-score alignment methods [12]

require a full set of musical notes to be played, for

example, an eighth note of F in the 4th octave and a

quarter note of C in the 4th octave, guitarists use scores

with only the melody and chord names, with some

ambiguity with regard to the octave or note lengths.

Compared to beat-tracking, this melody information

would allow us to be aware of the score position at the

bar level and to follow the music more robustly against

insertion or deletion errors. The prior distribution of

rhythm patterns can also alleviate the insertion or dele-

tion problem by forming a distribution of possible beat

positions in advance. This kind of distribution is

expected to result in more precise sampling or state

transition in particle-filter methods. Finally, we have to

remark that we need the subjective evaluation as to how

much our beat-tracking improves the quality of the

human-robot musical ensemble.

Algorithm 1 Detection of inserted and deleted
beats
deleted ¬ 0 {deleted denotes the number of deleted

beats}

inserted ¬ 0 {inserted denotes the number of inserted

beats}

prev_index ¬ 0

for all detected_beat do

if |tempo(detected_beat)-tempo(ground_truth_beat)|

< 10

and | beat_time(detected_beat)-beat_time(ground_-

truth_beat)| < 150 then

{detected_beat is correct estimation}

new_index ¬ index(ground_truth_beat)

N ¬ (new_index - prev_index - 1) - error_count

deleted ¬ deleted + MAX(0, N)

inserted ¬ inserted + MAX(0, -N)

prev_index ¬ new_index

error_count ¬ 0

else

error_count ¬ error_count + 1

end if

end for
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