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ABSTRACT

This study presents a methodology for quantifying the tradeoffs between sampling costs and local

concentration estimation errors in an existing groundwater monitoring network. The method utilizes

historical data at a single snapshot in time to identify potential spatial redundancies within a

monitoring network. Spatially redundant points are defined to be monitoring locations that do not

appreciably increase local estimation errors if they are not sampled. The study combines nonlinear

spatial interpolation with the nondominated sorted genetic algorithm (NSGA) to identify the tradeoff

curve (or Pareto frontier) between sampling costs and local concentration estimation errors.

Guidelines are given for using theoretical relationships from the field of genetic and evolutionary

computation for population sizing and niching to ensure that the NSGA is competently designed to

navigate the problem’s decision space. Additionally, both a selection pressure analysis and a

niching-based elitist enhancement of the NSGA are presented, which were integral to the

algorithm’s efficiency in quantifying the Pareto frontier for costs and estimation errors. The elitist

NSGA identified 34 of 36 members of the Pareto optimal set attained from enumerating the

monitoring application’s decision space; this represents a substantial improvement over the

standard NSGA, which found at most 21 of 36 members.

Key words | groundwater monitoring, multiobjective optimization, genetic algorithm, nondominated

sorted genetic algorithm, elitism, guidance

INTRODUCTION
Evolution-based multiobjective optimization (EMO)

methods are pragmatic tools for solving problems with

large decision spaces and conflicting objectives. Schaffer

(1984) provided the seminal work within the EMO field in

which a vector evaluated genetic algorithm (VEGA) was

designed to search decision spaces for the optimal trade-

offs among a vector of objectives. Subsequent innovations

in EMO have resulted in a rapidly growing field with a

variety of solution methods that have been used success-

fully in a wide range of applications (for reviews see

Fonseca & Fleming 1995: Coello 1999; Van Veldhuizen

1999). These solution methods have garnered increased

attention over the past decade and have been applied in a

variety of contexts within the water resources field.

Cieniawski (1993) is one of the earliest studies in water

resources to utilize EMO methods. The study is an empiri-

cal comparison of the performance of VEGA relative to

niching-based techniques from Goldberg & Richardson

(1987) for identifying a monitoring network to detect

potential contaminant leaks from a hazardous waste land-

fill. Cieniawski (1993) and Cieniawski et al. (1995) clearly

espouse the efficiency of EMO methods in quantifying

tradeoffs between maximizing a groundwater-monitoring

network’s reliability in detecting contaminants and mini-

mizing the costs associated with remediating the contami-

nated aquifer at the time of first detection. Ritzel et al.

(1994) compared the performances of VEGA, a domina-

tion ranking-based genetic algorithm (Pareto GA), and
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mixed-integer chance constrained programming (MICCP)

in solving a multiobjective groundwater pollution contain-

ment application. The Pareto GA was found to be superior

to VEGA in its ability to evolve a better representation of

the Pareto frontier. Additionally, the Pareto GA nearly

replicated the Pareto frontier found using MICCP while

taking less computational effort to solve the problem.

Halhal et al. (1997) successfully incorporated Pareto

domination ranking into the messy genetic algorithm

(Goldberg et al. 1989) to quantify the tradeoffs in rehabili-

tating water distribution networks. Gupta et al. (1998)

combined a downhill simplex method with an evolution-

ary search strategy implementing Pareto ranking to seek

tradeoff solutions when calibrating hydrologic models.

These studies show how EMOmethods have been adapted

to solve a variety of water resource applications. This

study focuses on the nondominated sorted genetic

algorithm (NSGA) because Zitzler et al. (2000) showed

that the NSGA performed as well or better than a

representative sampling of EMO methods on a suite of test

problems with properties similar to our application.

One of the difficulties in applying EMO methods is

identifying parameter settings that ensure competent

navigation of the decision space and adequate coverage of

the Pareto frontier (Van Veldhuizen & Lamont 2000;

Cieniawski 1993). Most practitioners use trial-and-error

runs to identify the best parameter settings, but this

approach is quite time consuming, particularly for appli-

cations with computationally intensive fitness functions.

A major goal of this study is to develop guidelines for using

theoretical relationships from the genetic and evolution-

ary computation literature to ensure that the NSGA com-

petently navigates the problem’s decision space. These

guidelines are then applied to quantify the tradeoffs

implicit in designing sampling strategies for a long-term

groundwater-monitoring network. Additionally, a new

niching-based elitist enhancement of the NSGA is also

presented, which substantially improves coverage of the

Pareto frontier.

The test case developed in this study uses data drawn

from a 38-million-node flow-and-transport simulation

performed by Maxwell et al. (2000). The simulation pro-

vided realistic historical data for the migration of a hypo-

thetical perchloroethylene (PCE) plume in a highly

heterogeneous alluvial aquifer. The hydrogeology of the

test case is based on an actual site located at the Lawrence

Livermore National Laboratory in Livermore, California,

currently being managed under the United States’

Comprehensive Environmental Response, Compensation

and Liability Act (CERCLA) program. Data were provided

for a total of 50 hypothetical sampling locations within the

20-well multilevel monitoring network shown in Figure 1.

The data represent a snapshot in time, 10 years after an

underground storage tank has continuously released con-

tamination into the aquifer system. The monitoring wells

can sample from 1–3 locations along their vertical axis

and have a minimum spacing of 60 m between wells in the

horizontal plane.

The site is assumed to be undergoing long-term

monitoring, in which groundwater samples are used to

assess the effectiveness of current remediation strategies.

During this long-term monitoring phase of a remediation,

sampling and laboratory analysis can be a controlling

factor in the costs of remediating a site. Quarterly

sampling of the entire network in Figure 1 has a potential

cost of over $70,000 annually for PCE testing alone, which

could translate into millions of dollars if the site had a

typical life span of 20–30 years. The significance of these

costs has motivated the development of several

approaches for reducing the fiscal burden posed by long-

term monitoring by identifying redundant wells in ground-

water monitoring networks that can be omitted from

Figure 1 | The 50 potential sampling locations (designated by the ×’s above) within a

20 well multilevel monitoring network.
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future sampling periods (Cameron & Hunter 2000; Aziz

et al. 2000; Reed et al. 2000a; Rizzo et al. 2000). These

methods define sampling points to be redundant when

they minimally affect interpolation-based plume esti-

mates. They employ a variety of single-objective optimiz-

ation techniques ranging from a simple genetic algorithm

to trial-and-error heuristics. The objective of these

methods is to minimize sampling costs while incorporat-

ing performance objectives associated with plume esti-

mates as constraints. The management model presented in

this paper builds on these previous methods by introduc-

ing a sampling design methodology that explicitly and

efficiently identifies the tradeoffs encountered when

reducing monitoring costs.

METHODS

Problem description and formulation

To identify which wells are redundant, this study employs

a local concentration approach with the intention of

attaining the best-interpolated picture of the PCE plume

for the least cost. Equation (1) gives the multiobjective

problem formulation for quantifying the tradeoff between

sampling costs and maintenance of a high quality

interpolated picture of the plume:

F(xk) is a vector valued objective function whose com-

ponents [f1(xk), f2(xk)] represent the cost and squared

relative estimation error (SREE), respectively, for the kth

monitoring scheme xk taken from the collection of all

possible sampling designs V. Equation (2) defines the

binary decision variables representing the kth monitoring

scheme:

If the ith well is sampled it is assumed that all available

locations along the vertical axis of that well will be

sampled at a cost of CS(i). CS(i) ranged from $365–1095

for 1–3 samples analyzed for PCE solely (Rast 1997).

Sampling all available levels within each well reduces the

size of V from 250 to 220 where 50 and 20 represent the

total number of sampling locations and monitoring wells

(nwell), respectively. Reducing the size of V enabled the

entire decision space of this application to be enumerated.

Enumeration was employed to identify the true Pareto

frontier so that the performance of the NSGA under

different parameter settings could be rigorously tested.

The SREE provides a measure of how the interpolated

picture of the plume using data only from wells included in

the κth sampling plan compares to the result attained

using data from all available sampling locations. The

measure is computed by summing the squared deviations

between the PCE estimates using data from all available

sampling locations, c*all(uj), and the estimates based on the

kth sampling plan ck
est(uj) at each location uj in the inter-

polation domain. Each uj specifies the coordinates for the

jth grid point in the interpolation domain. The interpola-

tion domain consisted of a total of 3300 grid points (nest in

Equation (1)). The PCE estimates used in the calculation

of the SREE for each of the sampling designs were

attained using the nonlinear spatial interpolation method

described below.

Nonlinear spatial interpolation

The interpolation method used in this study is a variant of

the scheme used by Barry & Sposito (1990) in their analy-

sis of tracer plumes at the Borden site located in Ontario,

Canada. The Barry & Sposito (1990) interpolation method

was selected because it requires minimal modeling

assumptions and it has been successfully applied to three-

dimensional historical data. This study simplified Barry

and Sposito’s interpolation scheme to use 3 of the original

7 fitting parameters, resulting in a nonlinear least squares

version of inverse distance weighting. Neglecting 4 of the

parameters did not appreciably affect the cross-validation

residuals and improved the algorithm’s stability. Equation

(3) shows the interpolation function used in this study,
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which estimates PCE concentration ck
est(uj) at each

unknown location uj by the weighted sum of the nsamp(k)

total samples c(uj) taken in the kth sampling scheme:

The weights for each of the samples in the kth sam-

pling plan are calculated as a function of the distance

between the jth sample and the jth grid point in the

interpolation domain as shown in Equations (4) and (5):

The wt factor is the sum of the nsamp(k) weights

calculated using Equation (4) and serves to scale the

system such that the weights sum to one. The parameters

a1, a2 and a3 are fitting parameters that were used to

minimize the cross-validation residuals for each of the

sampling designs considered in this study. See Barry &

Sposito (1990) for details on the cross-validation estima-

tion method used in this study to fit the a parameters

shown in Equation (4) to the data provided by each

sampling plan.

The basics of the NSGA

The NSGA utilizes the Darwinian process of natural selec-

tion to effectively search for solutions that are optimal

across a vector of objectives. The algorithm is very similar

in form to the simple genetic algorithm (sGA), in that it

exploits the operators of selection, crossover and mutation

when building a set of optimal solutions. The performance

of both algorithms can be described using the building

block (BB) theory presented by Holland (1975) and

Goldberg (1989). For both the NSGA and sGA, highly fit

designs have a higher probability of being selected to mate

and pass their traits (or BBs) to succeeding generations.

Stochastic remainder selection was used in this study as

recommended in Srinivas & Deb (1995). The operators of

crossover and mutation are identical for the two algor-

ithms. Crossover (occurring with probability pc) exerts an

innovative force on the system by allowing favorable

traits from parent designs to be juxtaposed in offspring

that possess higher relative fitness values (Thierens &

Goldberg 1993). Mutation locally refines solutions by

randomly changing bit values (with a probability of pm)

from 0 to 1 or vice versa within a design’s genotype. The

difference between the NSGA and the sGA lies in how

fitness is assigned. Unlike the sGA, the NSGA evaluates

sampling designs in terms of a vector of objectives. A

sampling design cannot be assessed in terms of its per-

formance in any single objective because it may perform

poorly with respect to the remaining objectives. The

NSGA employs the concepts of Pareto dominance and

niching to assign fitness values to sampling designs in two

steps described below (Srinivas & Deb 1995).

The first step in fitness assignment employs the Pareto

dominance concept defined in Equation (6), using

notation adapted from Van Veldhuizen & Lamont (2000):

F(x)aF(x′), iff (∀b, fb(x)≤fb(x′)`∃b∈(1,nobj): fb(x)< fb(x′))
(6)

Equation (6) states that a design x dominates another

design x′ (represented by F(x)aF(x′)) if and only if it

performs as well as x′ in all nobj objectives and better in at

least one (assuming minimization of all objectives). The

NSGA identifies nondominated individual designs within

the current population and assigns an arbitrary dummy

fitness value to each of them. These individuals are all

initially assigned the same fitness value to ensure that they

have an equal likelihood of being selected to pass their

traits unto latter generations; these designs compose the

first nondominated front.

The second step in fitness assignments for the individ-

uals in the first front utilizes the concept of niching (for

more details see Goldberg & Richardson 1987; Deb &

Goldberg 1989; Mahfoud 1995; Horn 1997) to ensure that

the NSGA finds a diverse set of solutions defining the

entire extent of the tradeoff (or Pareto front) among the

objectives. Extending the ‘natural selection’ analogy to

include the phenomena of niching and speciation helps to

satisfy this goal. Horn (1997) defines niching as a ‘form
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of cooperation’ where there is ‘. . . the localization of

competition around finite, limited resources (niches),

resulting in the lack of competition between such areas,

and causing the formation of species for each niche’.

Niching allows the NSGA to form stable subpopulations

of sampling designs (species), each of which are well

adapted to search for nondominated solutions specific to

subspaces (niches) in V. The NSGA elicits niche forma-

tion by treating dummy fitness as a limited resource, which

is shared by sampling designs using the relationship given

in Equation (7) (Goldberg & Richardson 1987; Srinivas &

Deb 1995):

The value of the fitness sharing function Sh[d(k,k′)]
ranges between 0 and 1 for two sampling designs k and k′
depending on the ratio of their distance from one another

d(k,k′) and the niche size defined by the niche radius

sshare. The sharing function measures the similarity

between designs ranging from completely dissimilar

(Sh = 0) to being identical (Sh = 1). The distance term

d(k,k′) can measure similarity in several ways that are

discussed in the next section.

The third step in assigning the fitness values to the

nondominated set identified in step 1 consists of dividing

each individual’s dummy fitness by the sum of all of its

sharing function values (termed the niche count) as shown

in Equation (8):

When these three steps are completed, the individuals

in the first front are removed from consideration and the

remaining population members undergo nondomination

ranking and sharing to yield the second nondominated

front. These individuals are assigned the minimum shared

fitness value of the first front decremented by a value �Df.

This process continues until the entire population is

assigned to the nfth front and given a shared dummy

fitness value. After shared dummy fitness values have been

assigned, the NSGA is operated the same as the sGA,

constructing the Pareto front using the traditional oper-

ators of selection, crossover and mutation. See Goldberg

(1989) for more background on these operators.

Competent design of the NSGA for search and

optimization

Construction of the Pareto frontier requires that the

NSGA be competently designed to navigate a problem’s

decision space. Competent design of the NSGA entails

careful consideration of the factors controlling the algor-

ithm’s performance. Zitzler et al. (2000) concluded that

population sizing and elitism are the most influential

factors influencing the performance of EMO methods.

Elitist operators provide a means of ensuring that the best

individuals are identified and allowed to pass their traits

to latter generations. Unlike sGA applications, EMO

methods cannot simply pass a single individual with

the current best objective function value into the next

generation. Multiobjective optimization requires that

some fraction of the solutions along the current non-

dominated front be passed on to the next generation. The

next four subsections of this paper describe an NSGA

design methodology that integrates several relationships

from the genetic and evolutionary literature to identify

effective population sizes and determine the niching

parameters. This methodology is meant to serve as a guide

for applying the NSGA to other applications, enabling

efficient identification of a competent algorithm.

Additionally, a new elitist strategy is presented with the

aim of using niching to guide the selection of elite popu-

lation members and maximize online performance (the

term ‘online performance’ means that only the non-

dominated individuals within a single generation are con-

sidered when assessing the NSGA’s performance). Online

performance was used in this study to avoid the need for

external bookkeeping of the nondominated individuals

found across all generations, which is required by offline

performance analysis (Zitzler et al. 2000). Performance

is finally discussed in the context of selection pressure

in the fourth and final section of the NSGA design

methodology.
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Population sizing: ensuring genetic diversity

The first step in designing a competent NSGA is to per-

form initial problem analysis to determine a range of

population sizes. The goal of this initial step is to provide

a means of selecting the best population size for our

application with respect to a single random seed. Com-

putationally intensive objective functions that occur in

many water resources applications require that effective

parameter settings for the NSGA be identified using a

minimum number of runs, because a single run can take

days or even weeks. The range of population sizes con-

sidered in this study were attained using relationships

from Mahfoud (1995), who derived population-sizing re-

lationships for genetic algorithms employing niching to

solve multimodal problems. The relationships used in this

study were designed for applications with multiple optima

that have identical fitness values. Recall that the NSGA

employs niching using members of the same non-

dominated set with identical dummy fitness values, which

makes the population-sizing relationships in Mahfoud

(1995) relevant to NSGA applications. Equations (6)–(8)

are theoretical equations derived from the schema

theorem developed by Holland (1975) to model GA’s

performance as a function of their primary operators (for

more details see Holland 1975; Goldberg 1989; Mahfoud

1995).

Equation (9) gives population size estimates assuming

that crossover will not disrupt the traits (or BBs) required

to assemble optimal solutions:

The relationship was derived as the minimum popula-

tion size N required to maintain q niches for g generations

with reliability g for the special case when the niches have

identical fitness values. Disruption adversely affects the

NSGA’s performance when crossover between a pair of

parent strings destroys traits that are essential to the

evolution of nondominated individuals in subsequent

generations (for more details see Mahfoud 1995; Zitzler

et al. 2000; Van Veldhuizen & Lamont 2000).

Equation (10) accounts for the potential disruptive

effects of crossover in population size estimates (Mahfoud

1995):

Equation (10) represents the minimum population

size N required to maintain q niches for g generations with

reliability g given a probability of crossover pc and prob-

ability of disruption pd. The probability of disruption pd
can be conservatively estimated using Equation (11),

which assumes the maximally disruptive operator of uni-

form crossover. In uniform crossover, the binary values at

each bit position in two individual strings is swapped with

probability pc:

For the binary-coded NSGA, the decision variables

(xk in Equation (1)) representing a potential design

(termed its phenotype) are converted to binary represen-

tations and concatenated into a string of binary variables

(termed the design’s genotype) of length l. The traits or

(BBs) are actually small subsets of binary digits from each

design’s genotype. Equation (11) computes the probability

that the BBs will be disrupted as a function of their order

O(m), which is the smallest number of fixed value digits in

a design’s genotype that are relevant to the final solutions

of the problem.

As was the case in the sGA design methodology

presented by Reed et al. (2000b), the actual size of BBs

in an engineering application, O(m), are unknown,

requiring the practitioner to employ conservative

assumptions and problem-specific information to calcu-

late a potential range of population sizes from

Equations (9) and (10). The pd was set by assuming that

the BB order O(m) may range from 1 to 5 because higher-

order BBs will be disrupted by the operators of selection,

crossover and mutation (Goldberg 1989), following a

similar approach presented by Reed et al. (2000b) for

designing sGAs.
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The remaining parameters in Equations (9) and (10)

were set as follows. The population size calculations

assumed a reliability of 85% (g = 0.85). The number of

generations until convergence g can be estimated to fall

within the range [2l, llnl] where l is the binary string

length of each design (Thierens & Goldberg 1994;

Thierens et al. 1998). Mahfoud (1995) states that

Equations (9) and (10) are not sensitive to the parameter

value g and recommends that the user set the value of this

parameter to be greater than or equal to the number of

generations they expect to run the algorithm. For these

reasons, g was set equal to 2l (40 generations) for this

study. A majority of EMO applications use a value for pc
falling within the range [0.6, 0.9] (Fonseca & Fleming

1995; Horn 1997; Coello 1999; Van Veldhuizen 1999). In

this application, pc was set equal to 0.6 to reduce the

potential for disruption and the resulting population size

estimates.

The number of niches q was set using information

specific to the tradeoff being sought between cost and

SREE in this application. The discussion of the spatial

interpolation stated that the number of PCE samples c(uj)

ranged between a minimum value of 4 and a maximum of

50, yielding a tradeoff with a maximum of 46 discreet cost

levels. The goal of this application is to find the minimum

SREE for each of these discreet cost levels. The number of

niches was set equal to 40, which represents a goal of

attaining over 85% of the points in the Pareto frontier.

Using these parameters in Equations (9)–(11) yielded

six population size estimates, ranging from a minimum

value of 370 to a maximum of 870. The lower bound

population size estimate of 370 assumes that crossover

will not disrupt BBs. The remaining five population size

estimates account for disruption of BBs with orders, O(m),

ranging from 1 to 5. Given this range of population sizes,

the computational complexity of using the NSGA to solve

this problem was estimated by multiplying N by the

number of generations g to attain the total number of

function evaluations. Function evaluations took an

average time of 0.04 s on a Dell XPS T800r running

Windows NT, yielding estimated total run times between

10 and 25 min.

Finally, it should be noted that both Equations (9) and

(10) assume that mutation is minimally disruptive. This

assumption was accounted for by setting pm to be equal to

1/N (DeJong 1975), which limits the number of mutations

to l and reduces the operator’s influence as N increases. In

this application, the optimal population was determined

by running the NSGA for each of the six estimates and

choosing the run that best defined the full extent of the

tradeoff between cost and SREE.

Sharing: sizing of the niche

An important component of ensuring that the NSGA

converges to the Pareto frontier is properly setting the size

of niches represented by sshare in Equation (7). Deb &

Goldberg (1989) provide guidance for setting this par-

ameter in both phenotypic and genotypic space. Recall

that a sampling design’s phenotype is the floating-point

representation of each of its decision variables. Addition-

ally, the design’s genotype is its concatenated binary rep-

resentation (or its chromosome). Equation (7) requires

that the distance d(k,k′) between two individuals be com-

pared to sshare in order to compute the sharing function

values used to assign fitness. If the individuals are within

sshare distance of each other, their fitness is penalized to

encourage future generations to spread along the entire

Pareto frontier.

Two different distance metrics are used to compare

the relative magnitudes of d(k,k′) and sshare. In genotypic

space, d(k,k′) is equal to the Hamming distance between

the chromosomes representing individuals k and k′. The
Hamming distance is simply the total number of positions

in the binary strings that have different values. In pheno-

typic space, the Euclidean distance metric shown in

Equation (12) is used to calculate the distance between

individuals:

For this application, the total number of decision

variables (npar) is equal to the number of monitoring

wells, nwell in Equation (1).

To determine the appropriate size of sshare for a par-

ticular problem, three approaches can be taken. These

approaches are described below in order of increasing
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domain-specific knowledge required. Deb & Goldberg

(1989) derived Equation (13) as a guide for practitioners

for sizing niches in genotypic space by deriving sshare to

represent ‘. . . the maximum bits of difference allowed

between the strings to make q-subspaces [or niches] in the

solution space’:

Equation (13) assumes that the niches are uniformly

spaced, with each niche apportioned 1/q of the decision

space (Deb & Goldberg 1989). The equation represents a

binomial distribution with a probability of 0.5, which can

be solved for sshare using the cumulative binomial distri-

bution tables when string lengths l are less than or equal to

25 bits (indexed by b above). In this study, the chromo-

somes have a length of l = 20 and the number of niches

q = 40, which resulted in a genotypic sshare equal to 5. For

longer string lengths, the binomial distribution can be

approximated with the normal distribution. In this case,

Equation (14) from Deb & Goldberg (1989) can be used,

where the ‘. . . z* corresponding to the fraction 1/q may be

found from a cumulative normal distribution chart’:

The second approach for selecting sshare is for

phenotypic space. Deb & Goldberg (1989) derive sshare in

phenotypic space where ‘. . . each niche is enclosed in a

p-dimensional hypersphere of radius sshare such that

each sphere encloses 1/q of the volume of the space’.

Equation (15) is the resulting expression for the pheno-

typic niche radius, which was found to have a value of

1.859 in this study:

Phenotypic sharing has been shown to outperform

genotypic sharing in most previous applications (Fonseca

& Fleming 1995; Mahfoud 1995; Horn 1997; Coello 1999;

Van Veldhuizen 1999). A detailed explanation of the

performance difference between the two sharing methods

is given in Deb & Goldberg (1989), who found that ‘. . . a

lower bound on the Hamming difference between the

strings’ causes the inability of genotypic sharing to

form stable subpopulations in applications where non-

dominated individuals are not assigned identical fitness

values.

Finally, an additional form of phenotypic sharing has

been employed successfully in other applications (Fonseca

& Fleming 1995; Horn 1997) where the distance metric

between individuals is calculated in objective space. Horn

(1997) provides guidance to practitioners for sizing niches

in objective space using a geometric approach similar to

the Deb & Goldberg (1989) phenotypic niche sizing

method given in Equation (15). The method requires that

the maximum and minimum values of the objectives be

known a priori. This approach was not used in this study

because of the discrete nature of the sampling costs.

Moreover, the maximum value of the SREE could not be

calculated a priori.

The niche sizing relationships given by Deb &

Goldberg (1989) and described above have been shown to

be robust for a variety of problems (Goldberg et al. 1992;

Horn 1997) and will be analyzed in greater detail in the

results section of this study.

Elitism: seeking the king of the niche

Zitzler et al. (2000) showed that elitism is one of the most

important factors affecting the performance of EMO

methods. A variety of elitist strategies have been used

previously, usually consisting of maintenance of a popula-

tion of nondominated solutions outside of the normal

operators of the given EMO method being employed (for

more details see Ishibuchi & Murata 1996; Bäck 1996;

Parks & Miller 1998; Zitzler & Thiele 1999). Zitzler et al.

(2000) state the primary question practitioners must

answer when using elitist strategies as: ‘When and how are

which members of the elite set re-inserted into the popu-

lation?’ The elitist strategy employed in this study was

designed to use previously derived niching relationships to

answer this question while minimizing any external book-

keeping and maximizing the online performance of the
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NSGA. In an elitist sGA, the best member in the popula-

tion at generation t, if not present in the new population

resulting from selection, crossover and mutation at

generation (t + 1), randomly replaces one member of the

population. For the NSGA, sharing provides niches that

represent stable subpopulations that search for non-

dominated solutions in subspaces of V. Conceptually, the

elitist strategy proposed in this study is very similar to the

sGA, in that the current best individual in a given niche at

generation t, if not present in generation (t + 1), is inserted

into that subpopulation, ensuring that its traits are

available for subsequent search for the Pareto front. This

strategy was implemented by defining selite, the elite

radius, which is a parameter that allows the user to easily

manipulate the amount of elitism. The elite radius defines

the distance (either genotypic or phenotypic) beyond

which members of the current nondominated set are con-

sidered independent from one another. Only independent

members of the nondominated set are considered for

insertion in the next generation. For this application,

selite≈sshare, which means that only one representative of

each niche in the current nondominated set is considered

for elitist reproduction into the next generation. The

elitist solutions were selected in the four steps shown

below from the nondominated set (or first front) at each

generation t.

Step 1: Randomly select an objective fb for b equal 1 to nobj
Step 2: Flip a coin to determine whether to start with

either the member in the current nondominated set

with the maximum value of fb or the member with

the minimum value.

Step 3: Identify the next point in the nondominated set

that satisfies the following conditions:

(1) is a distance greater than selite from the current

solution,

(2) is the closest member of the nondominated set

to the current position.

If none exist, then elitist reproduction is ceased or

not performed at all.

Step 4: Repeat Step 3 until elitist reproduction is ceased.

This approach identifies a niched elitist set by systemati-

cally stepping through the current nondominated front

from one end to the other. After the elitist set of solutions

is selected using the above steps, those members who are

not represented in generation (t + 1) randomly replace

individuals within that population. Setting the elite radius

equal to the niche radius worked well for this application,

but the elite radius parameter allows the practitioner to

directly manipulate the elitist selection pressure for other

applications where this rule-of-thumb may not work as

effectively.

The importance of elitism in the performance of the

NSGA Zitzler et al. (2000) relates directly to the concepts

of genetic drift and selection pressure. Genetic drift occurs

when promising solutions in the population do not experi-

ence sufficient selection pressure and converge to non-

optimal values (drift stall) under the influence of crossover

and mutation. Elitism increases selection pressure by

ensuring that the traits of nondominated individuals

remain in the population for use in later generations.

Selection pressure: avoiding drift stall

The importance of elitism in the performance of the

NSGA motivated a further analysis of the role that

selection pressure has on the algorithm’s performance.

Stochastic remainder selection selects a particular indi-

vidual using the ratio of the individual’s fitness and the

average fitness of the current population in generation t.

Recall from the introduction to the NSGA above that

selection is based on dummy fitness values, which are

decremented by a constant value �Df for each of the nf
successive fronts within the population. For example,

analysis of the initial random population of 760 individ-

uals used in the elitist runs discussed in the results section

shows that the expected number of copies of members in

the nondominated set in the next generation had an aver-

age value of 1.7. The expected number of members from

the 10th and 20th fronts in the next generation was 1.45

and 1.25, respectively. Although members of dominated

fronts are expected to receive fewer copies than the non-

dominated front, the relative difference between 1.7 and

1.25 is small, which gives rise to an increased potential for

drift stall to occur.

This increased potential for drift stall motivated an

analysis of the effect of scaling the fitness of successive
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fronts on the NSGA’s performance. The dummy fitness

values for successive fronts are scaled using a scaling

coefficient Sc whose value is less than one, such that the

minimum fitness in each front is guaranteed to be at least

(1 − Sc)% higher than the maximum fitness in the front

that immediately succeeds it. The scaling-based fitness

assignments replace the constant decrement �Df assign-

ments used previously in this work. Sc was set to be equal

to 0.9, which ensures that the minimum fitness for front

(nf − 1) is at least 10% greater than the maximum fitness in

the nfth front. For the random population of 760 designs

discussed above, the expected numbers of individuals in

the next generation from the 1st, 10th and 20th fronts will

then be 6.2, 2.27 and 0.78, respectively. Note that scaling

the system in this manner exponentially decreases the

fitness of the members of the fronts succeeding the non-

dominated set. Setting Sc requires striking a balance

between maintaining a diverse population and ensuring

that selection pressure is sufficient to prevent drift stall.

Further discussion on this issue is given in the results

section below.

Defining a measure of relative performance

To compare performance of the NSGA under different

parameter settings, a measure of the algorithm’s perform-

ance must be defined. In this paper, the performance of

the NSGA as a function of its parameters was measured

relative to the Pareto frontier for cost and SREE. The

frontier is shown in Figure 2, which shows the 36 sampling

designs that compose the Pareto optimal set identified

using enumeration of the more than 1 million potential

designs in V. The performance of the NSGA was quanti-

fied using a relative scoring metric (RSM) that measures

the deviation of the nondominated set in generation t from

the true front using Equation (16):

Although the maximum SREE value (SREEmax)

cannot be calculated a priori, its maximum value was

recorded while performing the enumeration of the

decision space. Equation (16) requires the maximum value

because the SREE values have to be scaled such that they

fall within the interval [0,1]. Equation (16) defines the

deviation between the hth member of the enumerated

Pareto optimal set and the th member of the current

nondominated set in generation t to be equal to the

absolute difference of their SREE values (SREEtrue(xh) −

SREE( (t)) shown above) if the designs have the same

cost. If a cost level present in the Pareto optimal set is not

represented in the nondominated set at generation t then

Equation (16) assumes a maximum deviation of one. The

RSM was used to monitor the performance of the NSGA

in order to evaluate the effectiveness of the guidelines

presented in this section for a realistic application.

RESULTS AND DISCUSSION

The guidelines presented in the previous section identify a

range of potential population sizes and compute the nich-

ing parameters used by the NSGA to search a diverse set of

stable subpopulations for the Pareto frontier. Additionally,

the niching parameters are integral to properly setting the

Figure 2 | Actual tradeoff between the squared relative estimation error and cost where

each objective has been scaled to fall within the interval [0, 1]. The maximum

and minimum SREE values found in Ω were 0 and 13,000,000, respectively.

The maximum and minimum cost values found in Ω were $18,420 and $1473,

respectively.
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elitist selection pressure. The subsequent sections analyze

the effectiveness of these guidelines by presenting the

results of over 400 trial runs elucidating the performances

of both the NSGA and the elitist NSGA as a function of

their parameters for the long-term monitoring design

application. The results are presented for a single random

number seed because the methodology presented in this

study is meant to identify effective parameter settings for a

single seed. Such an approach is intended for practitioners

solving computationally intensive applications, who

cannot perform numerous runs with multiple random

number seeds.

Performance of the NSGA and the elitist NSGA

Figure 3 shows the performances of both the NSGA and

the elitist NSGA for the range of population sizes attained

from Equations (9)–(11) when implementing either geno-

typic or phenotypic sharing. It is readily apparent from the

figure that elitism greatly improves the online perform-

ance of the NSGA, regardless of the population size used.

Figure 3 was used to select the optimal population size for

each of the four forms of the NSGA being considered. The

performance trends for the NSGA and the elitist NSGA

are nearly identical for both sharing methods. The

NSGA’s population sizes were set equal to 830 and 660 for

genotypic and phenotypic sharing, respectively. These

population sizes are consistent with previous studies,

which have found that phenotypic sharing outperforms

genotypic sharing. Deb & Goldberg (1989) argue that the

reduced performance of genotypic sharing is caused by

increased sensitivity of Hamming distance calculations to

the assumption that each niche is uniformly apportioned

1/q of the decision space, as required by Equation (13).

Mahfoud (1995) states that, in addition to the sensitivity of

genotypic sharing to the uniformity assumption, genetic

drift and population sizing are influential in the perform-

ance differences between the two sharing schemes. Larger

population sizes are required to ensure that important

subpopulations (or niches) receive sufficient selection

pressure and are not lost to the ‘noisy discrimination of

genotypic sharing’ (Mahfoud 1995).

Figures 3 and 4 confirm that, for the NSGA to have

comparable performance under both sharing schemes, the

algorithm requires larger population sizes for genotypic

sharing. Figure 4 shows that the NSGA has relatively poor

online performance for discerning the true tradeoffs

between costs and SREE for the monitoring application

presented in this study, regardless of the sharing scheme

invoked. It is important to note that genotypic sharing

requires the least amount of problem-specific information

of those sharing methods discussed in this study, but the

inherent tradeoff of the NSGA using this form of sharing

lies in the increased computational demands required due

to the increased population size necessary for sharing in

genotypic space. This tradeoff is not present for the elitist

NSGA where Figure 3 clearly shows that the optimal

population size is clearly defined by the peak when N is

equal to 760, regardless of the sharing method used.

Figure 5 shows that the niching-based elitist strategy

presented in this study greatly improved the performance

of the NSGA. The algorithm found solutions along the full

extent of the Pareto front and was able to identify 17 of 36

members of the Pareto optimal set exactly, regardless of

the sharing method used. Figures 3 and 5 show that elitism

served to both improve the online performance of the

algorithm and help to overcome the ‘noisy discrimination

of genotypic sharing’ relative to sharing in phenotypic

space.

Figure 6 shows the performance of the elitist NSGA

for the full range of possible values that both selite and

sshare can be assigned under both sharing schemes (when

Figure 3 | Selection of the proper population size for both the NSGA and the elitist

NSGA using the best RSM value attained after 40 generations.
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N = 760). Several observations are apparent from analysis

of these plots. First, note that decreasing selite from its

maximum to its minimum value shows the NSGA’s behav-

iour between the extremes of having no elitism (at the

maximum value) to the case when all nondominated

individuals are selected for elitist reproduction (at the

minimum value). Both plots show that the NSGA’s

performance improves with increasing elitist selection

pressure. Figure 6 also confirms the noisy nature of shar-

ing in genotypic versus phenotypic space. Under genotypic

sharing, Figure 6(a) shows several small peaks in perform-

ance for relatively sporadic combinations of niching and

elitist parameter settings. In contrast, Figure 6(b) shows

that sharing in phenotypic space yields a smoother surface

with a well-defined peak relative to the surface in

Figure 6(a). Both plots serve to verify the guiding relation-

ships discussed in the methods sections for population

sizing, niching and elitist selection. The arrows in the

figure designate the algorithm’s performance when both

selite and sshare are set using Equations (12) and (14) taken

from Deb & Goldberg (1989).

Figures 4 and 5 show that both the NSGA and the

elitist NSGA solutions have gaps in the extreme regions of

the Pareto frontier. These gaps occur because the sub-

populations or niches representing these portions of the

frontier were not able to survive for successive generations

and are symptomatic of genetic drift stall. Genetic drift

also appears to be prevalent in Figure 4, which shows that

the NSGA (in the absence of elitism) is unable to identify

Figure 4 | NSGA’s performance relative to the true Pareto front using both (a) genotypic

and (b) phenotypic sharing. The circles represent the best nondominated

front attained in 40 generations.

Figure 5 | Elitist NSGA’s performance relative to the true Pareto front using both

(a) genotypic and (b) phenotypic sharing. The circles represent the best

nondominated front attained in 40 generations.
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more than 3 members of the Pareto optimal set, regardless

of the sharing method invoked. Figure 7 shows the per-

formance of all forms of the NSGA as a function of time.

The figure shows that elitism allows the NSGA to steadily

improve performance over the duration of the run. In the

absence of elitism, the sporadic peaks in performance are

steadily degraded over the course of the runs, confirming

that drift stall is occurring. Recall that the NSGA decre-

ments the dummy fitness values for successive fronts by a

constant value �Df and that stochastic remainder selec-

tion selects population members based on the ratio of their

dummy fitness relative to the population’s average dummy

fitness. Drift stall is occurring because the constant decre-

ment �Df does not properly scale the ratio of the non-

dominated individuals’ fitness values relative to the

population’s average fitness, making it impossible for the

NSGA to distinguish and propagate these individuals into

successive generations. These observations motivated fur-

ther analysis of the influences of selection pressure and

drift stall on the algorithm’s performance in the following

subsection.

Performance under increased selection pressure

The results of the previous ssubsection showed that both

the NSGA and the elitist NSGA converged to non-

dominated fronts with gaps in the extreme portions of the

Pareto frontier. Additionally, Figure 7 shows that the

NSGA’s performance only sporadically improves and

generally degrades over the duration of the runs, regard-

less of the sharing method considered. These observations

confirm that several of the niches are either being lost or

converging to nonoptimal values due to the absence of

sufficient selection pressure. Furthermore, it is readily

Figure 6 | Analysis of the NSGA’s performance for the full range of possible values that

the parameters controlling niching and elitism can be assigned when using

(a) genotypic and (b) phenotypic sharing. The arrows designate the

algorithm’s performance when these parameters are set equal to the

recommended niche radius attained from the relationships presented by

Deb & Goldberg (1989).

Figure 7 | Performances of both the elitist NSGA and the NSGA as a function of

generation.
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apparent that elitism significantly improves the algor-

ithm’s performance, confirming the results of Zitzler

et al. (2000). Elitism serves to increase the selection

pressure on the niches and reduce the influence of genetic

drift on the system, which in effect is analogous to rescal-

ing the relative fitness values of the population. Modifying

the NSGA and elitist NSGA such that successive fronts

have exponentially decreasing fitness using the scaling

coefficient Sc (as described in the methods section)

enabled further analysis of the influence of increased

selection pressure on performance. For the monitoring

application, analysis of the NSGA’s performance for

scaling coefficient values ranging from 0.7–0.95 showed

that Sc should be set to approximately 0.9. Values for Sc
lower than 0.9 greatly reduced the diversity of the popu-

lations and caused premature convergence (due to exces-

sive selection pressure). Scaling coefficient values above

0.9 resulted in significant gaps in the extreme regions of

the Pareto frontier due to insufficient selection pressure

and genetic drift.

Figure 8 shows the performances of the scaled NSGA

(sNSGA) and the elitist sNSGA as a function of time when

Sc = 0.9. The population sizes used in these runs remained

the same as those in the previous subsection for all forms

of the sNSGA except the non-elitist, genotypic sNSGA,

where a population size of 870 was found to be optimal,

which represents only a slight increase from the previous

section. Rescaling was not able to reduce the sensitivity of

genotypic sharing to nonuniformities in the niche spacing,

although elitism successfully closed the performance gap

between the two sharing methods for the elitist sNSGA. It

is immediately obvious from Figure 8 that rescaling the

fitness assignments greatly improved the performance of

the sNSGA, which no longer shows degradation in per-

formance with time and instead steadily improves towards

an upper bound in performance. Note that the combi-

nation of rescaling and elitism resulted in the elitist

sNSGA exceeding the previous results shown in Figure 7

for the elitist NSGA. The phenotypic elitist NSGA was

able to reach a maximum RSM value of 0.66 whereas the

genotypic elitist sNSGA attained a maximum RSM value

of 0.8.

Figures 9 and 10 show the improved performances of

all forms of the NSGA that result from rescaling the fitness

assignments. Recall that previously the non-elitist NSGA

Figure 8 | Performances of both the elitist NSGA and the NSGA as a function of

generation after rescaling the fitness assignments.

Figure 9 | sNSGA’s performance relative to the true Pareto front using both

(a) genotypic and (b) phenotypic sharing. The circles represent the best

nondominated front attained in 40 generations.
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was able to find a maximum of 3 members of the Pareto

optimal set. Rescaling the shared dummy fitness values

resulted in finding 21 and 17 members of the Pareto

optimal set when implementing genotypic and phenotypic

sharing, respectively. The additional use of elitism enabled

the sNSGA to almost replicate the Pareto frontier for both

sharing methods, as shown in Figure 10. The genotypic

elitist sNSGA provided the most complete representation

of the frontier by exactly finding 29 members of the Pareto

optimal set while also finding close representations of all

but 2 of the remaining 36 members. The phenotypic elitist

sNSGA found either exact or close representations of 31

of the 36 members of the Pareto optimal set. The slight

decrease in performance of the phenotypic elitist sNSGA

can be explained with the analysis in Figure 11.

Figure 11 shows the performance of the sNSGA using

both sharing schemes for the full range of values selite and

sshare that can be assigned. The plot again shows that

increasing the elitist selection pressure by decreasing selite

generally improves performance. The slight difference in

performance between genotypic and phenotypic sharing

was caused by the assumption used in this study that

selite≈sshare. Figure 11(a) shows that this assumption

results in finding the highest peak in performance for the

sNSGA under genotypic sharing, whereas Figure 11(b)

Figure 10 | Elitist sNSGA’s performance relative to the true Pareto front using both

(a) genotypic and (b) phenotypic sharing. The circles represent the best

nondominated front attained in 40 generations.

Figure 11 | Analysis of the sNSGA’s performance for the full range of possible values

that the parameters controlling niching and elitism can be assigned when

using (a) genotypic and (b) phenotypic sharing. The arrows designate the

algorithm’s performance when these parameters are set equal to the

recommended niche radius attained from the relationships presented by

Deb & Goldberg (1989).
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shows that this assumption was not able to exactly find the

highest performance peak in phenotypic space. It should

be noted from Figures 6 and 11, however, that assuming

selite≈sshare for the monitoring application generally

resulted in finding the peak or very near peak perform-

ances for the various forms of the NSGA in both sharing

spaces, which is probably sufficient for most applications.

Of course, the actual performance obtained with these

parameter settings will vary somewhat, depending on the

random number seed selected.

Figure 11(a) again shows that genotypic space was

generally very noisy relative to phenotypic space, which

explains why the sNSGA still required larger population

sizes to be used in genotypic space in order for the two

sharing schemes to attain comparable results in the

absence of elitism. Additionally, the increased noise

present in genotypic space after rescaling, as shown in

Figure 11(a) relative to the previous case in Figure 6(a),

explains why N had to be increased from 830 to 870 as

discussed above. Overall, the guiding relationships and

considerations discussed in the methods section of this

paper were able to successfully guide the competent

design of the NSGA. Figure 10 shows that the algorithm

was able to find 95% of the Pareto optimal set when the

influences of population sizing, elitism and genetic drift

were carefully considered in its design.

CONCLUSIONS

Evolutionary multiobjective optimization (EMO) methods

have been shown to be more efficient than traditional

optimization methods such as mixed-integer programming

at identifying tradeoffs among multiple objectives (Ritzel

et al. 1994; Coello 1996). A major difficulty in applying

these methods, however, is in identifying appropriate par-

ameter settings to ensure that the problem’s decision

space is effectively navigated and the entire tradeoff

curve is identified. In this paper, we demonstrate how

theoretical relationships from the genetic and evolution-

ary computation (GEC) field can be used to overcome this

difficulty. The tradeoff between cost and squared relative

estimation error (SREE) for the groundwater monitoring

application presented in this work was accurately quanti-

fied by ensuring that the nondominated sorted genetic

algorithm (NSGA) was competently designed to navigate

the problem’s decision space. Preliminary problem analy-

sis identified a range of potential population sizes and the

potential computational complexity of solving the prob-

lem. Additionally, theoretical relationships from Deb &

Goldberg (1989) effectively sized the niches required to

maintain stable subpopulations, each of which actively

sought different sections of the Pareto frontier. Using the

recommended niche radius from Deb & Goldberg (1989)

also effectively identified the niched elitist set of solutions

for successive generations in each of the runs performed in

this study. Elitism greatly improved the efficacy of the

NSGA and helped to reduce performance differences

between genotypic and phenotypic sharing. Analysis of

the algorithm’s performance as a function of time showed

the adverse effects of genetic drift and motivated further

study of the role of selection pressure in the NSGA.

Rescaling the shared dummy fitness assignments of the

NSGA such that successive fronts had exponentially

decreasing fitness values greatly improved the algorithm’s

performance. Combining elitism with rescaled fitness

assignments resulted in identifying all but 2 members of

the Pareto optimal set.

This study provides practitioners with a methodology

that minimizes the number of runs required to identify the

proper parameter settings for the NSGA by: (1) identifying

the most appropriate population size, (2) properly sizing

niches for fitness-based sharing, (3) correctly setting the

elitist selection pressure, and (4) carrying out careful

performance analysis to avoid genetic drift stall.

Parameter settings for the NSGA attained using a total of

10 runs resulted in peak or near peak performance of

the algorithm. Six of the trial runs were necessary to select

the proper population size. Elitism greatly improved the

NSGA’s performance and narrowed any performance dif-

ferences between sharing in genotypic versus phenotypic

space, a clear advantage when problem-specific informa-

tion required for phenotypic sharing is not available. When

such information is available, though, phenotypic sharing

is generally preferred because of the increased noise

associated with selection in genotypic space in most EMO

applications (Fonseca & Fleming 1995; Horn 1997), as was
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observed in this application. Finally, the use of the niche

radius to set the elitist selection pressure proved to be very

effective in attaining peak or near peak performance from

the NSGA, but further study is needed to see whether this

finding will be appropriate for other applications.

Rescaling the fitness assignments to further increase

selection pressure and reduce the influence of genetic drift

requires consideration of the potential tradeoff between

improving the algorithm’s performance and reducing

diversity within the population. Additional analysis was

necessary to properly address this tradeoff and select the

appropriate scaling coefficient. The final selection of a

scaling coefficient required four additional trial runs after

the six trial runs used to set the population and niching

parameters.

The approach used to design the NSGA in this study

treats the algorithm as a system with discernable proper-

ties and utilizes valuable theoretical work from the field of

genetic and evolutionary computation to discern these

properties. Theoretical relationships allow engineering

practitioners to gain direct insights into the algorithm’s

performance as a function of its input parameters while

also reducing the number of parameter combinations that

must be considered relative to the trial-and-error methods

that have traditionally been used in the field of water

resources. Trial-and-error methods inherently treat the

NSGA and other evolution-based methods as black boxes

and serve to obfuscate important trends in performance.

In this study, recognizing the influence of population

sizing and genetic drift on the NSGA’s performance facili-

tated the identification of algorithmic modifications

required to best identify the full range of tradeoffs between

monitoring costs and SREE. Moreover, the theoretical

relationships avoided the black box mystique inherent in a

trial-and-error performance analysis, which often leads to

unsupported generalizations, both positive and nega-

tive, on the effectiveness of evolution-based solution

techniques in engineering applications.
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NOTATION

F(xk) = Vector valued objective function.

f1(xk) = First component of the objective function

representing sampling costs.

f2(xk) = Second component of the objective function

representing SREE.

b = Index of the objective function’s components.

nobj = The total number of objective function’s

components.

xk = Vector of binary decision variables representing each

sampling plan.

k = Index of the individual sampling plans being

considered.

V = The monitoring application’s decision space

consisting of 220 solutions.

nwell = The total number of wells in the monitoring

network shown in Figure 1.

CS(i) = The cost coefficient for the ith well ranging in

value from $365 to $1095.

i = Index of the groundwater monitoring wells.

nest = The total number of estimates in the interpolation

domain.

c*all(uj) = Estimate of dissolved PCE concentration at

location uj in the interpolation domain based on all

available sampling locations.

ck
est(uj) = Estimate of dissolved PCE concentration at

location uj in the interpolation domain based on the

sampling locations in the kth sampling plan.

j = Index of the unknown locations in the interpolation

domain where dissolved PCE concentrations are

estimated.
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nsamp(k) = The total number of samples in the kth

sampling plan.

w(uj,uj) = The weight of the known PCE sample taken at

location uj in the estimate at the unknown location uj in

the interpolation domain.

uj = Three-dimensional coordinate vector for the jth

unknown location in the interpolation domain.

uj = Three-dimensional coordinate vector for the jth

sampling point.

c(uj) = Sampled or known dissolved PCE concentration

at location uj.

j = Index of the available sampling locations.

wt = Sum of the weights w(uj,uj) used to calculate the jth

dissolved PCE estimate.

Dk(uj,uj) = The Euclidean distance between the sampled

location uj and the unknown location uj.

a1,a2,a3 = Fitting parameters used to minimize the cross

validation residuals for the kth sampling plan.

Sh[d(k,k′)] = The sharing function value for two sampling

plans k and k′.
d(k,k′) = The distance in parameter space (either geno-

typic or phenotypic) between two sampling plans k

and k′.
sshare = The niche radius defining the minimum distance

two sampling plans can be from one another and still be

considered independent.

N = The population size used by the NSGA.

q = The total number of niches.

g = The total number of generations the NSGA will be

run.

g = The reliability of maintaining q niches for g

generations when the population size equals N.

pc = The probability of crossover.

pd = The probability that crossover will disrupt building

blocks.

O(m) = The order of the building blocks.

l = The string length or total number of binary digits

representing each sampling plan.

b = Index of the binary digits in the chromosome

representing each sampling.

z* = Cumulative normal distribution chart value

corresponding to a probability equal to 1/q.

npar = The total number of parameters or decision

variables for an application.

selite = The elite radius defining the minimum distance

required between the members of the population

undergoing elitist reproduction.

t = Index of the number generations.

nf = The total number fronts that members in a given

population at generation t are classified into, based on

domination.

�Df = The constant decrement used by the NSGA to

reduce the fitness values of successive fronts.

Sc = The scaling coefficient used by the NSGA to

exponentially decrease the fitness values of successive

fronts.

SREEtrue(xh) = The squared relative estimation error for

the hth member of Pareto optimal set.

SREE( (t)) = The squared relative estimation error for the

th member of the current population at generation t.

SREEmax = The maximum squared relative estimation

error attained within V.

(t) = Index of the members of the current population at

generation t.

h = Index of the members of the Pareto optimal set.
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