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Abstract 

The framework of multiobjective optimization is used to 

tackle the multicriteria ranking problem. The conceptual 

advantages of the multiobjective formulation are dis-

cussed and a new multiobjective evolutionary algorithm is 

introduced with the purpose of transforming a known val-

ued outranking relation into an antisymmetric crisp out-

ranking relation, on a set of classes of alternatives, where 

the elements of each class are indifferent each other, and 

with this as a background, we propose a recommendation 

for ranking problems of medium-sized set of alternatives. 

The performance of the algorithm is evaluated on a test 

problem. It was capable of producing a high-quality rec-

ommendation.  

Keywords: Multicriteria analysis; Valued outranking re-

lations; Multiobjective evolutionary algorithms; Ranking 

procedure. 

1. Introduction 

A Multiple Criteria Decision Analysis provides two major 

approaches of constructing a global preference model 

from an actor involved in the decision process. The first 

one is the functional model, which has been widely used 

within the framework of multi-attribute utility theory (e.g. 

(Keeney and Raiffa, 1976; French, 1986; Triantaphyllou, 

2000). The second one is the relational model, which has 

its most known representation in the form of a crisp or 

fuzzy outranking relation (e.g. (Roy, 1990)).  

The multiple criteria aggregation methods allow us to 

construct a recommendation from a set of alternatives 

based on the preferences of a decision maker. In the func-

tional approach, the recommendation is immediately de-

duced from the preferences aggregation process. When 

the aggregation model of preferences is based on the rela-

tional approach, a special treatment is required, but some 

non-rational violations of the explicit global model of 

preferences could happen.  

This paper is concerned with the relational approach to 

Multiple Criteria Decision Aid (MCDA). Methods related 

to this approach, including the well-known family of 

ELECTRE methods, are often presented as the combina-

tion of two phases: aggregation (or construction) and ex-

ploitation. For the multicriteria ranking problem, the sec-

ond phase is usually carried out with a ranking method. 

Most respected text on MCDA (Vincke, 1992; Doumpos 

and Zopounidis, 2002 ; Figueira et al., 2005; Roy, 2006; 

Ehrgott  et al., 2010; etc.) define the ranking problematic 

_ .P  informally, e.g. (Roy, 1996) defines the ranking 

problematic as: 

Definition (Roy, 1996). The ranking problematic .P  

presents the problem in terms of ranking the actions of A, 

that is, of directing the investigation towards determining 

an order defined on a subset of A so as to be able to de-

termine those actions that could be considered as “suffi-
ciently satisfactory” based on a preference model, while 

keeping in mind that A might evolve. This problematic 

leads to a recommendation or simple participation that 

either: suggest a partial or complete order formed by the 

classes containing actions considered equivalents. 

The use of informal definitions such as this reflects one of 

the prevailing and fundamental problems in MCDA: the 

difficulty of providing a single formal (but sufficiently 

broad) definition of the concept of a ranking. The concept 

of a ranking is a generalization of what decision makers 

perceive as a hierarchy of a set of alternatives in decreas-

ing order of preferences, a decision maker intuition which 

is inherently difficult to capture by means of individual 

objective criteria. We illustrate this in Figure 1. 

 

 
 

Fig. 1: Different ranking structures. Rankings may be a com-

plete order, or a complete preorder, or a partial preorder. While 

each of these features may pose problems to specific ranking 

criteria, the main ranking structure can be perceived easily by 

decision makers. 
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On the other hand, most existing ranking methods for ex-

ploiting a known valued outranking relation attempt, ex-

plicitly or otherwise, to optimize just one such criterion, 

and it is this confinement to a particular ranking property 

that explains the fundamental discrepancies observable 

between the recommendations produced by different al-

gorithms on the same data, and will cause a ranking 

method to fail (as judged by means of external knowl-

edge) in a context where the criterion employed is inap-

propriate. In practice, this problem can be alleviated 

through the application and comparison of multiple rank-

ing methods (see e.g. Guitouni and Martel (1998)). 

Initially, ranking algorithms were designed to capture the 

decision maker notion of a ranking, however, with the in-

creased complexities of some kinds of decision problems, 

traditional ranking algorithms sometimes do not perform 

very well, especially in instances where there are a me-

dium-sized set of alternatives and/or there are a lot of in-

transitivities or incomparabilities between pairs of alter-

natives. But with the emergence of new mathematical 

techniques and with the enormous computer performance 

that exist nowadays, it is possible design new ranking al-

gorithms for the application to the ranking of complex 

data sets not interpretable by decision makers. Applying 

new rules, further than only the traditional solutions and 

ideas, this kind of procedures should exploit the aggrega-

tion model of preferences of the decision maker and be 

able to provide a recommendation in form of a ranking. 

The aim of the proposed approach is twofold: first. We 

want to partition a medium-sized set of alternatives into k 

classes; second, based solely on the initially provided in-

formation, we want to elicit the antisymmetric crisp out-

ranking relation between the determined classes. The par-

ticular advantage of the proposed approach is to integrate 

partition and relation between classes into the optimiza-

tion process that the multiobjective evolutionary algo-

rithm performs. The result of our method is thus given by 

a partition )(APk of A into a set of classes 

},...,,{ 21 kCCCC  and a kxk crisp antisymmetric outrank-

ing relation )( APk
S on that partition. 

In the next section, the ranking problematic is presented. 

The single-objective ranking is explained in Section 3. 

Section 4 presents the multiobjective ranking, and with 

these as the background, we present a multiobjective evo-

lutionary algorithm to a medium-sized ranking problem in 

Section 5. A test problem and the computational results 

are given in Section 6, and finally, in Section 7, several 

conclusions are discussed. 

2. The Ranking Problematic .P  

The objective of ranking problematic is to aid the DM 

through a ranking that is obtained by placing all, or sim-

ply the “most attractive” actions into equivalence classes 
that are completely or partially ordered according to pref-

erences. .P  results in a ranking or an ordering proce-

dure. 

The analyst could have considered a procedure to rank the 

actions according to decreasing preference. Roy said that 

it can be seen as a “competition” where we can think of 
comparing actions so that they can be grouped into 

classes that can be ordered. The classes would group ac-

tions that are considered equivalent, at least for those 

classes near the top of the order. 

Roughly, one can imagine that the “true” preferences of a 
decision maker are represented by a crisp or valued out-

ranking relation. A ranking, then, can be seen as “re-

vealed” preferences. 
In adopting this problematic, one tries to use available in-

formation as much as possible to compare the elements of 

A among each other so as to determine classes for the 

elements in A and a ranking of these classes. Such a rank-

ing or ordering, which is developed to aid the decision 

maker, must reflect a certain degree of importance or pri-

ority that the decision maker gives to each element of A. 

The ranking is designed to help his/her think about the 

problem, to guide his/her discussions with other stake-

holders and, more generally, to serve as a framework for 

approaching the next critical point of the decision process 

(Roy, 1996). 

The ordering procedure considered in this problematic 

consist of assigning a “rank” to each action in A, where 

two actions are assigned the same rank whenever the data 

do not allow a distinction between them with respect to 

the next critical point of the analysis. The ranking of the 

classes allows an ordering, complete or partial, represen-

tative of preferences. 

The classes of .P  are not determined from an a priori 

definition. Rather, the significance of a class is relative, in 

that it depends on its position in the overall ordering. One 

should not necessarily require that the classes of .P  

form a complete order. The poor quality of the data, the 

conflicting criteria, and the multiple value systems in-

volved might make it difficult or artificial to develop a 

complete order. In certain cases, a partial order, which 

does not necessarily position a class relative to every 

other class, can be quite useful. Moreover, the classes ob-

tained in .P  are defined neither with the choice of a sin-

gle best action in mind nor with the objective to be as 

small as possible (Roy, 1996). 

 

3. Single-objective ranking 

We have outlined above that the quality of a ranking is 

ultimately defined in terms of decision maker knowledge. 

However, ranking algorithms are unsupervised methods 

and external knowledge of any kind is not usually avail-

able during the ranking process. In order to assess the 

quality of individual rankings, ranking algorithms there-

fore rely on the adoption of internal criteria as proxies for 

the unknown “correct hierarchical classification.” The re-
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sulting transformed ranking problem ( P, ) can then be 

formally defined as an optimization problem: determine 

the ranking *
C for which 

 

 
)(min)( *

CPCP
C 


 (1) 

 

Where  is the set of feasible rankings (here we take this 

to be any kind of ordering of the elements of A), C is a 

ranking of a given set of alternatives A, and P is the (in-

ternal) criterion function. P is always based on the notion 

of preference between data items, which is provided as 

the input, i.e. only the relationships between individual 

data items are known. We assume P is to be minimized 

without loss of generality. Examples of criterion functions 

are the score functions (Net Flow Rule), choice functions 

(Distillation method), distance-based functions (Kendall´s 

distance), etc. Different formulations of the ranking vary 

in the optimization criterion P used. 

4. Multiobjective ranking 

An alternative approach may be the consideration of rank-

ing as a multiobjective optimization problem as suggested 

by Leyva and Araoz (2013). In a multiobjective ranking 

problem ( mPPP ,...,,, 21 ) we aim to determine the rank-

ing *
C for which 

 

mtCPCP t
C

t ,...,2,1),(min)( * 
  (2) 

 

Where  is the set of feasible rankings (here we take this 

to be any kind of ordering of the elements of A), C is a 

ranking of a given set of data A, and mtPt ,...,2,1:   is a 

set of m different (single) criterion function. Usually no 

single best solution for this optimization task exists, but, 

instead, the framework of Pareto optimality is embraced. 

The set of Pareto-optimal solutions to a multiobjective 

ranking problem ( mPPP ,...,,, 21 ) always comprises the 

optimal solutions to the single-objective ranking problems 

( ), 1P , ( 2, P ),…, ( mP, ) (Leyva and Araoz, 2013). 

For ideal single and multiobjective rankings algorithms 

(i.e. algorithms that always identify all globally optimal 

solutions, and the entire Pareto-optimal set, respectively), 

we therefore trivially know that the multiobjective algo-

rithm will always find a solution as good o better (equal 

in terms of the ranking objective optimized and equal o 

possible better in terms of external knowledge) than those 

of the single-objective algorithms. In situations where the 

best solution corresponds to a trade-off  between the dif-

ferent objectives only the multiobjective ranking algo-

rithm will be able to find it. 

An example of a set of alternatives, for which this is rele-

vant, is shown in Figure 2. Here different possible ranking 

solutions are plotted in two objective space and it can be 

seen that the “correct solution” represent a trade-off  be-

tween the two objectives. 

 

 
 

Fig. 2: Different possible ranking solutions. 

5. A Multiobjective Evolutionary Algorithm to a Me-

dium-Sized Ranking Problem 

The aim of this paper is to present a method dedicated to 

multicriteria ranking problem with a medium-sized set of 

alternatives. It is worth noting that the term multicriteria 

ranking can be understood in the sense of determining a 

hierarchical partition that simultaneously optimizes sev-

eral objective functions. In such cases, ranking can be 

seen as a special case of multiobjective optimization and 

well performing approaches such as evolutionary mul-

tiobjective optimization (EMO) algorithms could be suc-

cessfully applied. Several methods have been proposed in 

the literature for tackling the multicriteria ranking as a 

multiobjective optimization problem, where we are look-

ing for a total order between the alternatives. For addi-

tional details see for instance (Leyva and Araoz, 2013). 

In this paper we follow this interpretation in a slightly 

modified form. We will use the term multicriteria ranking 

to point out ranking methods based on asymmetric rela-

tions resulting from the application of a given multicrite-

ria procedure in the sense of determining a hierarchical 

partition (an antisymmetric relation on the classes) that 

simultaneously optimizes several objectives. 

In this case, multicriteria ranking can be seen as a special 

case of multiobjective optimization problem and we pro-

posed in this paper an evolutionary multiobjective optimi-

zation algorithm for tackling this type of multicriteria 

ranking problem. To the best of our knowledge, this ap-

proach has not previously been proposed. 

 

5.1. Modeling the problem of ranking in MCDA 

In this section we present a way of modeling the different 

objectives of ranking in MCDA with a medium-sized set 

of alternatives. We first present a general way in which 

alternatives and classes of alternatives can be compared to 

each other, and then, using this we highlight and model 

the ranking objectives. 

190



 

5.1.1. Comparing alternatives and set of alternatives 

 

Let A denote a set of decision alternatives and 

AS  a val-

ued outranking relation. Each potential solution in the 

population is associated with a number  , the cut level, 

where 10   . For each value of the cut level  , we 

can induce a crisp outranking relation 
AS . In 

AS  we can 

deduce the follows preference relations: 

 
  ),(),( ijjiji aaaaIaa  
  ),(),( ijjiji aaaaPaa  

  ),(),( ijjiji aaaaRaa  
 

5.2. The multiobjective evolutionary algorithm 

In this subsection, we present a multiobjective evolution-

ary algorithm based on a posterior articulation of prefer-

ences, which is able to exploit a known valued outranking 

relation with the purpose of constructing a recommenda-

tion for the multicriteria ranking problem with a medium-

sized set of alternatives. The algorithm borrows funda-

mental elements from MOGA (Fonseca and Fleming, 

1993). In the following subsections, we present in further 

detail the fundamental aspects of the algorithm. 

 

5.2.1- Representation of a potential solution in the rank-

ing problem 

 

We use a locus-based adjacency representation (Park and 

Song, 1998) as shown in Figure 3. In this graph-based 

representation, each individual p consists of m genes 

mppp ,...,, 21  and each gene ip can take allele values j be-

tween 1 and m. a value of j assigned to the gene ip  is in-

terpreted as a link from alternative i to j, in the resulting 

class solution they will be in the same class. The decoding 

of this representation requires the identification of all 

connected component. All alternatives belonging to the 

same connected component are then assigned to one clus-

ter. The decoding step takes linear time (Cormen et al., 

2001). 

 

 
 

Fig. 3: Illustration of the locus-based adjacency representation. 

A set of 7 alternatives },...,,{ 721 aaaA  is partitioned. Figure 

(a) shows one possible genotypes of an individual of the popula-

tion. It is transformed into the graph structure shown in Figure 

(b). Every connected component with this graph is interpreted as 

an individual class, as visualized by the circles in Figure (c). 

 

The locus-based adjacency encoding scheme has several 

major advantages; most important, there is no need to fix 

the number of classes in advance, as it is automatically 

determined in the decoding step. Hence, it is possible to 

evolve and compare solutions with different number of 

classes in just one run of the evolutionary algorithm. 

 

5.2.2. Objective functions 

 

5.2.2.1. Maximizing the cutting level  

 

From the valued outranking relation

AS , it is possible to 

define a family of nested crisp outranking relations

AS  

(   ]1,[,),(:),( 0  baSAxAbaSA ); these crisp rela-

tions correspond to -cuts of

AS , where the cutting level 

 represents the minimum value for 

AS  so that baSA


 is 

true (see (Fodor and Roubens (1994) for more details). 

Each ranking is associated with a -cut, which is con-

nected with the credibility level of a crisp outranking rela-

tion 

AS defined on the set of alternatives. We want rank-

ings for which the credibility level  is near 1. This indi-

cates to us that the ordering represented by the ranking 

with credibility level  is more trustworthy. We call this 

objective the maximum cut level objective. In practice, we 

use an additional condition for the credibility level . It is 

the function f that does not permit  values to approach 

one because in this case, we could have many incompara-

ble genes. The function f is defined as follows: 
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










jimjmi

SaaandSaaaa
pf

ijjiji kkkkkk

,,...,3,2,1...,,2,1

;~~:),(
)~( , )~( pf  is the 

number of incomparabilities between pairs of actions 

),(
ji kk aa

 
in the individual 

mkkk aaap ...~
21

  in the sense of 

the crisp relation 

AS . Note that the quality of a solution 

increases with decreasing f score. In this case, we are in-

terested in individuals whose f values are equal (or close) 

to zero. This condition improves the comparability of S 

on A. 

 

5.2.2.2. The min cut objective 

 

The min cut shown in equation 3, aims to maximize the 

indifference with each class (see Figure 4). We proceed 

penalizing the pair of alternatives inside the class which 

are not indifferent. In the perfect case where all pairs of 

alternatives are indifferent each other then, there will not 

be penalizations. 

 

 




k

m

mCAssocMinCut
1

)(

 (3) 

where 

 


 


Gi Gj

ijGassoc )(

  
In equation 3, k is the number of classes, and ij is the 

Boolean characteristic function   which is defined as fol-

lows: 

Aaa
otherwise

Iaaif
Iaaaa ji

ji

jijiij 


 

 ,
,1

),(0
)(),( 

 
This quality is minimized in the corresponding multiob-

jective optimization problem. We call this objective the 

min cut objective. 

 

K a1 a3 a6 a4 a7 a5 a0 a2 a8

a1 I I P P P P P P

a3 I P P P P P P

a6 P P P P P P

a4 I I P P P

a7 I P P P

a5 P P P

a0 I I

a2 I

a8  
 

Fig. 4. Perfect case of ranking classes of alternatives 

 

5.2.2.3. The minimum pair-wise preference disagreement 

objective 

 

The crisp outranking relation of the alternatives 

AS  in-

duces a crisp outranking relation S  between the deter-

mined classes in the following form: 

For each pair of classes kqrCC qr ,...,2,1,),,(   we 

compute 

 













 

qrif

qrifaa

l ri qj

rq

rq Ca Ca

jil

l
rq

1

),((maxarg
}4,3,2,1{



 
where 

},,,{,,
0

),(1
),( RPPIOAaa

otherwise

Oaaif
aa ji

ji

jilrq




 


 and 

rql  repre-

sent the crisp preference relation between the classes rC  

and qC , De Smet and Eppe (2009) proof that this proce-

dure leads to the optimal crisp outranking relation 
S . 

Suppose that jiOCC , where },,,{ RPPIO
 . Suppose 

that ji CPC


, is natural that in the beginning of the proce-

dure, some pair of alternatives ),( sr aa , jsir CaCa  ,  

does not be in concordance with ),( ji CC , i.e. [while 

ji CPC


 in 
S ], [ sr Iaa , or sr aPa


, or sr Raa  in 


AS ]. In 

these conditions, we have an inconsistency between the 

aggregation model of preferences 

AS and the crisp out-

ranking relation of classes (See Figure 5). 

 

K a1 a3 a6 a4 a7 a5 a0 a2 a8

a1 I I I P P P P P

a3 I P P P P P P

a6 P P I P P P

a4 I I P I I

a7 I P P I

a5 P P P

a0 I P

a2 I

a8  
 
Fig. 5. Recommendation with inconsistencies between the ag-

gregation model of preferences 

AS and the crisp outranking re-

lation of classes 

 

We think that the quality of the final crisp outranking re-

lation 
S should also be judged according to the number 

of its discrepancies and concordances with 

AS and the 

crisp outranking relations 

AS . Let V be the set of strong 

discrepancies defined as: 

 

},...,2,1,

,},,,,{},,,,{

,,,,:),{(

2121

21

kji

OORPPIORPPIO

COCaOaCaCaAxAaaV

CCCC

jisrjsirsr







 

and 
VVofyCardinalitnV 

. 

Note that 21 OO   means that there is not concordance 

between the preference relations sr aOa 1  in 

AS  and 
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ji COC 2  in 
S . Also, Vn  is a function of the cut level  , 

which counts the number of the pair-wise preference dis-

agreements. 

We quantify the number of preferences between alterna-

tives into the crisp outranking relation 

AS  that are in dis-

agreement in the sense of 
S . For the purpose of formu-

lating the multiobjective optimization problem, we call 

this objective the minimum pair-wise preference dis-

agreement objective. 

Then, we use an evolutionary search to solve the multiob-

jective optimization problem: 

 

)minimum(

,],1,0[

],...,,[~

:

))~(()),~(()),~((

0

0

21

ycredibilitoflevelaiswhere

aaap

toSubject

pMaxpnMinpCutMinMin

mkkk

V









 
 

where  is the set of feasible rankings (here we take this 

to be any kind of ordering of the elements of A), p~  is a 

ranking of a given set of data A. Usually no single best 

solution for this optimization task exists, but, instead, the 

framework of Pareto optimality is embraced. 

 

5.2.3. Fitness assignment procedure 

 

Most of the approaches of multiobjective decision-

making seek the entire Pareto optimal set 
*

P , which in 

the jargon of Multiobjective Evolutionary Algorithms 

(MOEAs) is often denoted as trueP  (Coello et al. 2002). 

During the MOEA’s execution, a “current” set of Pareto 
optimal solutions is determined at each EA generation 

and is termed )(tPcurrent , where t represents the generation 

number. Many MOEA implementations also use a secon-

dary population, storing non-dominated solutions found 

through the generations. This population is named 

)(tPknown . This term is also annotated by t to reflect its 

possible changes in membership during the execution of 

the MOEA. )0(knownP  is defined as the empty set ( ), and 

knownP  is defined as only the final set of solutions returned 

by the MOEA at termination. )(tPcurrent , knownP , and trueP  

are sets of MOEA genotypes; each set’s corresponding 
phenotypes form an approximated Pareto front. The asso-

ciated approximated Pareto front for each of these solu-

tion sets is called )(tPFcurrent , knownPF , and truePF . 

Most of the methods based on MOEAs attempt to evolve 

a population toward the true Pareto frontier truePF  The 

aim is that by the end of the run, truecurrent PP  , 

truecurrent PP  , or 












)],(distancemin[,:

,

ji

truejcurrenti

uuji

PFuPFu




, 

where the distance is defined over some norm. 

To solve the multicriteria ranking problem using a 

MOEA, it is not necessary to seek the entire Pareto opti-

mal set trueP  or the associated Pareto front truePF  because 

of the fact that many of the non-dominated solutions are 

not of interest to the decision-maker. We will use the 

strategy of attempting to find in each EA generation the 

most promising and attractive solutions for the decision 

maker, which in our case are those individuals ),(~ up  

whose ,u  scores are close to a value of zero and have a 

sufficiently high value of . It is sufficient to seek a re-

stricted Pareto optimal set, which for our purpose is de-

fined as follows: 

 
























5.0,

,))~(),~((:~






numbernegativenon

smallaiswhere

ppuPp

P

true

restricted
true

(4) 

Based on this strategy, the proposed method attempts to 

evolve a population towards the true restricted Pareto 

frontier )( restricted
truePF  by means of a succession of the re-

stricted non-dominated solutions subset 

)}(...,),(),({)( 21 tPtPtPtPF n
restricted

current  . At each generation 

the method computes the non-dominated solutions for the 

ranking problem that is closest to the fixed aspiration 

level ),( u
,
 with 0)~( pu  and 0)~(  p  according to 

the Tchebycheff metric. 

Fitness Assignment Procedure. The main steps are as fol-

lows: 

Step 1. Let N be the population size. Choose a share  (a 

dynamically updated procedure for fixing share  is de-

scribed later in Step 5). Initialise jj c  ( jc  randomly 

chosen between 0 and 1), and 0)( j  for all possible 

ranks Nj ...,,2,1 . Set the solution counter i=1. 

Step 2. Calculate the number of solutions )( in  that domi-

nate solution i. Compute the rank of the i-th solution as 

ii nr 1 . Increment the count for the number of solu-

tions in rank ir  by one, that is, .1)()(  ii rr   

Step 3. If i<N, increment i by one and go to step 2. Oth-

erwise, go to step 4. 

Step 4. Identify the maximum rank *r  by checking the 

largest ir  such that 0)( ir . Sorting according to rank 

and fitness averaging yields the following assignment of 

the average fitness iF  to any solution Ni ,...2,1 : 

 







1

1

)1)((5.0)(
ir

k

ii rkNF 
 (5) 

For each solution i with rank 1ir , the above equation 

assigns a fitness equal to 

 
)1)1((5.0  NFi  (6) 

193



which is the average value of )1(  consecutive integers 

from N to 1)1( N . Set a rank counter 1r . 

Step 5. For each solution i in rank r, calculate the distance 

count idc  using the following equation: 

 








 



otherwise

Pif
P

dcPdc
r
share

r
ir

share
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i

i
r
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,1
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)(


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 (7) 

where }...,,,{

,

)(21
)(

)()(

r
r

rrr

rCMrCMr
share

PPPP

settheofMassofCenterPP










  

of solutions in rank r. The Center of Mass of a group of 

points is defined as the weighted mean of the points’ posi-

tions. The weight applied to each point is the point’s 
mass. 


  is the maximum holder metric. Note that 

restricted
currentPFP )1(

. 

Calculate the shared fitness using 
j

j
j dc

F
F '

. 

To preserve the same average fitness, scale the shared fit-

ness as follows: 

 

'

)(

1

'

' )(
jr

k

k

j
j F

F

rF
F




 



 (8) 

 

Step 6. Increment j  by    )(  
 

while 

 )()(   uu  and  )()(   ff
,
 where f  is de-

fined in subsection 5.2.2. 

Step 7. If *rr  , increment r by one and go to Step 5. 

Otherwise, the process is complete. 

Due to limitations of space, we omit the “Crossover and 
mutation operators”, “Parent selection method”, “Popula-

tion replacement scheme”, and “The final step for obtain-

ing a recommendation” subsections. 

 

6. Computational examples 

6.1. Test problem 1 

In this section the proposed approach will be applied on a 

real-life data set. In this data set Leyva and Gastélum 

(2013) present a real case study dealing with the compari-

son of municipal socio-demographical situations. It pre-

sents the problem situation and an appropriate multicrite-

ria ranking problem formulation. Moreover, a detailed 

version of the multicriteria evaluation model is presented 

in the book. The model consists of a complex hierarchy of 

evaluation models enabling us to take into account the 

multiple dimensions involved in the evaluation. The set of 

alternatives to be considered in the evaluation model is 

represented by such different municipalities of the Sinaloa 

State, México (Table 1). The problem statement is a rela-

tive socio-demographical comparison of such municipali-

ties under a ranking purpose, from data of the 2010 Cen-

sus of Population and Housing (Data are available on 

http://www.inegi.org.mx). 

 

Label

Municipalities of 

Sinaloa State, 

México

Population 

2010 Label

Municipalities of 

Sinaloa State, 

México

Population 

2010

a0 Ahome 416,299 a9 El Fuerte 97,536

a1 Angostura 44,993 a10 Guasave 285,912

a2 Badiraguato 29,999 a11 Mazatlán 438,434

a3 Concordia 28,493 a12 Mocorito 45,847

a4 Cosalá 16,697 a13 Rosario 49,380

a5 Culiacán 858,638 a14 Salvador Alvarado 79,085

a6 Choix 32,998 a15 San Ignacio 22,527

a7 Elota 42,907 a16 Sinaloa 88,282

a8 Escuinapa 54,131 a17 Navolato 135,603

2,767,761Total of Inhabitants in Sinaloa State --->  
 

Table 1: Municipalities of Sinaloa State, Mexico. 

 

In order to build the valued outranking relation for this 

data set, we use the ELECTRE-III method. This method 

requires to define, for each considered criterion, a weight, 

a preference threshold and a indifference threshold. Since 

our goal is to illustrate the algorithm, we will not discuss 

the construction of the valued outranking relation into 

more detail. Instead, in Table 2, we present the valued 

outranking relation that we obtained applying the ELEC-

TRE-III method.  
a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17

a0 1.00 0.89 0.96 0.99 0.88 0.88 0.99 1.00 1.00 0.98 1.00 0.86 0.97 1.00 1.00 0.95 1.00 1.00

a1 0.79 1.00 1.00 0.86 1.00 0.75 0.97 0.85 0.83 0.87 0.96 0.75 0.99 0.86 0.81 0.86 0.99 0.85

a2 0.18 0.34 1.00 0.44 0.82 0.19 0.84 0.59 0.37 0.35 0.27 0.19 0.69 0.40 0.19 0.54 0.78 0.25

a3 0.47 0.63 1.00 1.00 0.94 0.38 0.98 0.98 0.96 0.80 0.79 0.32 1.00 1.00 0.48 1.00 0.99 0.81

a4 0.18 0.39 0.97 0.68 1.00 0.19 0.89 0.74 0.39 0.47 0.20 0.19 0.85 0.50 0.19 0.77 0.94 0.49

a5 0.99 0.88 0.89 0.92 0.88 1.00 0.98 0.98 0.94 0.98 1.00 1.00 0.90 0.96 1.00 0.88 0.99 0.99

a6 0.21 0.26 0.95 0.43 0.80 0.19 1.00 0.52 0.35 0.39 0.32 0.19 0.64 0.42 0.24 0.57 0.89 0.27

a7 0.33 0.38 0.94 0.92 0.88 0.22 0.95 1.00 0.80 0.84 0.68 0.22 0.90 0.83 0.34 0.89 0.95 0.78

a8 0.68 0.71 0.97 0.95 0.88 0.55 0.93 0.94 1.00 0.81 0.90 0.52 0.95 0.98 0.67 1.00 0.96 0.77

a9 0.47 0.69 0.94 0.85 0.88 0.53 1.00 0.96 0.81 1.00 0.95 0.47 0.95 0.85 0.52 0.93 1.00 0.86

a10 0.74 0.88 0.90 0.91 0.88 0.80 0.98 0.85 0.93 0.98 1.00 0.80 0.91 0.92 0.92 0.89 0.99 0.90

a11 0.99 0.88 0.90 0.93 0.88 1.00 0.98 0.98 0.95 0.98 1.00 1.00 0.91 0.97 1.00 0.89 0.99 0.99

a12 0.26 0.55 1.00 0.86 0.96 0.27 0.98 0.84 0.70 0.80 0.63 0.25 1.00 0.82 0.27 0.90 0.99 0.67

a13 0.62 0.72 1.00 1.00 0.90 0.48 0.98 0.98 0.95 0.80 0.82 0.44 1.00 1.00 0.65 1.00 0.99 0.81

a14 0.95 0.87 0.90 0.92 0.88 0.81 0.98 0.98 0.90 0.98 0.99 0.81 0.91 0.97 1.00 0.89 0.99 0.99

a15 0.21 0.43 1.00 0.91 0.97 0.22 0.91 0.83 0.81 0.73 0.55 0.19 0.92 0.85 0.30 1.00 0.94 0.70

a16 0.09 0.33 0.88 0.64 0.88 0.09 0.87 0.74 0.35 0.52 0.16 0.08 0.86 0.47 0.13 0.69 1.00 0.47

a17 0.60 0.68 0.98 0.95 0.88 0.51 0.94 0.10 0.95 0.93 0.91 0.47 0.94 0.95 0.62 0.97 0.95 1.00  
 

Table 2: Credibility matrix constructed using the ELECTRE-III 

method. 

 

Table 2 was processed with our proposal of Section 5. 

The restricted Pareto front found, restricted
currentPF

,
 and the as-

sociated final set of solutions returned by the MOEA at 

termination, restricted
currentP

,
 are presented in Table 3. 
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a0 1 1 0 5 5 5

a1 5 5 5 5 5 5

a2 6 6 4 6 6 6

a3 7 7 7 7 15 7

a4 4 6 6 6 6 6

a5 10 10 0 0 10 0

a6 9 16 16 16 16 16

a7 8 8 8 8 8 8

a8 12 9 9 9 9 9

a9 9 13 12 13 8 15

a10 11 11 11 11 14 11

a11 14 14 14 5 5 5

a12 13 13 15 13 7 13

a13 15 15 7 15 7 7

a14 17 0 0 10 15 0

a15 16 3 15 3 3 15

a16 3 2 2 2 2 2

a17 1 3 13 3 13 9

Fitness value 35.794 35.794 35.794 35.794 35.794 35.794

Lambda 0.7336 0.6519 0.6976 0.7466 0.7467 0.722

Min cut objective 24 2 4 12 30 8

Minimum pair-wise 

preference disagreement objective 44 40 24 16 38 20

Classes 4 3 3 3 3 3

2
~p1

~p 3
~p 4

~p 5
~p 6

~p

 
 

Table 3: Restricted Pareto front found and the associated indi-

viduals (genotype) of the solutions space. 

 

a0 0 0 0 0 0 0

a1 0 0 0 0 0 0

a2 1 1 1 1 1 1

a3 2 2 2 2 0 2

a4 3 1 1 1 1 1

a5 0 0 0 0 0 0

a6 1 1 1 1 1 1

a7 2 2 2 2 2 2

a8 2 2 2 2 2 2

a9 1 2 2 2 2 2

a10 0 0 0 0 0 0

a11 0 0 0 0 0 0

a12 2 2 2 2 2 2

a13 2 2 2 2 2 2

a14 0 0 0 0 0 0

a15 2 2 2 2 0 2

a16 2 1 1 1 1 1

a17 0 2 2 2 2 2

Fitness value 35.794 35.794 35.794 35.794 35.794 35.794

Lambda 0.7336 0.6519 0.6976 0.7466 0.7467 0.722

Min cut objective 24 2 4 12 30 8

Minimum pair-wise 

preference disagreement objective 44 40 24 16 38 20

Classes 4 3 3 3 3 3

2
~p1

~p 3
~p 4

~p 5
~p 6

~p

 
 

Table 4. Restricted Pareto front found and the associated indi-

viduals (fenotype) of the solutions space. 

 

With this information we generate a recommendation for 

the decision-maker. Tables 3 and 4 suggest a crisp anti-

symmetric outranking relation, on a set of three classes of 

alternatives. In Figure 6 we show the results obtained. On 

the left side we have a table detailing the relations be-

tween the alternatives. The alternatives were grouped here 

by the ranking results found using the presented method. 

On the right side of the figure we have the representation 

of the classes of alternatives and the relation between 

them. In order to simplify the representation, the classes 

that are above are considered to be preferred to those be-

low. In this case, we have a complete ranking of classes 

of alternatives. We notice that we have three classes that 

form a total order. In the table to the left we have high-

lighted the relations that are in discordance with the rank-

ing result. This result is in concordance with the nature of 

the data set. Indeed, class 0 corresponds to the municipali-

ties having a less socio-demographic slack. They present 

a better performance values in the most important deci-

sion criteria. Conversely, class 2 includes the municipali-

ties with greater socio-demographic slack. The common 

characteristic presented by these municipalities is its low 

performance values in the most important decision crite-

ria; in the middle, the class 1 are the municipalities which 

vary its performance values in the decision criteria. This 

leads us to conclude that we have obtained a natural rela-

tional structure underlying the data set. Hence, from our 

point of view, this example gives a good motivation for 

our ranking method, since it confirms relations between 

classes that could have been brought out a priori by other 

means. 

 

 

 
K a0 a5 a11 a14 a1 a10 a17 a3 a7 a8 a9 a13 a12 a15 a2 a4 a6 a16

a0 I I I I P P P P P P P P P P P P P

a5 I I I I P P P P P P P P P P P P

a11 I I I P P P P P P P P P P P P

a14 I I P P P P P P P P P P P P

a1 I P P P P P P P P P P P P

a10 I I P I I I P P P P P P

a17 I I I I P P P P P P

a3 I I I I I I P P P P

a7 I I I I I P P P P

a8 I I P I P P P P

a9 I I P P P P P

a13 I I P P P P

a12 I P I P I

a15 P I P P

a2 I I I

a4 I I

a6 I

a16   
Fig. 6. Ranking result on Municipal Socio-Demographic Comparison  

problem in Sinaloa State, Mexico. 
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7. Conclusions and future research 

In this paper, we have addressed the problem of multicri-

teria ranking with a medium-sized set of alternatives. The 

main added value of this contribution is to propose a mul-

tiobjective evolutionary approach that can be applied on a 

valued outranking relation to solve this problem. A dis-

tinctive feature of the approach relies on the fact that it 

takes the multiobjective nature of the multicriteria ranking 

method into account. It helps the decision maker to iden-

tify both a partition of the set of alternatives in classes and 

preference relations between the classes. In this sense, it 

differs from classical approaches of multicriteria ranking. 

A validation test has been conducted on a real data set. 

We have been able to show that the resulting complete 

ranking of classes of alternatives is robust and meaning-

ful. From our point of view, the elicitation of crisp anti-

symetric outranking relation between the classes offers 

additional information to the decision maker that can help 

him have a better insight into the multicriteria structure of 

the data set. We will use in the future an empirical ap-

proach to test our method on a medium set of benchmarks 

with a wide variety in their structure, for highlighting the 

efficiency of the proposed method. Validation tests will 

be conducted on both artificial and real data sets. We 

would like to show how close the results from our method 

come to the optimal solutions. It will also be important to 

explore the limits of this approach, by finding the top size 

within instances can be solved with acceptable perform-

ance. We will address these issues in the future. 
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