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ABSTRACT 
 

This paper proposes a variation of the Multiple Ant 

Colony System for Vehicle Routing Problem with Time 

Windows (MACS-VRPTW) algorithm, which is based on 

an Ant Colony System approach, using two ant colonies 

to minimize first the number of vehicles and then the total 

traveled distance. As an improvement, the present work 

proposes to use a modified version specialized for a 

multiobjective context, using just one colony to get a set 

of Pareto optimal solutions considering three objectives at 

the same time, the number of vehicles, the total traveling 

time and the total delivery time. Experimental results 

validate the new approach with very good results when 

compared to the original MACS-VRPTW. 
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1. INTRODUCTION 
 

The Vehicle Routing Problem with Time Windows 

(VRPTW) [1] is an extension of the Vehicle Routing 

Problem (VRP) [2], in which the aim is to find a set of 

minimum-cost vehicle routes, that originates and 

terminates at a central depot, for a fleet of vehicles that 

serve a given set of customers with known demand. Each 

customer is served exactly once and all the customers 

must be assigned to vehicles without exceeding vehicle 

capacities. VRPTW added to these issues the complexity 

of allowable delivery times, or time windows. With the 

time windows, the total routing and scheduling cost 

include not only the total travel distance and time costs, 

but also the cost of waiting time incurred when a vehicle 

arrives too early at a customer location. The service 

beginning time at each customer must be greater than or 

equal to the beginning of the time window, and the arrival 

time at each customer must be lower than or equal to the 

end of the time window. If a vehicle arrives to a customer 

before the beginning of the time window, it has to wait 

until this time to serve the customer. 

 

The spatial problem of routing vehicles has been 

extensively studied in the literature. Several approaches 

have been published dealing with it, using parallel 

implementations [3], hybrid strategies coupling local 

search method to evolutionary algorithm [4], neuronal 

network [5, 6], a heuristic that uses pheromone 

information [7], and works that deal with this problem 

using evolutionary calculation to optimize the demand for 

each vehicle besides the optimization of the vehicle 

number and the total traveling time [8]. 

 

More recently, the time window constraint has been 

considered and many approaches have been presented to 

solve the VRPTW: parallel algorithms with a polynomial 

number of processor [9], genetic algorithm [10, 11, 12, 

13], and parallel simulated annealing [14, 15]. 

 

In this context, MACS-VRPTW [16] was developed as an 

evolutionary proposal based on Ant Colony System 

(ACS), and more generally, on Ant Colony Optimization 

(ACO), with the aim of optimizing two objective 

functions, as summarized in section 3. In fact, ACO is a 

metaheuristic approach that imitates ants’ behavior, where 

ants cooperate in their search for food by depositing 

chemical traces (pheromones). In a computational 

implementation, ants that found good solutions deposit 

pheromones in their paths. That way, ants of the following 

generations may decide with good probability to follow a 

good trace with greater quantity of pheromones. 

 

This paper is concerned with solution construction for the 

VRPTW using ACS. The approach presented may be 

considered an extension of the MACS-VRPTW algorithm 

for a truly multiobjective context. The novelty of the 

presented approach consists in incorporating the Pareto 

optimal concept in such a way that the final solution is not 

a single optimum but a whole set of Pareto optimal 

solutions where all objectives are equally considered, i.e., 

a set of solutions where no solution can be improved in 

any objective without damaging other objectives [17]. 

 

The rest of this work is organized as follows: section 2 

formalizes the problem, section 3 introduces the MACS-

VRPTW while its improved version is presented in 
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section 4. Section 5 presents performance metrics used for 

comparison; while section 6 presents experimental results, 

with conclusions left for section 7. 

 

 

2. THE PROBLEM 
 

The Vehicle Routing Problem (VRP) with Time 

Windows, also known as VRPTW, is an extension of 

VRP that may be mathematically stated as: 

 

 Minimize an objective function F 

given: 

C = {c0, c1, c2, …, cñ}, … that represents the set of ñ 

customers, where c0 represents the depot and ci a 

customer i; 

tij … traveling time between ci and cj    (tij = tji); 

Q ... total capacity of a vehicle (assumed homogeneous); 

qi … demand of customer ci where qi ≤ Q and q0 = 0; 

 [bi, ei]… acceptable time window for customer ci, with bi 

as the earliest and ei as the latest time to serve ci. 

 

In a traditional VRPTW problem, a single objective 

function F may be chosen from any of the following ones: 

 

Number of vehicles 
 

F1 = ν (1)
 

where ν represents the total number of vehicles. 

 

Total traveling time (without considering waiting times) 
 

F2 = Σ tij    ∀ tij ∈ ψ (2)

 

where ψ represents a complete solution (or tour) 

 

Total delivery time (considering waiting times) 
 

F3 =  ∑
=

ν

1i

iT (3)

 

where Ti represents the time needed by vehicle  i  to return 

to the depot c0 considering the waiting time needed at 

each customer when it arrives before the beginning of the 

time window. 

 

For the multiobjective context of the present work, the 

objective function F is considered as a three-dimensional 

vector, i.e.: 

F = [F1  F2  F3]
T 

with no objective considered more important than the 

others. 

 

 

3. MACS-VRPTW REVIEW 
 

MACS-VRPTW has been designed to solve the vehicle 

routing problems with time windows using an ant colony 

system [16]. This approach uses two different ant colonies 

to minimize two objective functions. The first colony, 

denoted as ACS-VEI, minimizes the number of vehicles 

(F1), while the second colony, denoted as ACS-TIME, 

minimizes the total traveling time (F2). In this original 

approach, the first objective takes precedence over the 

second. 

 

Both colonies use independent pheromone trails and 

collaborate sharing a global best solution, which is used 

for pheromone updating. Given a feasible solution ψ with 

ν vehicles, the MACS-VRPTW decreases one vehicle at a 

time, trying to find a feasible solution with (v-1) vehicles, 

using its first ant colony (ACS-VEI) and a heuristic that 

maximize the number of visited customers with each 

vehicle. At the same time, the second colony (ACS-

TIME) tries to minimize the total traveling time with the 

given number of vehicle (v) of the global best solution ψ. 

When the first colony ACS-VEI finds a new solution with 

a fewer number of vehicle, both colonies are reinitialized 

and the older solution with a larger number of vehicles is 

forgotten, i.e., only one global solution is kept at a time. 

The pseudocode below shows this approach. 

 

Pseudocode MACS-VRPTW 

1. /* Initialization */ 

/* ψgb is the best feasible solution: lowest number of 

vehicles and shortest traveling time. 

#active_vehicles (ψ) computes the number of active 

vehicles in the feasible solution ψ */ 

ψgb  feasible initial solution with unlimited number 

of vehicles calculated with a nearest neighbor 

heuristic. 

2. /* Main loop */ 

Repeat 

 v  #active_vehicles(ψgb) 
 Activate ACS-VEI(v - 1) 

 Activate ACS-TIME(v) 

 while ACS-VEI and ACS-TIME are active 

 wait for an improved solution ψ from ACS-

VEI or ACS-TIME 

 ψgb  ψ 

 if #active_vehicles(ψgb ) < v then 

 reinitialize ACS-TIME and ACS-VEI 

 end while 

until a stopping criterion is met. 

 

To construct a solution, the depot is duplicated a number 

of times equal to the number of available vehicles, and the 

distances between copies of the depots are set to zero. 

Each artificial ant starts from a randomly chosen copy of 

the depot and, at each step, moves to a not yet visited 

node that does not violate neither the time window 

constraints nor the vehicle capacity. The set of available 

customers also includes not yet visited duplicated depots. 

A feasible solution ψ  is represented in Figure 1. 

 

It should be noted that in general, the original MACS-

VRPTW algorithm only finds one optimal solution with 
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the minimum v. It does not find a Pareto set of optimal 

solutions; therefore, it may not be considered a truly 

general multiobjective optimization algorithm [17]. 

Consequently, to compute a whole set of Pareto solutions, 

the original proposal was slightly modified to store all 

Pareto optimal solutions instead of erasing good solutions 

when a new one with fewer number of vehicles is found. 

d1

 

Considering that the original MACS-VRPTW was not 

designed for a truly multiobjective context, the following 

section presents a new approach that considers the 

multiobjective nature of the problem stated in section 2. 

 

 

 

 
 

 

 

 

 

 

 

 

 

Fig. 1. Feasible solution  for a vehicle routing problem 

with four duplicated depot, i.e.  v = 4. 

 

 

4. NEW MULTIOBJECTIVE APPROACH 
 

This work presents a multiobjective vehicle routing 

problem with time windows that simultaneously optimize 

the three objective functions presented in section 2, i.e.: 

• Number of  vehicles, 

• Total traveling time, and 

• Total delivery time. 

 

The main difference with the original MACS-VRPTW 

approach is to consider all the objectives with the same 

importance, i.e., no objective has any precedence over the 

others; therefore, a set of Pareto optimal solutions P may 

be found [18]. 

 

The proposed new approach uses an unique ant colony to 

simultaneously minimize all three functions. All 

objectives share the same pheromone trails. Therefore, the 

knowledge of good solutions is equally important for 

every objective function in the Pareto front. 

 

The idea of the algorithm is to construct only feasible 

solutions using as many vehicles as needed. In every 

generation, each ant k (of a set of m ants) constructs one 

feasible solution, starting at the depot and successively 

choosing a next node or customer cj, from the set of 

feasible nodes, Νi
k where subindex i represents that ant k 

is in node ci. Νi
k  is calculated at each node ci, and 

includes all nodes not yet visited and that do not violate 

any constraint (as time window and vehicle capacity). 

This set Νi
k does not include depots. When a vehicle can 

not add more nodes, a depot is included, and another 

vehicle starts adding nodes in the same way. This process 

is repeated until all nodes have been visited and, 

therefore, a feasible solution ψ was found. 

 

An ant k moves from node ci to node cj using heuristic as 

well as pheromone information. The heuristic information 

is given by the visibility, while the pheromone 

information, denoted by τ(i,j), indicates how well seems 

to visit customer cj after ci considering the solutions 

already found. 

d1 

d3 

d4 d2 

 

To choose the next node cj to be visited by an ant k in ci a 

probability pk(i,j) is assigned to each city and the next city 

cj is chosen in Νi
k  by the following procedure: 

 

Procedure Choose-Next-Node 

Randomly choose to do exploration with probability q0 

or exploitation otherwise; 

if exploitation 

 Choose the city with larger pk(i,j)  

else (exploration) 

Randomly choose cj using probabilities  pk(i,j) 

 

where: 
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λ = k/m, and β  weights the relative importance of the 

objectives with respect to the pheromone trail, given by τ. 

 

The visibility for the objective function F2 considering  

traveling time is calculated as: 

ηJ(i,j) = 1 / tij (5)

 

while the visibility for objective function F3 is related to 

the waiting time and the width of the time windows. It is 

calculated as: 

 ctj = max(cti + tij; bj) 

 ∆tij = ctj – cti 

 dij = ∆tij . (ej – cti) 

 dij = max(1, dij) 

 ηL(i,j) = 1 / dij 

(6)

 

with ctj representing the current time at node j (or delivery 

time to cj). Each vehicle begins its trip at a depot c0 with 

ct0 = 0. 

 

When each ant k finds a complete solution ψk, it is 

compared to the Pareto optimal set P to check if it is non-

dominated (worse solutions are dominated). If it is a new 

optimal Pareto solution, it is included in P and dominated 

solutions from P are erased. At the end of each 
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generation, τ0’ is calculated with the average values of the 

Pareto optimal set as follows: 

 /* Calculate τ0’ according to (7)*/ 

 
PP JLn ψψτ ../1'=0  

 

PP JLn ψψτ ../1'=0  
(7)  if τ0’ > τ0 

  /* A better Pareto set P was found */ 
 

  τ0  τ0’ where : 
  Re-initialize trails {τ} with τ0 

n… 
Pvψ + ñ (customers) is the average number of 

nodes; 

 else 

  for each ψP∈ P do 

     /* perform global updating according to (8) */ Pvψ … is the average vehicle number; 
     τ(i,j) = (1 - ρ) . τ(i,j) + ρ  / Lψ

P.Jψ
P   ∀ (i,j)∈ ψP 

  end for PLψ … is the average delivery time; 
 end if 

PJψ … is the average total time. until a stopping criterion is met. 

 
If τ0’ > τ0  because the Pareto set P was improved, the 

pheromone trail is reinitialized with the new value τ0’ to 

improve exploration; otherwise, exploitation is favored by 

globally updating the pheromone trail with each solution 

of the current Pareto optimal set P, using the following 

equation: 

Procedure build_tour(k) 

/* Initialization */ 

 Put ant k at depot 0 (<i>) 

 ψk  <i> 

 ctk  0, loadk  0 

/* The ant builds its tour. Tour is stored in ψk */  

repeat τ(i,j) = (1 - ρ).τ(i,j) + ρ / (Lψ
P.Jψ

P)     (i,j) ∈  ψ∀ P. (8)
/* Starting from node i compute the set Νi

k of feasible  

nodes*/ 

 

where Lψ
P is the value of F3  for a given solution ψ used 

to update τ(i,j) while Jψ
P is the corresponding value of F2.  compute Νi

k 

  if Νi
k = { } /* no  feasible nodes */ 

The re-initialization of τ(i,j) forces the ants to explore 

new ways, without the probably wrong information that 

has been introduced by solutions that were already erased 

from P because they were dominated by new ones. This 

exploration is powered by an evaporation process that 

occurs when an ant moves from node i to node j. In this 

case, τ(i,j) is updated according to: 

  ctk  0 

  loadk  0 

  ψk  <i> 

 else 

  /* ∀ j∈  Νi
k compute visibility */ 

  for every j ∈ Νi
k  do   

   Compute ηJ(i,j)  using equation (5)  

τ(i,j) = (1 - ρ) . τ(i,j) + ρ . τ0. (9)    Compute ηL(i,j)  using equation (6) 
 

  end for 
where τ0 is initially calculated, in a similar way of 

equation (7), according to:  
  <j>  Choose-Next-Node 

  ψk   ψk  <j> ∪ τ0 = 1 / (n . Lψ
h . Jψ

h) 
  ctk  max(cti + tij; bj) with Lψ

h representing an initial estimation of the total 

delivery time (F3), while Jψ
h represents an initial 

estimation of the total traveling time (F2), and n is the 

initial number of nodes (depots + customers). The 

pseudocode for the new proposal denoted as MOACS-

VRPTW (Multi-Objective Ant Colony System for the 

Vehicle Routing Problem with Time Windows) follows: 

  loadk  loadk   q∪ j 

  /* Pheromone updating using equation (9) */ 

  τ(i,j) = (1 - ρ) . τ(i,j) + ρ . τ0 

  i  j 

 end if 

until all customers have been visited. 

  

 Pseudocode MOACS-VRPTW 

5. PERFORMANCE METRICS /* Initialization */ 

 ψh
  feasible initial solution  

 τ0 = 1 / n.Jψ
h. Lψ

h To evaluate experimental results using the two versions 

described in the preceding sections, an appropriate test 

suit of metrics was chosen from [17], considering that no 

single metric can entirely capture performance, 

effectiveness and efficiency for multiobjective 

evolutionary algorithms. The suit comprises the following 

metrics: 

Repeat /* Main Loop */ 
 for each ant k ∈ {1,…, m} do 

 /* Construct a solution  (ψk) */ 

 ψk = build_tour(k) 

 if ψk ∈  P  

 save ψk and erase dominated solution from P 
  

end if 
 

end for 
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1) Overall Non-dominated Vector Generation (ONVG): 

simply counts the number of solutions in the 

calculated Pareto Front, denoted as Yknown 
 

cknownYONVG ||
∆

=
 

(10) 

 

where 
c
 denotes cardinality. The larger the value of the 

ONVG, the better for knowing Pareto Front details. 

 

2) Overall True Non-dominated Vector Generation 

(OTNVG): counts the number of solutions in Yknown 

that are also in the True Pareto optimal Front denoted 

as Ytrue. Because Ytrue is not known in theory, it may 

be estimated running several different evolutionary 

algorithms for a large number of times, for the same 

problem, choosing the optimal Pareto solutions found 

in all the experiments. For a good approximation of 

Ytrue a large number of running using as many 

algorithms as possible are needed. Clearly, the larger 

is the OTNVG, the better is a solution set Yknown. 
 

{ }
ctrueknown YyYyyOTNVG ∈∧∈=

∆

 (11) 

 

3) Overall Non-dominated Vector Generation Ratio 

(ONVGR): denotes the ratio between the number of 

solutions in Yknown to the number of solutions in Ytrue. 

Ideally, a good solution should have a value close to 

1. 
 

ctrueY

ONVG
ONVGR

||

∆

=  (12) 

 

4) Error Ratio (E) 
 

ONVG

e
E

N

i i∑ =
∆

= 1
 

(13) 

 

where N is the total number of solutions yi found in a run, 

while ei is 0 if  yi ∈ Ytrue and 1 otherwise. This ratio 

reports the proportion of objective vectors in Yknown that 

are not members of Ytrue. Of course, a small value is 

preferred. 

 

 

6. EXPERIMENTAL RESULTS 
 

The two algorithms described above were implemented in 

a standard personal computer under a UNIX operating 

system using C language. For simplicity, results will be 

presented for only one set of data, published in [1], where 

it is identified as “C101.” The experiments reported in 

this work were performed with the following parameters: 

m = 10 ant, q0 = 0.9, β = 1 and ρ = 0.1. 

 

To build the True Pareto-optimal Front Ytrue both 

algorithms were running 200 times, as well as other tested 

algorithms. All found solutions were stored and from all 

those candidate solutions the dominated ones were erased, 

taking only non-dominated solutions to conform Ytrue.  

 

To compare both algorithms, the Pareto-optimal Front 

Yknown of each algorithm was built with the 20 best 

runnings of each one, and the dominated solutions of each 

set were erased. The performance metrics were calculated 

for every run of each algorithm and their average values 

are presented in Table 1, where it is easy to note that the 

new approach outperforms the original MACS-VRPTW 

in every studied metric. 
 

Table 1. Average metric values for the best 20 runs 

of 200 runnings of both algorithms: the MACS-VRPTW 

and the New Approach 

ONVG OTNVG ONVGR E 

Macs New Macs New Macs New Macs New

9.75 15.85 0 1.1 0.26 0.42 1.00 0.93
 

Figure 2 presents three Pareto Fronts for ν = 10 vehicles, 

one for Ytrue and one for each Yknown of both compared 

algorithms, considering only 20 runs. It can be seen that 

the Yknown found for the new approach is a lot closer to 

Ytrue  than the one calculated for the MACS-VRPTW. 

Even more, the whole Ytrue is better approximated by the 

Yknown of the new approach because the Yknown of the 

MACS-VRPTW does not contain good solutions when 

considering F2 and does not have enough solutions in Ytrue 

or very close to it. 
 

F1 = 10 Vehicles
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Fig. 2. Comparative Pareto Fronts. The hyphen represents 

solutions in Ytrue; the crosses solutions in Yknown for the 

new approach; while the circles represent solutions found 

with the MACS-VRPTW. 
 

Although good solutions with more than 10 vehicles were 

found, these solutions are not presented in Figure 2 

because 2-D graphics are easier to understand, and most 

solutions use v = 10 vehicles. 
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Similar results as the ones presented in Table 1 and Figure 

2 were obtained for other values of the parameters (m, q0, 

β and ρ) and other test VRPTW problems presented in 

[1].  In particular, the proposed algorithm found a good 

number of solutions with fewer vehicles v and shorter 

Total delivery time for several test problems of [1], as 

“C1-10-1”, “C1-10-2”, “C1-2-1” and “RC2-2-1”. 

 

In summary, experimental results prove that the new 

approach outperforms the MACS-VRPTW in the new 

context of a truly multiobjective problem, using the three 

simultaneous objective functions presented in section 2. 

 

 

7. CONCLUSION 
 

The present work modifies the MACS-VRPTW algorithm 

to propose, for the first time, a truly multiobjective 

version of the Ant Colony System for the VRPTW 

problem with three equally important objective functions, 

finding a whole set of Pareto optimal solutions, as shown 

in Figure 2. 

 

Experimental results prove this new approach clearly 

outperforms the original MACS-VRPTW algorithm in 

this new multiobjective context. Moreover, the ideas 

presented in this work can be easily extended to other 

objectives and even to different multiobjective problems 

using the same concept of different visibilities for each 

objective, saving the found information of good solutions 

in a unique pheromone matrix. This way, it naturally 

combines the best solutions found so far, trying to 

discover new Pareto optimal solutions. 

 

Given the promissory experimental results found so far, 

the authors are working on a parallel version of the 

proposed algorithm for a network of personal computers, 

using PVM (Parallel Virtual Machine), aiming to solve 

larger problems in reasonable time. 

 

 

REFERENCES 
 

[1]  M. M. Salomon. Algorithms for Vehicle Routing and 

Scheduling Problems with time window constraints. 

Northeastern University, Boston, Massachusetts, 

December 1985. 
 

[2]  L. Bodin, B. Golden, A. Assad & M. Ball. Routing 

and Scheduling of Vehicles and Crews (1983). The State 

of the Art. Comput. Opns. Res. 10, 62-212. 
  

[3]  K. K. Lau, M. J. Kumar & N. R. Achuthan. Parallel 

implementation of branch and bound algorithm for 

solving vehicle routing problem on NOWs. Third 

International Symposium on Parallel Architectures, 

Algorithms, and Networks, 1997, 247-253. 
 

[4]  J. P. Pedroso. Niche search: An application in vehicle 

routing. IEEE World Congress on Computational 

Intelligence, 1998, 177–182. 
 

[5]  N. Yoshiike & Y. Takefuji. Vehicle routing problem 

using clustering algorithm by maximum neural networks. 

Second International Conference on Intelligent 

Processing and Manufacturing of Materials, 2, 1999, 

1109–1113. 
 

[6]  L. Gomes & F.J. Von Zuben. A neuro-fuzzy approach 

to the capacitated vehicle routing problem. Int. Joint 

Conference on Neural Networks, 2, 2002, 1930-1935. 
 

[7]  H. Murao, K. Tohmata, M. Konishi & S. Kitamura. 

Pheromone based transportation scheduling system for the 

multi-vehicle routing problem IEEE Int. Conference on 

Systems, Man, and Cybernetics, 4, 1999, 430–434. 
 

[8]  T, Takeno, Y. Tsujimura & G. Yamazaki. A single-

phase method based on evolution calculation for vehicle 

routing problem. Fourth International conference on 

Computational Intelligence and Multimedia Applications, 

2001, 103–07. 
 

[9]  A. Gupta & R. Krishnamurti. Parallel algorithms for 

vehicle routing problems. Fourth International 

Conference on High-Performance Computing, 1997, 144-

151. 
 

[10]  S. J. Louis, Y. Xiangying & Y.Y. Zhen. Multiple 

vehicle routing with time windows using genetic 

algorithms. Congress  on Evolutionary Computation, 

1808(3), 1999. 
 

[11]  O. Maeda, M. Nakamura, B. M. Ombuki & K. 

Onaga. A genetic algorithm approach to vehicle routing 

problem with time deadlines in geographical information 

systems. International Conference on Systems, Man, and 

Cybernetics, 4, 1999, 595-600. 
 

[12]  A. Chin, H. Kit & A. Lim. A new GA approach for 

the vehicle routing problem. 11th IEEE International 

Conference on Tools with Artificial Intelligence, 1999, 

307-310. 
 

[13]  K. C. Tan, T. H. Lee, K. Ou & L. H. Lee. A messy 

genetic algorithm for the vehicle routing problem with 

time window constraints. Congress on Evolutionary 

Computation, 1, 2001, 679-686. 
 

[14]  O. Arbelaitz, C. Rodriguez & I. Zamkola. Low cost 

parallel solutions for the VRPTW optimization problem. 

Fourth International Conference on Parallel Processing 

Workshops, 2001, 176-181. 
 

[15]  Z.J. Czech & P. Czarnas. Parallel simulated 

annealing for the vehicle routing problem with time 

windows. 10th Euromicro Workshop on Parallel, 

Distributed and Network-based Proc., 2002, 376-383. 
 

[16] L. Gambardella, E. Taillard & G. Agazzi. News ideas 

in optimization. Mac Graw-Hill, London 1999, 73–76. 
2 

[17]  D. A. Van Veldhuisen. Multiobjective Evolutionary 

Algorithms: Classifications, Analyses and New 

Innovations. PhD thesis, Department of Electrical and 

Computer Engineering. Graduate School of Engineering. 

Air Force Institute of Technology. Ohio, USA. May, 

1999. 
 

[18]  S. Iredi, D. Merkle & M. Middendorf. Bi-Criterion 

Optimization with Multi Colony Ant Algorithms. Lecture 

Notes in Computer Science, Springer-Verlag, Zurich, 

Switzerland (March 2001) 360-370. 

102


