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Abstract

Motivation: There recently has been great interest in aligning protein–protein interaction (PPI)

networks to identify potentially orthologous proteins between species. It is thought that the topo-

logical information contained in these networks will yield better orthology predictions than

sequence similarity alone. Recent work has found that existing aligners have difficulty making use

of both topological and sequence similarity when aligning, with either one or the other being better

matched. This can be at least partially attributed to the fact that existing aligners try to combine

these two potentially conflicting objectives into a single objective.

Results: We present Optnetalign, a multiobjective memetic algorithm for the problem of PPI net-

work alignment that uses extremely efficient swap-based local search, mutation and crossover op-

erations to create a population of alignments. This algorithm optimizes the conflicting goals of

topological and sequence similarity using the concept of Pareto dominance, exploring the tradeoff

between the two objectives as it runs. This allows us to produce many high-quality candidate align-

ments in a single run. Our algorithm produces alignments that are much better compromises be-

tween topological and biological match quality than previous work, while better characterizing the

diversity of possible good alignments between two networks. Our aligner’s results have several

interesting implications for future research on alignment evaluation, the design of network align-

ment objectives and the interpretation of alignment results.

Availability and Implementation: The Cþþ source code to our program, along with compilation

and usage instructions, is available at https://github.com/crclark/optnetaligncpp/

Contact: connor.r.clark@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

As the sizes of known protein–protein interaction (PPI) networks

grow, so does interest in analyzing them. One of the more ambitious

efforts in this area is aligning the PPI networks of two different spe-

cies, with the goal of identifying orthologous proteins as well as

shared pathways and complexes that hint at the PPI network of a

common ancestor. There has already been a good deal of progress in

this area, with past work reporting success in finding large shared

subnetworks between Saccharomyces cerevisiae and Homo sapiens,

as well as success in reconstructing phylogeny based on network

overlap discovered by an aligner (Kuchaiev and Przulj, 2011;

Kuchaiev et al., 2010).

Despite these successes, PPI network alignment is a young re-

search area. The incomplete, noisy nature of existing PPI networks

makes alignment difficult, with existing aligners performing dramat-

ically better on noise-free synthetic networks compared with noisy

real-world networks (Clark and Kalita, 2014). Furthermore, it has

been found that the two objectives of biological and topological fit

that these aligners optimize conflict to a larger extent than previ-

ously realized. Different aligners construct alignments that are dra-

matically different, with some optimizing topological fit at the
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expense of sequence similarity, while others do the opposite. While

some of these aligners provide a user-controlled parameter for ad-

justing between optimizing one objective over the other, even when

this parameter is adjusted as widely as possible, existing aligners

only output alignments in small, non-overlapping regions of object-

ive space that are often quite distant from each other (Clark and

Kalita, 2014; Patro and Kingsford, 2012). Lastly, these aligners tend

to produce very different alignments, sometimes agreeing on as few

as 5% of their total aligned pairs (Patro and Kingsford, 2012),

which makes it necessary for the user to run many different aligners

to get an idea of the many alignments possible. The difficulties with

the conflict between topological and biological fit, and the disparate

results of existing aligners, show that the problem of PPI network

alignment is far from solved.

To this end, we introduce a multiobjective memetic algorithm,

Optnetalign (OptimizingNetwork Aligner), for performing network

alignment. Unlike most existing aligners which use custom-built esti-

mators of node similarity which don’t always have a clear connec-

tion to final alignment quality, we use a multiobjective memetic

algorithm (Deb, 2001), which can produce a large number of di-

verse, high quality alignments in a single run. Our approach is able

to better optimize both the topological and sequence similarity of

the proteins aligned, and instead of arbitrarily emitting a single

alignment at one point in objective space, Optnetalign produces a

Pareto front of alignments that characterize the wide variety of pos-

sible tradeoffs between the conflicting objectives of network align-

ment. This tends to produce a wider variety of alignments than

using all previously created aligners together, and these alignments

tend to be comparable to or of better quality than those produced

by previous aligners.

2 Methods

2.1 PPI networks and the goal of alignment

A PPI network is a graphical representation of all the proteins in a

given organism, where the nodes of the network represent proteins,

and a link between two proteins indicates that they interact to per-

form some biological function. Protein interaction is measured

through a number of different experimental methods, with the most

common being coimmunoprecipitation (Aebersold and Mann,

2003). A large amount of effort has gone into collecting and curat-

ing the results of many protein interaction experiments, and the re-

sults are stored in databases such as DIP (Xenarios et al., 2002),

Isobase (Park et al., 2011), BIOGrid (Chatr-aryamontri et al., 2013)

and STRING (Franceschini et al., 2013). A related research effort in

this area is the Gene Ontology (GO), a large database annotating

genes and proteins with information about their function, the biolo-

gical processes in which they participate and the cellular compo-

nents in which they are found (Ashburner et al., 2000). The GO

database is constantly being updated and revised as new discoveries

are made. An important area of research is the transfer of GO anno-

tations from proteins in one species to orthologous proteins in an-

other. Some species have more complete GO annotation data than

others, so it is desirable to find a way to accurately and automatic-

ally predict GO annotations for unannotated proteins in less-studied

species.

PPI network alignment is a way to use both the sequence similar-

ity between proteins, as well as the topology of PPI networks, to

find likely orthologous proteins between species. The goal is to cre-

ate algorithms that can automatically find likely subnetworks of

two species’ PPI networks that are common to the two species, and

from there form hypotheses about protein function in species for

which less information exists. A single run of an alignment program

can generate thousands of candidate ortholog pairs.

2.2 Pairwise global alignment

We are given two graphs G1 ¼ ðV1;E1Þ and G2 ¼ ðV2;E2Þ, whose

vertices represent proteins, and the presence of an edge (u, v) in E1

(or E2) indicates that the two proteins represented by u and v inter-

act in G1 (or G2). We assume, without loss of generality, that

jV1j�jV2j.

The problem of pairwise global alignment is to find a one-to-one

function (In the definitions that follow, we will employ a shorthand

where f is also applied to edges. In such cases f ððu; vÞÞ is shorthand

for ðf ðuÞ; f ðvÞÞ. This makes several definitions significantly easier to

read.) f : V1 ! V2 that maps each node in V1 to the node it best

matches in V2, according to the topology of the network around the

node and the sequence similarity of the proteins represented by the

nodes. The various methods for determining the ‘best’ match will be

described further below. The resulting alignment f shows us a sub-

network that the two networks have in common. The problem of

global alignment is equivalent to the subgraph isomorphism prob-

lem, which is NP-Complete (Cook, 1971), so aligners produce ap-

proximate solutions using a variety of techniques that will be

discussed below.

2.3 Evaluating alignment quality

Once an alignment has been constructed, we must measure the ex-

tent to which it has satisfied the two objectives of maximizing both

the topological fit between the two networks and the number of

likely orthologs that have been matched. These objectives are in-

tended to measure the extent to which we have identified overlap-

ping pathways and orthology relationships respectively. Three

closely related metrics for topological fit have been used in the glo-

bal network alignment literature, which present different ways of

evaluating how well one network has been matched to the other: EC

(Kuchaiev et al., 2010), ICS (Patro and Kingsford, 2012) and S3

(Saraph and Milenković, 2014). Of these, EC is the most universally

used, while ICS and S3 are newer refinements of EC. These three

metrics are ratios taking values between 0 and 1, with higher values

being better. They all share the same numerator, which represents

the number of edges that have been conserved by the alignment f.

conservedðf Þ ¼ jf ðE1Þ \ E2j (1)

They differ, however, in their denominators. EC simply divides by

jE1j, showing us how many of the edges in the first network have

been successfully matched. ICS refines this by instead dividing by

jEG2 ½f ðV1Þ�j, the number of edges in the induced subgraph of G2 that f

maps to. This effectively penalizes alignments from sparse graph re-

gions to dense graph regions. S3 is a further refinement of ICS, which

penalizes dense-to-sparse as well as sparse-to-dense alignments by

dividing by jE1j þ jEG2 ½f ðV1Þ�j � jf ðE1Þ \ E2j. While we previously

evaluated existing algorithms using ICS (Clark and Kalita, 2014),

we switch to S3 in this article because, in contrast to the aligners we

evaluated previously, Optnetalign is able to ‘cheat’ when optimizing

ICS by minimizing the denominator without increasing the numer-

ator, and MAGNA exhibits this behavior as well (Saraph and

Milenković, 2014). S3 properly penalizes this behavior.

We also use a measure of agreement derived from biological

knowledge. The true alignment between two PPI networks is at least

partially unknown, so one cannot simply report the percentage of

nodes mapped to their true orthologs, except when using synthetic

Amultiobjective memetic algorithm 1989
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benchmark data. However, we can at least verify that the proteins

mapped to one another are similar in function. All the literature on

PPI network alignment makes use of GO annotations to evaluate the

accuracy of their alignments, by comparing the similarity of GO an-

notations between aligned proteins. Several papers simply report the

percentage of aligned pairs that share more than k GO annotations

(Kuchaiev and Przulj, 2011; Memišević and Pržulj, 2012;

Neyshabur et al., 2013), while others use ontological similarity

methods (Guzzi and Mina, 2014; Patro and Kingsford, 2012). We

use a Jaccard index, introduced by Aladag and Erten (2013). In the

context of network alignment, this measure is called GO consist-

ency, and is defined as

GOCðu; vÞ ¼
jGOðuÞ \GOðvÞj

jGOðuÞ [GOðvÞj
(2)

for an aligned pair of nodes u 2 V1 and v 2 V2, where GO(u) de-

notes the GO terms associated with the protein u. We restrict this to

GO terms at distance five from the root of the ontology, so as not to

confuse the analysis by using GO terms of differing specificity. We

then report the sum of the GO consistency over all alignment pairs

for each alignment produced.

To further ease comparison with existing aligners, we evaluate

on the same dataset of Isobase networks as we used in our previous

work (Clark and Kalita, 2014), which combines PPI information

from DIP (Xenarios et al., 2002), BIOGrid (Chatr-aryamontri et al.,

2013), and the Human Protein Reference Database (Prasad et al.,

2009), three curated sources of PPI data derived from a variety of

experimental methods (for more information on the Isobase net-

works, see our Supplementary Information File). The only differ-

ences are that we now use the S3 metric instead of ICS, and, since

the synthetic dataset NAPAbench (Sahraeian and Yoon, 2012) did

not exhibit the same tradeoff between ICS and biological similarity

that is exhibited in the real-world Isobase networks (Clark and

Kalita, 2014), we evaluate primarily on the Isobase networks, using

the NAPAbench data to verify the correctness of our alignments,

since the true alignments for NAPAbench are known.

Both topological similarity techniques and sequence similarity

have advantages and disadvantages. It has been argued that over-

reliance on topological similarity can be misleading, since actual

complexes may appear disconnected in current noisy, incomplete

datasets, and so sequence similarity information is essential to

produce the best alignment possible (Huang et al., 2012).

Sequence similarity scores also have their problems, since the ac-

tual level of sequence similarity between two proteins that serve a

similar function can vary (Chindelevitch et al., 2013). Previous

work has found (Clark and Kalita, 2014; Patro and Kingsford,

2012) that existing aligners uncover a tradeoff between topo-

logical fit and biological fit when constructing alignments—it is

not possible to jointly maximize both. This tradeoff can be quite

dramatic. For example, on the Caenorhabditis elegans–Drosophila

melanogaster alignment problem, NETAL (Neyshabur et al.,

2013) achieves an S3 of 0.41 and a GOC of 12, while PINALOG

(Phan and Sternberg, 2012) manages a S3 of 0.065 and a GOC of

230. When existing aligners are all plotted for one of these prob-

lems (as in Fig. 3 later), we see a distinctive curve of tradeoffs be-

tween these two objectives. We also find that these aligners

produce alignments in non-overlapping regions of the objective

space, even for those aligners that provide a parameter for con-

trolling the tradeoff between the two objectives. As we explain

further below, ours is the only aligner that was designed to expli-

citly explore the possible tradeoffs between these two objectives,

and to output many alignments for further analysis.

2.4 Existing alignment algorithms

One of the first algorithms for global network alignment was

IsoRank (Singh et al., 2008). This was then extended into a version

that could align many networks simultaneously, called IsoRankN

(Liao et al., 2009). These two work by computing a similarity meas-

ure similar to Google’s PageRank algorithm, and this is combined

with BLAST bit scores to find a mapping. Another notable set of

aligners is the GRAAL family (Kuchaiev and Przulj, 2011; Kuchaiev

et al., 2010; Memišević and Pržulj, 2012; Milenković et al., 2010).

These work by counting small induced subgraphs called ‘graphlets’

to compute pairwise node similarity. They differ mainly in what

additional similarity measures they use, and in their matching stages.

NATALIE 2.0 frames alignment as a relaxation of an integer linear

programming problem (El-Kebir et al., 2011). GHOST uses meth-

ods from spectral graph theory to estimate node similarity (Patro

and Kingsford, 2012). PINALOG recursively maps networks to-

gether by first matching dense subgraphs, and then matching the

nodes within those subgraphs (Phan and Sternberg, 2012). NETAL

uses topological data exclusively, iteratively computing match confi-

dence as the expected number of conserved edges (Neyshabur et al.,

2013). SPINAL uses both coarse- and fine-grained matching steps to

iteratively improve an alignment (Aladag and Erten, 2013). PISwap

(Chindelevitch et al., 2013) first creates a maximum-weight match

by bit score, and then improves the topological fit of the alignment

through swap-based local search. MAGNA (Saraph and

Milenković, 2014) is the first aligner to use a genetic algorithm, and

uses a crossover-only design.

Most aligners can be categorized as belonging to one of two

classes. The first class, which has been much more popular, is what

we call two-stage alignment. Such aligners first compute some esti-

mate of the similarity of each pair of nodes in V1 � V2 using some

topological similarity metric and (in most cases) BLAST bit scores or

E-values, and then use this similarity matrix to create a maximum-

weight bipartite matching between the nodes of V1 and V2. A simple

strategy for this matching is the Hungarian algorithm, which pro-

duces an optimal matching (Chindelevitch et al., 2013; Milenković

et al., 2010). However, because the similarity scores used are them-

selves only approximate, the Oðn3Þ time complexity of the

Hungarian algorithm is generally not worth the time, and most

aligners favor faster, greedy matching algorithms. Many aligners,

such as GRAAL (Kuchaiev et al., 2010), MI-GRAAL (Kuchaiev and

Przulj, 2011), and GHOST (Patro and Kingsford, 2012), use vari-

ants on a ‘seed-and-extend’ method, where the most similar pair of

nodes is aligned first, and then nodes neighboring that pair are

matched.

The second, and much smaller class, that is sometimes used in

network alignment are search-based aligners. These aligners use

heuristic or metaheuristic algorithms to continuously refine a single

alignment or a population of alignments. With such algorithms, the

alignment objectives that these aligners are trying to optimize are

computed continuously as the alignment is constructed, instead of

being measured afterward as they are in the two-stage aligners. Only

a handful of search-based aligners exist. These are SIM-T (Kpodjedo

et al., 2014), which uses tabu search, where ‘moves’ are additions

and removals of aligned pairs from the alignment; PISwap

(Chindelevitch et al., 2013), which uses the 3-opt heuristic to inter-

change the assignments of three aligned pairs at each step; and

MAGNA (Saraph and Milenković, 2014), which uses a genetic algo-

rithm that attempts to maximize either EC, ICS or S3. SPINAL

(Aladag and Erten, 2013) also performs some amount of swap-based

hill climbing in its ‘fine-grained’ matching stage. Outside of the bio-

logical network alignment literature, the use of metaheuristic search

1990 C.Clark and J.Kalita
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for graph matching has been researched as well, but these

approaches are less relevant as they only optimize topological fit

and are applied to graphs much smaller than those seen in bioinfor-

matics (Barecke and Detyniecki, 2007; Cicirello and Smith, 2000;

Cross et al., 1997; Lipets et al., 2009).

Optnetalign falls into the search-based category, because we be-

lieve the two-stage paradigm has a number of severe weaknesses.

First of all, two-stage aligners typically introduce both a novel way

of computing pairwise node similarity along with a new matching

algorithm. Little work exists on mixing-and-matching approaches to

the two stages to discover whether the first or second stage is more

responsible for the results of a given aligner. To our knowledge, the

only works attempting this compared only MI-GRAAL to

IsoRankN (Milenković et al., 2013) and MI-GRAAL to GHOST

(Crawford et al., 2014). Since two-stage algorithms do not track

alignment quality as they construct their alignments, it is very diffi-

cult to understand what portions of a two-stage algorithm are re-

sponsible for the quality of the results. This makes it difficult to

create a new algorithm of this type. As Saraph and Milenković

(2014) recently observed, these two-stage aligners, while hoping to

optimize metrics such as EC and some metric of GO term agree-

ment, actually optimize ad-hoc similarity scores that have no clearly

established relation to standard alignment evaluation metrics. The

existing literature provides little explanation of why or whether

such similarity scores would be expected to work. In contrast,

search-based aligners focus on maximizing the actual alignment ob-

jectives that are currently accepted in the alignment literature.

A problem shared by all existing aligners is that they do not ex-

plicitly approach the problem of network alignment as a multiobjec-

tive one. It has become increasingly clear that there is a tradeoff

between our alignment objectives, as we discussed above. However,

the best any existing aligner does to address this problem is provid-

ing users with a parameter a, which gives the user rough control

over the weight of biological or topological similarity in construct-

ing an alignment, with some equation similar to

simðu; vÞ ¼ a� tðu; vÞ þ ð1� aÞ � bðu; vÞ (3)

where sim(u, v) is the aligner’s estimated overall similarity between

nodes u and v and t(u, v) and b(u, v) are the aligner’s estimated topo-

logical and sequence similarity of the two nodes respectively. This is

insufficient. Not only does this approach requires trial-and-error ex-

periments on the part of the user, and complete recalculation of the

alignment each time a is adjusted, but existing aligners only cover a

narrow section of the objective space, even when varying a as widely

as possible. Optnetalign produces a variety of solutions more diverse

than existing aligners combined, and does so in a single run without

extra effort on the part of the user.

2.5 Multiobjective optimization

Metaheuristics are a family of optimization techniques for problems

that cannot be framed in a way amenable to standard optimization

techniques, such as when objective functions are discontinuous, not

differentiable or not functions of real numbers. In PPI network

alignment, our goal is to maximize several objectives that are a func-

tion of a network alignment—the problem must first be relaxed for

standard optimization techniques to work (El-Kebir et al., 2011).

Metaheuristics are thus a natural fit for network alignment. Genetic

algorithms are a particular family of metaheuristics inspired by bio-

logical evolution (Michalewicz and Fogel, 2004). Initially, a popula-

tion of candidate solutions are generated at random. These solutions

are ranked by their fitness, and the best of them are allowed to

‘breed’ to produce a new population of solutions. The new popula-

tion undergoes mutation with some small probability, and then the

process begins again, until an acceptable solution has been found

(Floreano and Mattiussi, 2008). This approach is applicable to

many problems, since it only requires a way of scoring the ‘fitness’

of candidate solutions, and a data structure representing solutions

for which we can define a useful crossover operation (for combining

two existing solutions) and a mutation operation (for randomly

modifying solutions). Memetic algorithms are a generalization of

standard genetic algorithms that additionally incorporate a local

search heuristic to further improve their results (Blum et al., 2011).

Genetic algorithms and local search heuristics are complementary—

the former explores large spaces quickly through crossover and mu-

tation, while the latter is particularly effective at refining solutions

that have been found.

While genetic algorithms have been used since the 1970’s (e.g.

Holland, 1975), variants capable of efficiently optimizing multiob-

jective problems have only become a focus of research more re-

cently, with algorithms such as NSGA-II (Deb et al., 2002) and

SPEA2 (Zitzler et al., 2001) becoming immensely popular. Other

local search approaches to multiobjective optimization have had

great success, as well (Corne et al., 2000; Czyzżak and Jaszkiewicz,

1998; Knowles and Corne, 2000). Multiobjective memetic algo-

rithms have also been developed in recent years (Knowles and

Corne, 2005; Knowles et al., 2001).

The key difference between single objective metaheuristics such

as MAGNA (Saraph and Milenković, 2014) and multiobjective

metaheuristics such as Optnetalign is that the latter can optimize

several objectives, even if they conflict, and then output a represen-

tative set of solutions that are optimal tradeoffs between the con-

flicting objectives. Standard genetic algorithms represent the fitness

of a solution as a single number, often by creating a linear combin-

ation of multiple objectives using an equation similar to Equation 3.

Then, solution x is preferred to solution y if fitnessðxÞ > fitnessðyÞ.

However, if x has a high topological fit and a low biological fit,

while y has a low topological fit and a high biological fit, it may be

that neither solution is clearly better. This information is lost using

the approach of Equation 3. Multiobjective optimization replaces

the greater-than relation with the subtler relation of Pareto domin-

ance, which operates on a vector of fitness values. We now intro-

duce several new terms used in multiobjective optimization (we refer

the reader to e.g. Deb, 2001 or Zhou et al., 2011 for a more thor-

ough description of these concepts than space permits here). The

first is Pareto optimality: a solution to a multiobjective optimization

problem is Pareto optimal if further increasing one of the objectives

would require decreasing one or more of the other objectives. Such

solutions represent optimal tradeoffs between the given objectives.

The second concept is Pareto dominance: solution x dominates solu-

tion y if x is at least as good as y with respect to all objectives, and

strictly better than y with respect to at least one objective. We prefer

a solution x to a solution y if x Pareto dominates y, and we are

indifferent between x and y if neither dominates the other. This

definition leads to the possibility that a set of solutions may be non-

dominated with respect to each other. Multiobjective genetic algo-

rithms work by selecting non-dominated members of the population

for reproduction at every generation, in the hopes of approximating

the set of Pareto optimal solutions. This approximate Pareto optimal

set will, in turn, allow us to characterize the Pareto front of the ob-

jective space—the boundary between attainable and unattainable so-

lutions. Multiobjective genetic algorithms output a wide variety of

representative solutions from the Pareto optimal set. Since these so-

lutions are all Pareto optimal, we cannot a priori prefer one of them

Amultiobjective memetic algorithm 1991
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over another, and a human decision maker must use some other in-

formation or subjective preference to decide which of these solutions

to keep. In the case of PPI network alignment, this means that our

algorithm produces a number of alignments with different tradeoffs

between topological and biological fit. These alignments can then be

studied further to better understand the relationship between the

two networks under consideration.

2.6 Our algorithm

We present a multiobjective memetic algorithm that discovers a rep-

resentative set of non-dominated alignments using crossover, muta-

tion and swap-based hill climbing. Our algorithm maintains a

population of non-dominated alignments and attempts to improve

them. The algorithm initializes with randomly-constructed align-

ments. On each iteration, Optnetalign selects random members of

the population, performs swap-based crossover and mutation, fol-

lowed by swap-based hill climbing. We randomly select either hill

climbing that improves one objective while ignoring the others, or

hill climbing that only makes moves that do not worsen any object-

ive. The resulting alignment is then placed in the population if it is

not Pareto dominated by any other population member, and align-

ments it Pareto dominates are removed from the population. This

continues until a user-specified time limit is reached, after which the

program outputs all non-dominated solutions found. Generally, we

find that the algorithm converges after about 10 h of runtime.

Following other genetic algorithms for network alignment, we

adopt a permutation encoding for our alignments (Barecke and

Detyniecki, 2007; Saraph and Milenković, 2014). In this encoding,

we label the n nodes of each network with the integers

f0;1; :::n� 2; n� 1g. Since we assume jV2j�jV1j, we add ‘dummy’

nodes to V1 so that jV1j ¼ jV2j. Then our alignment f can be stored

in memory as an array a such that if f(u)¼ v, then au¼ v. All indices

i�jV1j of a are ignored. This representation simplifies searching

through the space of alignments to searching through the space of

permutations of integers in the interval ½0; jV2jÞ, allowing us to

adapt permutation-based search operators that have been well-

studied in genetic and local search algorithms for the traveling sales-

man problem (Goldberg, 1989).

We adopt the Uniform Partially Matched Crossover (UPMX) op-

erator introduced in a genetic algorithm for a related largest com-

mon subgraph problem (Cicirello and Smith, 2000). We compared

this to several other standard and custom-built crossover operators

and found that it tended to give the best performance. UPMX works

as follows: for two permutations a and b, for each index i with prob-

ability cxswappb, swap the value of ai and bi. Unless ai¼bi, the new

values of ai and bi after the swap will occur in their respective arrays

in two places. To fix this, we also swap aj and bk, where j and k are

the indices of the duplicate values in their respective arrays. An ex-

ample of this swap process for index i¼0 follows.

1. Initial arrays: a ¼ f1;3; 2g and b ¼ f2; 1;3g.

2. Swap the first elements of a and b: a ¼ f2; 3;2g and

b ¼ f1;1; 3g.

3. a has a duplicate at j¼2 and b has a duplicate at k¼1. Swap aj
and bk: a ¼ f2; 3;1g and b ¼ f1;2; 3g.

For mutation, we also adopt a simple swap-based scheme. For a

permutation a, for each index i with probability mutswappb, we

randomly select an index j 6¼ i and swap ai with aj.

We also make use of two variants on a simple hill climbing algo-

rithm based on swaps. The first variant, hillClimbNonDominated,

performs repeated random swaps, undoing a swap if it worsens any

of the objective functions. The second variant, hillClimbOneObj,

takes an objective name as an argument, and only undoes a swap if

the given objective is worsened, ignoring any worsening of other ob-

jectives. We use the former hill climbing variant as a core function to

improve our population of alignments, and use the latter to increase

the variance of our population in objective space, which helps us to

find a better set of representatives of the approximated Pareto front.

It is important to note that our crossover, mutation and hill

climbing functions all use swapping as their basic operation. Since

the only way permutations are modified is by swapping, this allows

us to implement our fitness evaluations very efficiently—we only

compute the change in the user-specified objectives at each swap.

This allows us to evaluate millions of swaps per second on a desktop

CPU. This speed is such that a simplified version of our program,

which employs only hill climbing to create a single alignment, pro-

duces a single excellent alignment in seconds. The reasoning behind

Optnetalign is to leverage this speed to produce hundreds of align-

ments in the same amount of time that several other aligners take to

produce a single alignment, since waiting hours for a result is al-

ready expected by users of network alignment software.

Our population is stored in an archive data structure that auto-

matically discards dominated solutions when better solutions are

inserted. This gives us a data structure that stores only the non-

dominated solutions that have been found so far. When the archive

exceeds its user-defined size limit, it shrinks itself to the maximum

size by discarding the most crowded solutions, using the crowded

comparison operator first introduced in NSGA-II (Deb et al., 2002).

This helps to ensure that a diverse variety of solutions are main-

tained in the population at all times. This archiving strategy is simi-

lar to the multiobjective local search algorithm PAES (Knowles and

Corne, 2000).

To increase the performance of our algorithm, it was designed

from the beginning to be amenable to parallelization. The user speci-

fies how many threads the program is to use, and each thread exe-

cutes Algorithm 1 until a user-specified time limit has been reached.

The threads all share the same archive, which is the only point of

communication between the threads. This solution is highly scal-

able, and is able to fully utilize 16 processor cores in our tests. The

overall structure of the algorithm is very straightforward, and rem-

iniscent of other hybrid genetic algorithms in the literature; e.g.

(Nguyen et al., 2007). One quirk of the algorithm is that we first de-

cide probabilistically whether to perform hillclimbOneObj or

hillClimbNonDominated, but then afterwards, perform another

round of hillClimbNonDominated. This ensures that, when

hillclimbOneObj is chosen, the alignment is not left in a dominated

state that could easily be improved to a non-dominated one.

Algorithm 1 Per-Thread Loop

while time limit not reached do

ðparent1;parent2Þ  two random members of Archive

child initialize new alignment

with probability cxrate do

child crossoverðcxswappb;parent1;parent2Þ

end

with probabilitymutrate do

child mutateðmutswappb; childÞ

end

with probability oneobjrate do

randObj randomly-chosen objective

child hillclimbOneObjðrandObj; niters; childÞ

1992 C.Clark and J.Kalita
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else do

child hillclimbNonDominatedðniters; childÞ

end

child hillclimbNonDominatedðniters; childÞ

insert(child, Archive)

end while

The user-adjustable parameters of our algorithm include the

time limit, the rate of crossover (cxrate) and mutation (mutrate), the

probability of performing a swap at each index for crossover

(cxswappb) and mutation (mutswappb), the probability that single-

objective hill climbing will be used instead of non-dominated hill

climbing (oneobjrate), and the number of iterations of hill climbing

to perform in each loop (niters). We find that over the course of the

algorithm’s execution, the optimal rate of crossover, mutation and

one-objective hill climbing seem to vary. We thus provide the option

of automatically adjusting those rates to their rates of success at pro-

ducing non-dominated solutions over the course of the algorithm’s

execution. Other, more sophisticated control schemes exist in the

genetic algorithms literature (Eiben et al., 1999; Eiben and Smit,

2011), but this simple heuristic appears to work quite well. We find

that cxswappb¼0.5, mutswappb¼0.0001, and hillclimbiters¼

10000 are good settings for the remaining parameters. It is import-

ant to emphasize that we set the number of hill climbing iterations

quite high, so that computation time is dominated by hill climbing.

We find that hill climbing is best used as the primary means for ob-

taining results, with crossover and mutation mostly playing a sec-

ondary role to prevent premature convergence.

3 Results and discussion

As discussed above, we report our results aligning the networks

included in Isobase (Park et al., 2011). For each alignment problem,

we run our algorithm for 12h. We try two different sets of objectives.

In the first experiment, we set Optnetalign to maximize S3 as well as

the sum of the BLAST bit scores of proteins that have been aligned,

leaving GOC as an external measure of alignment quality. In the se-

cond experiment, we optimize S3 and GOC directly. The first experi-

ment is most directly comparable to existing aligners, which try to

optimize the sum of the bit score of all pairs of nodes that have been

aligned (i.e. a maximum-weight matching), while the second is an in-

vestigation of how well we can optimize the overlap of GO terms dir-

ectly, which helps us obtain an approximate upper bound on the

extent to which both topological fit and biological function can be

jointly optimized. For each alignment problem, we set Optnetalign’s

maximum population parameter to output an approximate Pareto

front containing at most 200 alignments.

Since Optnetalign outputs more candidate alignments than the

other aligners we evaluate against combined, we report the average,

minimum and maximum of S3 and GOC of the output alignments

for each problem. In our experiments, these numbers are stable from

run to run. We also compare the Pareto front of alignments our al-

gorithm produces to all the alignments produced by the aligners that

have a user-configurable tradeoff parameter between topological

and biological similarity for the C.elegans–D.melanogaster align-

ment problem.

We also make some changes in the aligners we compare with,

when compared with our previous benchmark paper. Since our

alignment algorithm is somewhat similar to PISwap and MAGNA,

we add these two aligners to the evaluation. We also remove

IsoRank (Singh et al., 2008), GRAAL (Kuchaiev et al., 2010),

MI-GRAAL (Kuchaiev and Przulj, 2011) and NATALIE (El-Kebir

et al., 2011) from consideration, since they were Pareto dominated

by other existing aligners on this dataset.

To ensure that GO annotations transferred by sequence similar-

ity were not skewing our results, we evaluated using only experi-

mentally-verified GO terms. For results using all GO terms, see our

Supplementary Information File.

3.1 First experiment benchmark results

Here we report the results of optimizing S3 and the sum of bit scores

of aligned pairs. We report the same data in tabular form in our

Supplementary Information File. Optnetalign matches or outper-

forms all existing aligners on S3, and outperforms all but one aligner

on GOC. As noted above, we report the minimum, average and

maximum of these scores. These metrics are almost perfectly in-

versely correlated, so for all of these experiments, the alignment

Optnetalign produces with the highest S3 has the lowest GOC, and

vice versa.

We first consider our performance on S3 in Figure 1. We must

note that several aligners crashed on several experiments. This is

denoted by a missing bar in these instances. The maximum S3 found

by Optnetalign on each problem instance is comparable to or ex-

ceeds that of NETAL, which was previously the best performer on

this dataset. However, as shown in Figure 2, our topologically best

alignments have much higher GOC scores than NETAL’s. Even our

alignments with the poorest topological quality tend to perform

comparably to or better than many existing aligners.

With respect to GOC scores, our best alignments are all a distant

second place behind PISwap. However, because PISwap works by

first maximizing sequence similarity with the Hungarian algorithm,

and then is limited to performing swaps that don’t worsen the se-

quence similarity matching, its topological fit is extremely low, with

S3 scores generally an order of magnitude lower than any other

aligner. Thus, PISwap’s alignments constitute an extreme point on

the Pareto front. On its topologically worst performance, PISwap

only finds 91 conserved edges on the C.elegans to S.cerevisiae align-

ment problem, out of the 4495 possible. Our best GOC scores,

which outperform all aligners except PISwap, come from alignments

that have non-trivial S3 scores that are in some cases, such as the

S.cerevisiae to H.sapiens problem, competitive with existing

algorithms.

We also compare the Pareto front found by Optnetalign on the

C.elegans to D.melanogaster problem to the range of tradeoffs pro-

duced by existing aligners that expose a tradeoff parameter to the

user for balancing topological and biological similarity. The results

in Figure 3 show that Optnetalign is able to find a much wider

Pareto front than all previous aligners. Previously, it was not nearly

as clear that such a wide range of results was possible. The align-

ments Optnetalign produced for this problem also varied greatly in

the pairs of nodes they chose to align. The least similar pair of net-

works had only 8.7% of their aligned pairs in common. The max-

imum was 73%, and the average was 36%. This diversity in aligned

pairs is comparable to the diversity in all the alignments produced

by previous aligners.

3.2 Second experiment benchmark results

Here we report the results we obtain when we set Optnetalign to op-

timize S3 and GOC directly. Since ours is the only aligner among

those tested that can optimize GO term consistency instead of bit

score sum, all other aligners are still optimizing bit score sum, when

Amultiobjective memetic algorithm 1993
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applicable, so all of the scores in Figures 4 and 5 are the same as in

Figures 1 and 2, except for Optnetalign’s.

In Figure 4, we see that our S3 results are much the same as be-

fore with the best alignments, with only slightly lower scores.

The average scores are somewhat lower now, especially on the latter

3 alignments, where the average no longer outperforms most align-

ers. The minimum scores are very similar to those in Figure 1,

as well.

The primary difference when optimizing GOC directly, instead

of its imperfect proxy of bit score sum, is that we are now able to

obtain GOC scores that outperform PISwap on several problems.

While on the C.elegans to D.melanogaster problem, PISwap still

strongly outperforms all other aligners, Optnetalign is actually able

to outperform PISwap on the latter three alignment problems, and

performs much more strongly on the other problems involving

C.elegans. These results show that apparently better results can be

obtained by optimizing GOC directly, and we recommend that fu-

ture aligners also include this functionality.

3.3 Synthetic benchmark results

While the preceding benchmarks show that Optnetalign obtains ex-

cellent performance on real-world data, the true alignment for such

networks is unknown. Therefore, we additionally benchmark

against the NAPAbench network alignment benchmark dataset

(Sahraeian and Yoon, 2012) to evaluate node correctness—the share

of nodes in the smaller network that have been correctly mapped to

orthologous nodes in the second. On these synthetic tests,

Optnetalign achieves performance similar to, but slightly worse

than, the best-performing existing aligners on this dataset, PISwap

and GHOST, with Optnetalign’s best-scoring alignments achieving

node correctness levels between about 77 and 80%. On this dataset,

the alignments with highest node correctness are the alignments on

the high topological side of the Pareto front found; biological

Fig. 1. S3 score for various aligners and our own for the Isobase dataset,

when Optnetalign is set to optimize S3 and sum of bit scores. Note that the

bars in the chart are in the same order as in the legend

Fig. 2. GOC for various aligners and our own for the Isobase dataset, when

Optnetalign is set to optimize S3 and sum of bit scores. Only GO terms with

experimental evidence codes are used

Fig. 4. S3 score for various aligners and our own for the Isobase dataset,

when Optnetalign is set to optimize S3 and GOC. Note that the bars in the

chart are in the same order as in the legend

Fig. 3. Pareto fronts found by various aligners with adjustable tradeoff param-

eters and our own for the C.elegans to D.melanogaster alignment problem,

when Optnetalign is set to optimize S3 and sum of bit scores. The scatter plot

here is visually indistinguishable from equivalent plots using other networks

from this dataset. We use C.elegans to D.melanogaster in this figure because

SPINAL and GHOST tended to crash on other problems, giving incomplete

data

1994 C.Clark and J.Kalita
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similarity is less helpful, though still necessary, to create correct

alignments. For more details, see our Supplementary Information

File.

3.4 Execution times

The benchmarked aligners differed greatly in their execution times.

Unfortunately, since not all aligners were available for the same

platform, we had to execute many of them on virtual machines,

which prevented us from performing a precise comparison of their

relative execution times. Instead, we report here ‘ballpark’ execution

times, expressed in orders of magnitude. Like several of the best-per-

forming aligners, Optnetalign requires several hours to obtain good

results. Since Optnetalign is a metaheuristic, it can conceivably keep

trying to improve its alignments indefinitely. However, after be-

tween 10 and 12h, it usually failed to find any further improvement.

For this reason, we ran all tests of Optnetalign with a time limit of

12 h. Comparison here is not entirely straightforward, however.

Optnetalign uses efficient swap-based operators that can produce

alignments extremely quickly. These operators allow Optnetalign to

produce hundreds of mutually non-dominated alignments in the

course of one run. In contrast, other aligners with adjustable trade-

off parameters only produce one alignment per run, and so must be

run many times to produce many alignments. When the user wants

to produce many alignments at different tradeoffs, Optnetalign can

save the user a significant amount of time. Additionally, if the user

wants only one alignment, a simplified version of Optnetalign is

available that can produce a single alignment in seconds or minutes,

depending on the size of the networks.

Aligner Time

NETAL seconds

PINALOG minutes

SPINAL minutes

GRAAL hours to days

C-GRAAL hours to days

GHOST hours to days

IsoRank minutes

PISwap minutes

MAGNA hours to days

Optnetalign hours to days

3.5 Comparing objectives

The speed of Optnetalign, its ability to handle any number of object-

ives, and the large number of diverse alignments it can create in a

reasonable amount of time, allow us to perform novel analyses that

explore the inherent tradeoffs between many objectives, as well as

examine how different objectives are correlated. This can give us in-

sight into the nature of the network alignment problem, and help us

identify deficiencies in current alignment evaluation metrics. We

demonstrate this by performing another run of the S.cerevisiae to

H.sapiens problem, in which we set the aligner to optimize EC, ICS,

S3, sum of bit scores and GOC. This time, we set the maximum

archive size very high, to allow the aligner to output as many non-

dominated alignments as possible in a 12 h run. This resulted in 571

unique, non-dominated alignments. The minimum agreement on

aligned pairs for these alignments was 1%, the maximum was 92%

and the average was 8.3%. This lack of agreement is consistent with

the lack of agreement between existing aligners (Patro and

Kingsford, 2012), so this confirms that our aligner produces align-

ments as diverse as using many different previously-published align-

ers together.

We present a correlation matrix for our objectives in Table 1.

EC and S3 are strongly positively correlated, but, as we noted above,

since Optnetalign can minimize the ICS denominator without

increasing the number of conserved edges, ICS is negatively corre-

lated with the other two topological metrics. We also include the

commonly used metric of the number of nodes in the largest con-

nected common subgraph (LCCS) here (see e.g. Kuchaiev and

Przulj, 2011 for more information), which Optnetalign cannot opti-

mize directly. To demonstrate how Optnetalign allows us to com-

pare the behavior of different alignment metrics, the relationship

between ICS and GOC is illustrated in Figure 3 of our

Supplementary Information. To better understand ICS inflation, we

also present a plot of EC against ICS in Figure 4 of our

Supplementary Information.

This experiment also demonstrates the potential utility of opti-

mizing for GO term consistency instead of bit score sum. In Figure 6

in our Supplementary Information, we show that, while bit score

sum and GOC generally correlate, the highest GOC scores we ob-

tain have bit scores sums that are less than half of the highest bit

score sum Optnetalign finds. This reinforces the fact that, in some

cases, proteins of similar function can have significant differences in

their sequences, and it shows the value of optimizing GOC directly.

This large set of alignments again highlights the inherent conflict

between optimizing measures of topological fit and measures of bio-

logical fit simultaneously. In Figure 5 of our Supplementary

Information, we show S3 plotted against GOC. Even though most of

the alignments dramatically outperform those of previous aligners,

Fig. 5. GOC for various aligners and our own for the Isobase dataset, when

Optnetalign is set to optimize S3 and sum of GOC

Table 1. Correlation matrix for various objectives on the

S.cerevisiae to H.sapiens alignment problem

ICS S3 EC GOC Bit score sum LCCS size

ICS 1.0 �0.132 �0.338 0.079 �0.103 �0.42

S3 1.0 0.957 �0.964 �0.848 0.939

EC 1.0 �0.948 �0.796 0.987

GOC 1.0 0.81 �0.91

Bit score sum 1.0 �0.759

LCCS size 1.0

Unlike the other objectives, the number of nodes in the largest common

connected subgraph (LCCS) was not set as an optimization objective in our

program; it was computed afterwards

Amultiobjective memetic algorithm 1995
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we still see a distinct tradeoff between S3 and GOC. Since previous

aligners varied dramatically in performance while only outputting a

single alignment, there was very little evidence that such a wide

Pareto front between these two objectives was obtainable. Previous

aligners which provided a user-controlled tradeoff parameter be-

tween these topological and biological similarity scores framed the

parameter as a small tweak, and in most cases, adjusting that par-

ameter through its entire range, as we did in producing Figure 3, ex-

plores only a small portion of objective space. Therefore, it was not

clearly understood that these two objectives conflict so sharply.

3.6 Potential directions for future work

Our results here show some weaknesses in existing network align-

ment research that open up many possibilities for future work.

Perhaps the most glaring question, given these results, is that of the

tradeoff between biological and topological similarity. The assump-

tion underlying the entire premise of global network alignment is

that different species share large regions of their PPI networks,

which they inherited from a common ancestor. Our results show

that finding that overlap is not as easy as was previously thought.

We can either align two networks in a way that matches many

neighbors in G1 to many neighbors in G2, or we can align two net-

works in such a way that proteins with similar GO annotations are

matched together. It does not appear from our results that it is pos-

sible to do both well. There are a number of possible reasons for this

that should be better explored in future work. First, as we noted pre-

viously (Clark and Kalita, 2014), this tradeoff is much less dramatic

in synthetic networks. It’s possible that currently known protein net-

works have too many false positive and false negative edges to be

aligned reliably, and the false positive edges mislead alignment algo-

rithms. If this is the case, we should probably prefer alignments with

higher GOC, even if they have a lower S3. Second, it is possible that

our current best topological metrics are insufficient and mislead

Optnetalign. These metrics all essentially count how many neigh-

bors in G1 have been matched to neighbors in G2, but they have no

way of ensuring neighbors of neighbors are matched to neighbors of

neighbors, or that other large structures between networks are

matched properly. One proposed metric that partially overcomes

this is to report the size the largest connected common subgraph,

but we have found that this metric correlates so strongly with met-

rics like S3 that it does not provide us with much additional helpful

information. This makes sense intuitively: conserving one more edge

could join two previously disconnected common subgraphs and es-

sentially double the score. Equivalently, reporting the size of the

largest common connected subgraph doesn’t tell us anything about

the distribution of the sizes of the remaining connected subgraphs

found. A few moderately large ones may be much more helpful than

one very large one, especially if the species are more distantly

related. Our algorithm performs well even when optimizing many

objectives in one run, and, as we show above, this can be used to

critically evaluate different candidate objectives.

It would also be possible to use this aligner to evaluate existing

aligners’ approximate topological similarity metrics, such as

GHOST’s (Patro and Kingsford, 2012) spectral graph signatures or

graphlet degree signatures (Pržulj, 2007; Milenković and Pržulj,

2008). The relative performance of these similarity metrics has al-

ways been unclear, though some preliminary work has been done on

the problem (Crawford and Milenković, 2014; Crawford et al.,

2014; Milenković et al., 2013). With metaheuristic multiobjective

alignment, we could optimize many of these metrics at once and

analyze many alignments to determine which ones best predict or

conflict with the objectives of network alignment. It’s even possible

that some of these similarity measures, when paired with

Optnetalign, could produce better results than optimizing S3 or

GOC directly.

An important direction for future work is to find ways to sum-

marize or condense the large number of possible alignments between

two PPI networks. The original goal of pairwise global alignment

was to produce the one best alignment given our objectives. Our

work here has shown that currently studied alignment objectives do

not uniquely specify a best alignment. Instead, there are many di-

verse alignments along a wide Pareto front, and these alignments

may agree on as few as 1% of their aligned pairs while still appear-

ing good with respect to at least one objective. While this was al-

ready known, our multiobjective aligner makes this problem much

more obvious. This creates difficulties for a biologist who would

like to use the output of such an algorithm. An obvious next step

would be to find ways to summarize the results of these alignments

so that someone who wants to use an alignment can either pick the

alignment that best fits their particular needs, or produce a compos-

ite alignment that summarizes the most interesting alignments

found. We have done some preliminary experiments with

creating partial alignments, using the number of aligned pairs of the

alignment as an objective. This could be used to produce small,

local alignments and large, global alignments in one run of the pro-

gram as well, which would unify the two related, but heretofore

separate, techniques of local and global network alignment. This

has similarities to NetAligner (Pache and Aloy, 2012; Pache et al.,

2012), which is another tool capable of both local and global

alignment. There are many other possibilities for producing

summary or approximate alignments, as well. The recent publica-

tion of DualAligner (Seah et al., 2014) is a good step in this

direction.

4 Conclusion

We have shown that Optnetalign can outperform or perform com-

petitively with the best previously published aligners. Furthermore,

since it is a multiobjective algorithm, it manages to better balance

the tradeoff between the conflicting objectives of biological and

topological fit. Its ability to produce a large number of alignments in

one run allows us to explore the problem of network alignment

more thoroughly, and reveals the strengths and weaknesses of cur-

rent evaluation metrics. We expect Optnetalign will be useful not

only in aligning particular PPI networks to one another, but also in

evaluating and experimenting with new alignment objectives, as

well. The large number of highly diverse alignments Optnetalign can

produce allows us to thoroughly understand the sometimes complex

relationship between alignment objectives, and also shows promise

in developing new techniques to combine many alignments into

summary alignments, to produce many-to-many alignments, or to

create local alignments that find small-scale regions of similarity be-

tween PPI networks. Perhaps most importantly, instead of running

many different programs dozens of times to get a wide variety of

possible alignments to analyze, users of alignment software need

only run Optnetalign once.
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