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ABSTRACT The application of multiobjective approaches for sparse reconstruction is a relatively new
research topic in the area of compressive sensing. Unlike conventional iterative thresholding methods,
multiobjective approaches attempt to find a set of solutions called Pareto front (PF) with different sparsity
levels. The major focus of the existing sparse multiobjective approaches is to find the knee region of PF,
where the K -sparse solution should reside. However, the strategies in these approaches for finding the knee
region of PF are not very reliable due to the sensitivities on the setting of control parameters or noise levels.
In this paper, we propose a new strategy based onGaussianmixturemodels (GMMs)within a decomposition-
based multiobjective framework for sparse reconstruction. The basic idea is to cluster the population found
by a chain-based search procedure into two subsets via GMM. One of them with the small values of loss
function should include the knee region. Our proposed algorithm was tested on a set of six artificial instance
sets at four different noise levels. The experimental results showed that our proposed algorithm is superior
to two existing sparse multiobjective approaches and one iterative thresholding algorithm.

INDEX TERMS Sparse optimization, iterative thresholding, multiobjective evolutionary approach, Gaussian
mixture clustering.

I. INTRODUCTION

In the field of signal processing, signals are represented as a
linear combination of some basis. It’s been found that many
coefficients in the signal representation are close or equal to
zero. Compressive sensing [1], [2] aims to solve the following
optimization problem for sparse signal reconstruction:

min ‖x‖0 subject to y = Ax + ǫ (1)

where

- x ∈ RN is a N -dimensional vector, and ‖x‖0 (zero-
norm) is defined as the number of nonzero components
in x;

- A ∈ RM×N is a sensing matrix with M ≪ N , and
y ∈ RM is an observation vector;

- ǫ ∈ RM is a random vector following the normal distri-
bution N (0, σ ).

The associate editor coordinating the review of this manuscript and
approving it for publication was Wei Chen.

In the noiseless case, i.e., ǫ = 0, the optimal solution x∗ of
Problem (1) corresponds to the sparest member of the under-
determined system of linear equations y = Ax. If ‖x∗‖0 = K ,
then x∗ is called a K -sparse solution. Optimization methods
for sparse signal reconstruction can be classified into two
categories - greedy heuristics and iterative thresholdingmeth-
ods. One well-known example for the former is the orthogo-
nal match pursuit (OMP) [3], which builds a partial solution
component by component in a greedy way. In contrast, iter-
ative thresholding methods solve Problem (1) by minimizing
the so-called regularization problem, which is stated as:

min
x∈RN

‖y− Ax‖2 + λ‖x‖q (2)

where q = 0, 1 or q ∈ (0, 1), and λ is a positive regularization
parameter. The representative iterative thresholding methods
include the iterative hard thresholding method (q = 0) [4],
the iterative soft thresholding method (q = 1) [5] and the
iterative half thresholding method (q = 1/2) [6].
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The conversion of a constrained optimization into a
bi-objective multiobjective optimization problem is an
inclusive strategy for dealing with constraints in the area
of evolutionary multiobjective optimization (EMO) [7]–[9].
Following this idea, the sparse optimization problem formu-
lated in (1) can be naturally modeled as a bi-objective opti-
mization problem, in which the sparsity function ‖x‖0 and the
loss function ‖y− Ax‖2 are two objectives for minimization.
In the conventional regularization-based methods, these two
objectives are combined in a linear way via a regularization
parameter. In fact, the setting of the regularization parameter
is highly sensitive to the sparseness of the optimal solutions
found by regularization-basedmethods. However, this param-
eter is not required in the bi-objective sparse optimization
problem. It is easy to show that the K -sparse solution of
Problem (1) is located within the knee region of the PF of
the bi-objective sparse optimization problem [10].

The applications of multiobjective approaches for sparse
reconstruction have attracted some research attention over the
past few years [11]–[15]. Three representative multiobjective
approaches for sparse signal reconstruction are as follows.

• In [11], StMOEA, a multiobjective approach based
on NSGA-II [16] and soft thresholding iteration,
was suggested to solve sparse optimization problem.
In StMOEA, the whole PF is first approximated by
evolving a population of solutions. Then, an angle-
based spline method is used to find the knee solution
in a posterior way. For each offspring solution gener-
ated by genetic operator in StMOEA, the iterative soft-
thresholding is applied for local improvement.

• In [12], a multi-phase multiobjective approach based
on MOEA/D [17] and iterative thresholding, called
MOEA/D-L1/2, was developed to find the approxima-
tions of both the whole PF and the knee region. The
weighted sum method is then applied to detect the posi-
tion of the knee region.

• In [14], a decomposition-based multiobjective evolu-
tionary approach called SPLS was suggested to find a
set of sparse solutions in the knee region of PF in an
online way. Compared with existing thresholding meth-
ods, SPLS is more powerful to reconstruct sparse signals
for the sparse optimization problems with small number
of observations or large scale signals. To detect the knee
region, SPLS divides the population into two subsets via
a horizontal thresholding line.

It should be pointed out that the strategies for finding the knee
region mentioned in above three multiobjective approaches
are not very reliable due to the existence of noises in sparse
signals. To improve the reliability on sparsity detection,
we propose an improved MOEA/D for sparse reconstruction
with the following features:

• A two-phase iterative search procedure is suggested to
find sparse solutions along the PF. In the first phase,
the approximation of the whole PF is obtained via
a chain-based search process. In the second phase,

the knee region is examined with preference in a random
way.

• Between the above two phases, the knee region is
detected by clustering via Gaussian Mixture Models,
which divides the approximation of the whole PF into
two subsets.

• Extensive experiments are conducted in comparison of
the proposed method with SPLS and MOEA/D-L1/2,
as well as the HALF algorithm, on a set of six
instance sets with different noise levels. The ability of
MOEA/D-MGC for sparsity detection for noiseless
sparse signals is also investigated.

The remainder of this paper is organized as follows.
Section II provides a brief review on the HALF algorithm,
sparse multiobjective model, and the strategies for finding
knee in sparse multiobjective approaches. The new multi-
objective approach based on mixture Gaussian clustering is
presented in Section III. Experimental results are reported and
discussed in Section V. The last section concludes this paper.

II. SPARSE MULTIOBJECTIVE OPTIMIZATION

In this section, the regularization frameworks for sparse
optimization are first introduced. Then, the bi-objective for-
mulation in sparse optimization is presented and analyzed.
Afterwards, three existing strategies in sparse multiobjective
approaches for sparsity detection are reviewed.

A. SPARSE REGULARIZATION

Regularization is a commonly-used strategy for solving
ill-posed inverse problem or preventing overfitting in
machine learning [18], [19]. One of the most important appli-
cations of regularization is the sparse signal reconstruction,
where a regularization (sparsity) term is added into a loss
term. In the regularization method based on ℓ0, the following
single objective optimization problem should be considered:

min
x∈RN

‖y− Ax‖2 + λ‖x‖0 (3)

where λ > 0 is the regularization parameter. It balances
the loss function ‖y − Ax‖2 and the sparsity of x. In fact,
Problem (3) is a NP-hard problem due to the discreteness of
‖x‖0 [20]. To find the sparse optimal solution of Problem (3),
alternative regularization problems are often obtained by
replacing ‖x‖0 by ‖x‖1 (convex relaxation) and ‖x‖1/2 (non-
convex relaxation). Note that the relaxed regularization prob-
lems can be solved via continuous optimizers, such as the
SOFT algorithm [5] and the HALF algorithm [6].
In the typical iterative thresholding algorithms, three major

steps, i.e., gradient descent, setting of regularization parame-
ter and thresholding truncation, are often involved. Note that
the regularization parameter λ is often set to an empirical
value or determined by sorting the components of the solution
obtained in gradient descent step, where the estimation of
the sparsity level K should be provided in advance. In prac-
tice, cross validation is often adopted for the setting of the
regularization parameters. Among all iterative thresholding
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algorithms, the HALF algorithm has attracted an increasing
research attention due to its powerful ability in finding high-
precision sparse solutions [21]–[27]. The detailed implemen-
tation of the HALF algorithm is illustrated in Algorithm 1.

Algorithm 1 HalfThresholding(x0, K̄ , ls)

Require: x0: the initial solution; K̄ : the prefixed sparsity
level; ls: the maximal number of iterations

Ensure: optimal x∗

1: Let n = 0.
2: repeat

3: gradient descent and sort components:

x̃ = xn + AT (Axn − y)
|x̃i1 | ≥ · · · ≥ |x̃iK̄ | ≥ |x̃iK̄+1 | ≥ · · · |x̃iN |

where {i1, . . . , iN }is a permutation of {1, . . . ,N }.
4: setting of regularization parameter:

λn =
√
96

9
|x̃iK̄+1 |

3
2

5: thresholding truncation:

xn+1i =







ψ(x̃i) if |x̃i| >
3
√
54

4
λ

2
3
n ,

0 otherwise.

where

ψ(x̃i) =
2

3
x̃i

(

1+ cos

(

2π

3
−

2φ(x̃i)

3

))

with

φ(x̃i) = arccos

(

λn

8

(

|x̃i|
3

)− 3
2
)

n← n+ 1;
6: until n ≥ ls
7: Return x∗ = xn.

B. MULTI-OBJECTIVE SPARSE OPTIMIZATION

In this subsection, the bi-objective sparse optimization model
is first formulated and analyzed. Then, the strategies for
finding the knee region of the PF are reviewed.

1) BI-OBJECTIVE FORMULATION

To remove the constraint in Problem (1), the following
bi-objective sparse optimization problem is often considered:

minF(x) = {(f1(x), f2(x)} = {‖x‖0, ‖y− Ax‖2} (4)

where y,A are the same as in (1). Note that the first objective
function ‖x‖0 only takes discrete values, and the second
objective function ‖y− Ax‖2 is a quadratic function. Similar
to Problem (1), the above bi-objective optimization problem
is also NP-hard. Fig. 1 shows the distribution of all weakly
Pareto solutions of Problem (4) with noise (ǫ 6= 0) or without
noise (ǫ = 0). In the case of ǫ = 0, it is easy to prove that

FIGURE 1. The distribution of Pareto-optimal solutions in the bi-objective
sparse optimization problem.

the K -sparse solution is located at the intersection indicated
by ‘Q’ between the strict PF part with f2 > 0 and the linear
PF part with f2 = 0. The local area including the K -sparse
solution x∗ is so-called the knee region of the PF.
In real-world sparse optimization problems, the observa-

tion vector y is often corrupted with noise (ǫ 6= 0). That is,
y = ȳ + ǫ, where ȳ = Ax∗. As shown in Fig.1, the PF part
of Problem (4) on the right side of the K -sparse solution will
not be parallel to the sparsity axes. It can also be observed
that the distribution of the solutions along this part of PF is
approximately linear. Moreover, the K -sparse Pareto solution
is still located at the ‘knee’ region of the whole PF.

2) FINDING-KNEE STRATEGIES

Over the past several years, there have been some attempts on
the use of multiobjective approaches for sparse optimization
[10]–[12], [14]. All these methods are interested in finding
the knee region of the PF, which should include some solu-
tions that approximate the K -sparse solution of Problem (1)
very well. In the following, three representative finding-knee
strategies are reviewed.
• Angle-based splinemethod in StMOEA [11]: The angle-
based method was first proposed to detect the knee
solution in [28]. The idea of this method is depicted
in Fig.2. In StMOEA, the spline curve fitting based

FIGURE 2. The angle-based method for finding the knee solution in
StMOEA. The curvature of each point is measured by either θ1 (standard
version) or the maximum of θ1 − θ4(intensified version).
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on angles is applied to detect the knee solution in the
approximation of the whole PF, which is obtained by
evolving a population via NSGA-II framework and soft
thresholding. It should be pointed out that the angle-
based spline method is not very reliable if the solutions
in the knee region are not well approximated by the
population of StMOEA.

• Weighted sum method in MOEA/D-L1/2 [12]: In
MOEA/D-L1/2, the approximation of the whole PF
is obtained by optimizing a number of subproblems
defined by equally spaced sparsity levels. The knee solu-
tion is defined as the population member that minimizes
a weighted sum function ‖y − Ax‖22 + α‖x‖0, which
is shown in Fig.3. Therefore, the sparsity detection by
the weighted sum method is very sensitive to the setting
of α. Unlike SPLS, MOEA/D-L1/2 is applicable to both
the noiseless signals and the noisy signals.

• Horizonal thresholding line method in SPLS [14]:
According to our analysis on the distribution of the PF of
Problem (4), the solutions in the linear part of PF often
have very small values of f2. Therefore, SPLS divides the
population into two subsets via a horizonal thresholding
line with f2 = f min2 + β, where f min2 is the minimal f2
value on all solutions in the population and β is a very
small positive value. As shown in Fig.4, the solutions

FIGURE 3. The weighted sum method for finding the knee solution in
MOEA/D-L1/2.

FIGURE 4. The horizontal thresholding line method for finding the knee
solution in SPLS.

in the linear PF part locate inside [f min2 + β, f min2 ].
Therefore, the knee region should include the solutions
on the left side of the linear PF part. In the case of
noiseless signals, SPLS is able to detect the sparsity level
and reconstruct signals with high precision. However,
the performance of SPLS is very sensitive to the setting
of β when the noise is involved in signals.

III. MOEA/D-MGC

In this section, themotivations on the use of mixture Gaussian
clustering in MOEA/D for sparse optimization are first dis-
cussed. Then, the details of mixture Gaussian clustering are
presented. At the end of this section, the algorithmic frame-
work of our proposed method MOEA/D-MGC is illustrated.

A. MOTIVATIONS

As discussed in the previous section, the main tasks of sparse
multiobjective approaches are the approximation of thewhole
PF, or the local PF, or both of them. One of the key issues in
these methods lies in the detection of the knee region, which
should include the optimal solution with the true sparsity
level. In fact, each of the detection methods used in StMOEA,
SPLS, and MOEA/D has its disadvantage.
• As analyzed in Section 2, the sparse solution of Prob-
lem (1) should locate in the position on the left side of the
linear part of PF. Although this solution belongs to the
knee region, it may not have themaximal curvature value
cross the whole PF. Therefore, the angle-based method
used in StMOEA has no ability to detect the exact
position of the true sparsity level. On the other hand,
the detection of knee region may not be reliable when
the whole PF is not well approximated by StMOEA.

• In SPLS, the linear part of PF is detected by collecting
the population members with small values of f2. Such a
detection requires the setting of the parameter β, which
is used to divide the population into two subsets. When
the linear part is parallel to the horizonal axis, SPLS
can detect the knee region close to the true sparsity
level. However, when the signal is involved with noise,
the linear part of PF is not parallel to the horizonal axis
any more. Therefore, the classification of population via
a horizonal line defined by setting β is not reasonable.

• InMOEA/D-L1/2, the knee solution is set to the solution
in the population minimizing the weighted sum function
of the loss function and sparsity function. Like the ℓ0
regularization, an empirical setting of the coefficient for
the sparsity function should be provided. A large value
of this coefficient will cause the detection of knee region
with small value of sparsity. On the contrary, a small
value of this coefficient will result in the detection of
knee region with large value of sparsity. Like SPLS,
the performance of MOEA/D-L1/2 is also sensitive to
the setting of the coefficient for sparsity function in case
of noisy signals.

According to our above analysis, none of three methods
is reliable for the sparsity detection on both noiseless signal
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and noisy signals. Therefore, the propose of a parameterless
detection method is necessary and important.

B. GAUSSIAN MIXTURE CLUSTERING

The division of the population in SPLS into two subsets can
be regarded as a simple clustering method. When signals
involve no or very little noise, it can be observed that the
solutions in the subset below the horizonal threshold line
have a linear or approximately linear distribution. Gaussian
Mixture Clustering (GMC) is a popular technique for clus-
tering data in machine learning [29]. To capture the linear
distribution of the PF in the bi-objective sparse optimization,
Gaussian Mixture Models (GMM) seems more suitable than
the horizonal threshold line used in SPLS. Assume that the
approximation of the whole PF consists of P objective vectors
{v1, . . . , vP}. In GMM, each objective vector v follows the
Gaussian mixture distribution stated as follows:

p(v) =
D
∑

s=1
πsN (v|µs, 6s) (5)

where

• D is the number of clusters. It is set to 2 in this work.
• πs is the probability of the data point v belonging to the
s-th cluster;

• µs and 6s are the mean and the covariance matrix for
the s-th cluster, respectively.

The parameters πs, µs, 6s, s = 1, . . . ,D, are obtained by
maximizing the log of the likelihood function with the fol-
lowing form:

ln p(v|π,µ,6) =
P
∑

p=1
ln

{

D
∑

s=1
πsN (vp|µs, 6s)

}

(6)

To maximize the above likelihood function, the standard
method, i.e., expectation-maximization (EM), is used in our
work. The detailed framework of the EM algorithm is pro-
vided in Algorithm 2. In line 1, the parameters like means,
covariances, andmarginal probabilities, as well as the clusters
are initialized. In line 2, the responsibility of the p-th data
point for the s-th cluster is computed. In line 3, the parameters
are updated. In line 4, the EM algorithm terminates if the
value of the log maximum function has no any change or a
very tiny change. In line 5, D clusters are then determined
by computing the maximal responsibility of each data points.
Fig.5 shows the plots of two clusters of data points divided
by the Algorithm 2, which is able to capture a subset of data
points with linear distribution.

C. ALGORITHMIC FRAMEWORK OF MOEA/D-MGC

Over the past ten years, MOEA/D has been widely stud-
ied in the area of EMO research [30]–[38]. Unlike other
Pareto-based EMO algorithms, MOEA/D needs to optimize
a number of single objective subproblems or multiple small
multiobjective optimization problems. The weighted sum
method and the weighted Tchebycheff method are two most

Algorithm 2 GaussianMixtureClustering

Require: The approximation of whole PF, {v1, . . . , vP}; The
number of clusters, D

Ensure: The set of D clusters: C1, . . . ,CD
1: Initialize µs, 6s, πs, Cs = ∅, s = 1, . . . ,D, and evaluate

the initial value of the log likelihood;
2: Evaluate the responsibilities by:

γp,s =
πsN (vp|µs, 6s)
∑D

s=1 πsN (µs, 6s)

3: Re-estimate parameters:

Ps =
∑P

p=1
γp,s

µs =
1

Ps

∑P

p=1
γp,svp

6s =
1

Ps

∑P

p=1
γp,s(vp − µs)(vp − µs)T

πs =
Ps

P

4: Re-calculate the value of the log likelihood function.
If the stopping condition is met, then go to the next step;
otherwise, go to line 2;

5: for p = 1 to P do

6: determine j̄ = argmaxj∈{1,...,D}γp,j;
7: set Cj̄ = Cj̄ ∪ {p}.
8: end for

9: Return C1, . . . ,CD.

FIGURE 5. The plots of two clusters of data points obtained by Gaussian
Mixture Clustering. The mean and covariance matrix of the left cluster are
(90, 35) and 100[1 − 1; −1 2] while those of the right cluster are (165, 5)
and [300 0; 0 1].

commonly-used method for decomposition in MOEA/D.
However, these two methods are not suitable for Problem (4).
Instead, a number of subproblems with the same objective
functions and different constraints are considered in our pro-
posed algorithm MOEA/D-GMC. In detail, these subprob-
lems are defined as follows:

minimize‖Ax − b‖2, subject to ‖x‖0 = Si (7)
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FIGURE 6. An example of updating population in the chain-based
thresholding search. HalfThresholdingSearch is executed with a starting
solution x (1) and a random sparsity level Srand in [S2, S3]. The obtained
solution x̄ is used to update x (1) and x (2).

where the sparsity level Si, i = 1, . . . ,P, takes the value
in from a sparsity interval [Smin, Smax]. To approximate the
whole PF, the values of Si, i = 1, . . . ,P, are defined in the
following way:

Si = Smin +
⌊

(i− 1)×
Smax − Smin
P− 1

⌋

Correspondingly, a population of P solutions, denoted by
X = {x1, . . . , xP}, is maintained. Each of them is associated
with one subproblem. Note that a two-phase local search pro-
posed for multi-objective combinatorial optimization prob-
lems approximates the PF in a chain way, where subproblems
are defined via the weighted sum method [39]. In MOEA/D-
GMC, the above P subproblems are also optimized in a chain
way, where the sparsity level is increased from S1 to SP.
The algorithmic framework of MOEA/D-GMC is illus-

trated in Algorithm 3. It mainly consists of three steps:
the approximation of the whole PF via a chain-based
thresholding search step, the detection of knee solution

Algorithm 3 MOEA/D-GMC: A Multiobjective Approach
Based on Decomposition and Mixture Gaussian Clustering
Require: The population size, P; The number of iterations

in thresholding search, ls
Ensure: The approximation of the whole PF, X ; The sparsity

level of the knee solution, K̃
1: optimize P subproblems in a chain manner:

ChainThresholdingSearch(X ,P, ls)

2: detect the knee solution by mixture gaussian clustering:

K̃ ← KneeSparsityDetection(X )

3: optimize q local subproblems in a random:

RandomThresholdingSearch(X , K̃ , ls)

4: Return K̃ and X .

Algorithm 4 ChainThresholdingSearch(X ,P, ls)

1: Generate an initial solution x(0) with ‖x(0)‖0 = S1 ran-
domly;

2: for p = 1 to P do

3: Choose a random sparsity level by:

Srand = Sp +
⌊

rand ∗
Smax − Smin
P− 1

⌋

4: Apply the HALF thresholding method by:

x̄ ← HalfThresholding(x(p−1), Srand , ls)

5: Update the population by:

UpdatePopulation(x̄,X , p).

6: end for

via mixture gaussian clustering, and a random thresholding
search step.
• Chain-based Thresholding Search (seeAlgorithm 4): In
lines 3-5 of, P subproblems defined via P sparsity levels
S1, . . . , SP are optimized in a chain way. Note that the
current solution x(p−1) of the (p − 1)-th subproblem is
used as the starting solution for the optimization of its
subsequent subproblem to obtain x(p). Instead of using
the sparsity level Sp, a larger random value of sparsity
level Srand is set for the HALF thresholding iteration in
line 3.

Srand = Sp +
⌊

rand ∗
Smax − Smin
P− 1

⌋

where rand is a random number in [0, 1]. In line 4,
the random setting of sparsity levels for
HalfThresholdSearch could provide a better diversity
for the chain-based search. In line 5, the current solu-
tions of subproblems are updated by truncating x̄ at p
sparsity levels, i.e., S1, . . . , Sp. The implementation of
population updating is given inAlgorithm5. A graphical
example of population updating is shown in Fig. 6

• Gaussian Mixture Clustering (see Algorithm 6): In
the second step, the mixture gaussian clustering is
applied to cluster the approximation of PF regarding X
into two subsets in line 1 of Algorithm 6. The subset Cĩ
including the linear PF part and the knee solution x̃ are
then determined in line 2 and line 3 of Algorithm 6
respectively.

• Random Thresholding Search (seeAlgorithm 7): In this
step, the subproblemswith the sparsity levels on the right
side of the knee region are optimized in a random order.
Lines 4-6 are the same as lines 3-5 of Algorithm 4.

D. SOME REMARKS

1) THE CONNECTION BETWEEN MOEA/D-GMC VS. SPLS

BothMOEA/D-GMC and SPLS involve a chain-based search
procedure, where the sparsity levels for the HALF threshold-
ing search are changed with some probability. The random
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Algorithm 5 UpdatePopulation(x̄,X , p)
1: Sort the components of xr :

|x̄π (1)| ≥ |x̄π (2)| ≥ · · · ≥ |x̄π (N )|

2: Set p′ = p;
3: while p′ ≥ 1 do
4: Set x̄π (j) = 0, j = Sp′ + 1, . . . ,N ;
5: if f2(x̄) < f2(x(p

′)) then
6: Replace x(p

′) with x̄;
7: else

8: Break the while loop;
9: end if

10: Set p′← p′ − 1;
11: end while

Algorithm 6 KneeSparsityDetection(X )
1: Set V = {F(x)|x ∈ X} and apply gaussian mixture

clustering to divide V into two clusters:

{C1,C2} ← GaussianMixtureClustering(V , 2)

2: Determine the cluster including the linear PF part:

ĩ = argmaxi∈{1,2}

{

min
s∈{Ci}

‖x(s)‖0
}

3: Locate the knee solution:

x̃ = argminx∈{x(i)|j∈C
j̃
}‖x‖0

4: Return K̃ = ‖x̃‖0.

change of sparsity levels in SPLS lies in the preference-based
selection of population members, while in MOEA/D-GMC,
it is implemented by selecting a random sparsity level
between two neighboring sparsity levels. Note that the chain-
based search step in MOEA/D-MGC aims at finding the
approximation of the whole PF. In contrast, SPLS approxi-
mates the local PF close to the knee region in an online way.
MOEA/D-MGC also has the ability to approximate the local
PF near the knee region. Compared with the method in SPLS
for sparsity detection, the GMC method doesn’t contain any
sensitive parameter.

2) THE CONNECTION BETWEEN MOEA/D-GMC VS.

MOEA/D-L1/2

MOEA/D-MGC can be regarded as an improved version of
MOEA/D-L1/2, which also aims at finding the approximation
of the whole PF and the local PF in the knee region. Themajor
difference between them lies in the detection of sparsity.
Unlike the weighted sum method in MOEA/D-L1/2, there is
no extra parameter in the GMC method when detecting the
sparsity value. Moreover, MOEA/D-L1/2 needs to optimize
all possible subproblems with the sparsity levels in the knee
regionwhileMOEA/D-GMConly considers the optimization

Algorithm 7 RandomThresholdingSearch(X , K̃ , ls)

1: Set L = {Si|Si ≥ K̃ , i = 1, . . . ,P};
2: repeat

3: Pick one sparsity level Sq from L randomly;
4: Choose a random sparsity level by:

S ′rand = Sq +
⌊

rand ∗
Smax − Smin
P− 1

⌋

5: Perform the HALF method on x(q):

x̄ ← HalfThresholding(x(q), S ′rand , ls)

6: Update the population by:

UpdatePopulation(x̄,X1, q).

7: until The stopping condition is satisfied.

of some subproblems with equally-spaced sparsity levels in
the knee region.

3) THE TIME COMPLEXITY OF MOEA/D-GMC

Note that MOEA/D-GMC, MOEA/D-L1/2, and SPLS
involve the same number of HALF thresholding iterations.
Unlike the latter two algorithms, MOEA/D-GMC needs
to classify the PF or weakly PF via GMM with the time
complexity O(PDM3), where D and M are the number of
clusters and the dimension of data points, respectively. Both
MOEA/D-GMC and MOEA/D-L1/2 have the same time
complexity for updating population, which involves O(P)
comparisons in terms of the loss function f2.

IV. COMPUTATION EXPERIMENTS

In this section, the experimental settings are first presented.
Then, the experimental results are reported and discussed.

A. EXPERIMENTAL SETTINGS

In our experiments, two existing multiobjective methods,
i.e., SPLS and MOEA/D-L1/2, and the HALF method, are
considered in the comparison of MOEA/D-GMC on the
some artificial test instances for sparse signal reconstruction.
To generate a test instance, the values of A, y, x∗ are specified
in the following three steps:
• a true sparse signal x∗ with K nonzero components is
randomly generated.

• a sensing matrix A is randomly generated by a normal
distribution N (0, 2) and its columns are orthogonalized
and normalized;

• an observation vector is computed by y = Ax∗.
Table 1 summarizes the configurations of six test instance
sets used in our experiments. For each instance set, four noisy
levels 0, 0.01, 0.05, 0.1, are considered. P1-P3 are three small
test instance sets (N = 512) while P4-P6 with ten times of
the settings of P1-P3 are three large instance sets (N = 5120).
The total number of instance sets are 24. Smin and Smax are set
to 0.1× K and 2× K respectively.
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TABLE 1. The configurations of test instances in our experiments - N -
length of signal, M - no. of observations, K - true sparsity.

To make a quantitative measurement on the quality of the
solutions reconstructed by four algorithms, the mean square
error (MSE) values between the knee solutions and the true
sparse solution are calculated. Moreover, the relative sparsity
error (RSE) values is defined as:

RSE(K , K̄ ) =
|K̄ − K |

K

where K̄ is the sparsity level of knee solution, and K is the
true sparsity value. The smaller the value of RSE is, the better
the considered algorithms perform in the detection of sparsity
level.
The population sizes of MOEA/D-L1/2, SPLS, and

MOEA/D-GMC is set to 30 for P1-P3 and 60 for P4-P6.
The maximal number of iterations (i.e., the steps of gradient
descent) is set to 3000 for P1-P3 and 6000 for P4-P6. The
number of iterations ls used in HalfThresholding is set to
20 for P1-P6. In SPLS/HALF, the parameter for the horizon
line β is set to 0.01 for the noiseless instance sets and 0.1 for
the noisy instance sets. In MOEA/D-L1/2, the coefficient α
in the weighted summethod is set to 0.01 for all instance sets.
All algorithms are implemented in Matlab2018.

B. EXPERIMENTAL RESULTS

In Table 2, the median MSE values found by four consid-
ered sparse multiobjective algorithms (i.e., MOEA/D-GMC,
MOEA/D-L1/2, SPLS/HALF, and HALF) on six instance
sets with four different noise levels (i.e., σ = 0.01,
0.02, 0.05, 0.1) are provided. From this table, we have the
following observations:
• It is clear that both MOEA/D-GMC and SPLS find
smaller median MSE values than MOEA/D-L1/2 and
HALF. MOEA/D-GMC performs better than the other
three algorithms on 12 out of 24 instance sets while
SPLS/HALF performs best on 11 out of 24 instance sets.
However, MOEA/D-GMC performs worst on none of
the instance sets while SPLS/HALF is outperformed by
the other three algorithms on six instance sets. It can
also be observed that MOEA/D-L1/2 performs best on
none of the instance sets while HALF performs worst
on 18 out of 24 instance sets.

• When the noise level is relatively small (σ =
0.01, 0.02), three multiobjective sparse algorithms,
i.e., MOEA/D-GMC,MOEA/D-L1/2, and SPLS/HALF,
performs very similarly in terms of the median MSE
values on P1-P6. Note that all these three algorithms
perform better than the HALF algorithm on 10 out
of 12 instance sets. MOEA/D-GMC is slightly out-
performed by SPLS/HALF. When the noise level is
relatively large (σ = 0.05, 0.1), MOEA/D-GMC is
able to find the smallest median MSE values on 8 out
of 12 instance sets, while SPLS/HALF obtains the small-
est median MSE values on 4 out of 12 instance sets.

From the above observations, we may conclude that the over-
all performance of MOEA/D-GMC is better than those of the

TABLE 2. The median MSE values found by MOEA/D-GMC, MOEA/D-L1/2, SPLS/HALF, and HALF on six instance sets with four different noise levels.
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FIGURE 7. The boxplots of the MSE values found by MOEA/D-GMC(‘1’), MOEA/D-L1/2(‘2’), SPLS/HALF(‘3’), and HALF(‘4’) on P1 with four different
noise levels 0.01, 0.02, 0.05, 0.1 (from left to right).

FIGURE 8. The boxplots of the MSE values found by MOEA/D-GMC(‘1’), MOEA/D-L1/2(‘2’), SPLS/HALF(‘3’), and HALF(‘4’) on P2 with four different
noise levels 0.01, 0.02, 0.05, 0.1 (from left to right).

FIGURE 9. The boxplots of the MSE values found by MOEA/D-GMC(‘1’), MOEA/D-L1/2(‘2’), SPLS/HALF(‘3’), and HALF(‘4’) on P3 with four different
noise levels 0.01, 0.02, 0.05, 0.1 (from left to right).

FIGURE 10. The boxplots of the MSE values found by MOEA/D-GMC(‘1’), MOEA/D-L1/2(‘2’), SPLS/HALF(‘3’), and HALF(‘4’) on P4 with four different
noise levels 0.01, 0.02, 0.05, 0.1 (from left to right).

FIGURE 11. The boxplots of the MSE values found by MOEA/D-GMC(‘1’), MOEA/D-L1/2(‘2’), SPLS/HALF(‘3’), and HALF(‘4’) on P5 with four different
noise levels 0.01, 0.02, 0.05, 0.1 (from left to right).

other three algorithms in terms of the median MSE values at
different noise levels.
Figs. 7-12 show the box plots of the MSE values found

by four algorithms on 24 instance sets. From the median,
the upper and lower quartile values reported in these figures,

we canmake the following observations on the stability of the
four algorithms.
• On two short-length instance sets P1 and P2 with a large
observation ratio (M/N ), all four algorithms have the
similar performance on the stabilities in terms of the
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FIGURE 12. The boxplots of the MSE values found by MOEA/D-GMC(‘1’), MOEA/D-L1/2(‘2’), SPLS/HALF(‘3’), and HALF(‘4’) on P6 with four different
noise levels 0.01, 0.02, 0.05, 0.1 (from left to right).

FIGURE 13. The plots of final solutions in two clusters obtained by four strategies in MOEA/D-GMC, ANGLE, SPLS, and
MOEA/D-L1/2 on P1 with σ = 0.01.

upper and lower quartile values at different noise levels.
This is reasonable since both P1 and P2 are relatively
easy to solve. On the short-length instance set P3 with
a small observation ratio, all three multiobjective algo-
rithms performed much better than the HALF algorithm
in stability.

• On the long-length instance set P4 with the largest
observation ratio (3000/5120), both MOEA/D-GMC
and MOEA/D-L1/2 performed better in terms of stabil-
ity. On the long-length instance set P5 with the medium
observation ratio (2700/5120), all three multiobjec-
tive algorithms have better stabilities than the HALF
algorithm. On the long-length instance set P6 with the
smallest observation ratio (2400/5120), none of the
algorithms performs clearly better than others.

In summary, we may conclude that sparse multiobjective
methods have advantages against the HALF algorithm in

stability at different instance scales and noise level. The
overall stability of MOEA/D-GMC is better than those of the
other three algorithms.

Compared with the HALF algorithm, all three mul-
tiobjective methods have the ability to estimate the
underlying true sparsity level by finding the knee position in
the PF. Table 3 reported that the mean RSE values found by
four different strategies, i.e., the mixture gaussian clustering
MOEA/D-GMC, the weighted sum method in MOEA/
D-1/2, the thresholding method in SPLS/HALF, and the
spline-based method.1 From this table, we can have the
following observations:
• On all six instance sets P1-P6 with the smaller noise
levels, i.e., σ = 0.01, 0.02, both MOEA/D-GMC and

1To make a fair comparison, the spline-based method proposed in
StMOEA is used to locate the sparsity level of the knee solution on the PF
found by ChainThresholdingSearch in MOEA/D-GMC.
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TABLE 3. The sparsity error values found by four different strategies, i.e., the mixture gaussian clustering MOEA/D-GMC, the weighted sum method in
MOEA/D-1/2, the thresholding method in SPLS/HALF, and the spline-based method in StMOEA.

FIGURE 14. The plots of final solutions in two clusters obtained by four strategies in MOEA/D-GMC, ANGLE, SPLS, and
MOEA/D-L1/2 on P4 with σ = 0.01.

SPLS/HALF find smaller RSE values than MOEA/
D-L1/2 and SPLINE. In the case of σ = 0.01,
these two algorithms found the RSE values less than
0.06 while the RSE value obtained by SPLINE is

larger than 0.4. On the three long-length instance sets
P4-P6 with σ = 0.02, the RSE values obtained by
SPLS/HALF are clearly greater than those found by
MOEA/D-GMC.
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FIGURE 15. The plots of final solutions in two clusters obtained by four strategies in MOEA/D-GMC, ANGLE, SPLS, and
MOEA/D-L1/2 on P1 with σ = 0.1.

• When six instance sets P1-P6 are involved with large
noise levels σ = 0.05 and 0.1, both MOEA/D-GMC
and MOEA/D-L1/2 perform better than the other
two algorithms in terms of the mean RSE values. In case
of the largest noise level σ = 0.1, the RSE values found
by MOEA/D-GMC are smaller than those found by
MOEA/D-L1/2 on P1-P6. Also, the RSE values found
by SPLS/HALF and SPLINE are much greater than
those found by MOEA/D-GMC.

Figs.13-16 show the final solutions in two clusters obtained
by the finding-knee strategies in MOEA/D-GMC, ANGLE,
SPLS/HALF, and MOEA/D-L1/2 on one small instance set
P1 and one large instance set P4 at two noise levels, i.e., σ =
0.01, 0.1. In case of small noise level σ = 0.01, MOEA/D-
GMC, SPLS/HALF, andMOEA/D-L1/2 found the knee spar-
sity levels that are very close to 130 of P1 and 1300 of P4.
In contrast, the knee sparsity level found by ANGLE is far
from the true sparsity level on both instance sets. In case of
large noise level σ = 0.1, the knee sparsity levels found by
MOEA/D-GMC are 115 and 1176, which are still close to
130 and 1300 respectively. The other three algorithms failed
to find the knee sparsity levels close to the true sparsity levels
of P1 and P4 with σ = 0.1. Among them, both SPLS and

TABLE 4. The percentages (%) of the correct location of nonzero entries
by MOEA/D-GMC, MOEA/D-L1/2, and SPLS/HALF.

MOEA/D found the quite large knee sparsity levels while
ANGLE found the small sparsity levels.

Compared with the other three algorithms, MOEA/
D-GMC has a better ability to detect the sparsity levels of
knee solution, particularly when the noise level is relatively
large. Moreover, the poor performance of SPLINE for locat-
ing knee solutions is due to the coarse approximation of the
PF found by the multiobjective algorithms.

To show the performance of MOEA/D-GMC for locating
percentage of nonzero entries in sparse signals, we tested
three EMO algorithms on P1 and P4 with either σ = 0.01
or σ = 0.05. From the results shown in Table 4, it is clear
that MOEA/D-GMC performs better than the other two EMO
algorithms regarding the percentages of the correct location
of nonzeros entries.
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FIGURE 16. The plots of final solutions in two clusters obtained by four strategies in MOEA/D-GMC, ANGLE, SPLS, and
MOEA/D-L1/2 on P4 with σ = 0.1.

V. CONCLUSION

In this paper, we proposed an improved MOEA/D based
on mixture gaussian clustering, denoted by MOEA/D-GMC.
In our proposed algorithm, the subproblems defined via the
same objective function and various sparsity constraints are
first optimized in a chain manner. The knee region is then
detected by mixture gaussian clustering. Unlike other spar-
sity detection in MOEA/D-L1/2 and SPLS/HALF, no extra
parameter is involved in mixture gaussian clustering. Our
experimental results on six instance sets with four different
noise levels indicated that MOEA/D-GMC is clearly superior
to three other representative sparse algorithms in minimizing
themedianMSE values and the RSE values for sparsity detec-
tion. Moreover, MOEA/D-GMC is also suitable to detect the
knee positionwhen the sparse signal is noiseless. In our future
work, we will investigate the applications of MOEA/D-GMC
on some real world sparse optimization problems.
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