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Abstract

This paper develops a multiobjective programming model for the optimal allocation of passenger train
services on an intercity high-speed rail line without branches. Minimizing the operator's total operating cost
and minimizing the passenger's total travel time loss are the two planning objectives of the model. For a
given many-to-many travel demand and a speci®ed operating capacity, the model is solved by a fuzzy
mathematical programming approach to determine the best-compromise train service plan, including the
train stop-schedule plan, service frequency, and ¯eet size. An empirical study on the to-be-built high-speed
rail system in Taiwan is conducted to demonstrate the e�ectiveness of the model. The case study shows that
an optimal set of stop-schedules can always be generated for a given travel demand. To achieve the best
planning outcome, the number and type of stop-schedules should be ¯exibly planned, and not constrained
by speci®c stopping schemes as often set by the planner. Ó 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The operation of passenger train services is based on regular interval, periodic or cyclic train
schedules. The planning of train schedules forms the most crucial task in railroad operations
planning (Hooghiemstra, 1996). Mathematical programming methods have been applied to the
optimization problems arising in the planning process of train schedules (Assad, 1980a; Harker,
1990; Higgins et al., 1996; Bussieck et al., 1997b). Most of the optimization problems in train
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planning and scheduling are handled by single-objective approaches. The single planning objective
is usually constructed from the perspective of either the user (such as time, distance, or service level)
or the operator (such as cost, revenue, or capacity). However, the nature of the train-schedule
planning problem is inherently multiobjective. This is primarily due to the multiplicity of interests
embodied by di�erent stakeholders and social concerns. Multiobjective programming techniques
have been developed to provide the decision maker with explicit consideration of the relative values
of the objectives which are implicitly made in single-objective approaches (Cohon, 1978).

Current and Min (1986) give a systematic review of the transportation planning literature using
multiobjective analysis. These studies generally produce better planning alternatives, mainly be-
cause relevant factors can be considered as the planning objectives and evaluated in non-com-
mensurable units. Some recent studies have also shown advantages in dealing with the
multiobjective nature of the transportation planning problem, especially in transportation net-
works (Current et al., 1987), air services planning (Flynn and Ratick, 1988), bus operations
planning (Tzeng and Shiau, 1988), airline ¯ight planning (Teodorovic and Krcmar-Nozic, 1989),
freight train planning (Fu and Wright, 1994), urban school bus planning (Bowerman et al., 1995),
transit network design (Israeli and Ceder, 1996), and transportation investment planning (Teng
and Tzeng, 1996). In this paper, we formulate the optimal planning problem of passenger train
services on an intercity high-speed rail (HSR) line as a multiobjective programming model from
both the passenger's and the operator's viewpoints.

Due to the complexity of the rail operations system, a hierarchically structured planning
process is usually applied to generate and maintain train schedules (Assad, 1980b; Harker, 1990;
Bussieck et al., 1997a). In a rail network system, the fundamental base of the train schedule is a
line plan which determines the number of trains serving the line connecting two terminal stations
in a ®xed time interval (e.g. in one hour) (Bussieck et al., 1997a, b). For a rail line without
branches, passenger train scheduling is mainly concerned with the determination of stop-schedules
for all train trips planned (Salzborn, 1969; Assad, 1982).

A stop-schedule for a train trip on a rail line speci®es a set or subset of stations at which the
train stops. For this class of the train scheduling problem, the most common approach is to ®nd
the best alternative from all possible stop-schedules with respect to given performance criteria,
using dynamic programming (Assad, 1980a). These stop-schedules are constructed based on
various zoning schemes (e.g. Salzborn, 1969; Ghoneim and Wirasinghe, 1986), local versus ex-
press service (Nemhauser, 1969), speci®c stopping patterns (e.g. Sone, 1992, 1994; Claessens,
1994) and various numbers of railcars (e.g. Salzborn, 1970). A number of speci®c stop-schedules
such as all-stop, skip-stop and zone-stop schedules (Eisele, 1968) are thus identi®ed and studied.
Research results have shown that zone-based stop-schedules have some advantages over all-stop
and skip-stop schedules for the travel demand of many-to-one type on a suburban commuter rail
line (Ghoneim and Wirasinghe, 1986).

Despite its proven advantages, the zone-based approach may not be applicable to rail lines
other than suburban commuter systems. This is because typical zoning schemes are speci®cally
suited for a rail line where the majority of passenger volume originates or terminates at one or a
few city center stations (Sone, 1992). In fact, the empirical study conducted by this paper shows
that a combination of various stop-schedule types, in which no speci®c zoning schemes can be
formed, is the best stop-schedule plan for serving passengers with many-to-many origin±desti-
nation (O±D) on an intercity HSR line.
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In subsequent sections, we ®rst present a hierarchical framework for the planning process of
passenger train services on an HSR line. We then formulate the major tactical planning decisions
as a multiobjective programming model. Finally an empirical study on the to-be-built Taiwan's
HSR system is presented to show how the model works and to examine its e�ects under various
planning scenarios. Speci®c conclusions on train services planning for Taiwan's HSR line are
drawn and discussed.

2. Planning of HSR passenger train services

HSR systems have been regarded as the intercity passenger transport mode of choice for se-
lected corridors or routes of up to about 800 km. HSR operation requires much more coordinated
planning than traditional rail systems in order to provide high-volume, high-frequency passenger
services. In the context of train planning, HSR train trips need to be e�ectively planned by an
optimization-based model.

The distinct planning decisions of providing passenger train services on an intercity HSR
line can be hierarchically structured as in Fig. 1. The classi®cation of decision levels is based
on the framework proposed by Anthony (1965). This paper focuses on the development of an
optimal model for train services planning to support major tactical decisions. Tactical deci-
sions are concerned with the e�ective allocation of available resources to meet the travel de-
mand. The train service plan determines (a) the number of train trips (frequency of service)
required, (b) the stations at which each train trip stops (stop-schedule plan) and (c) the
minimum number of trains required (size of ¯eet). A planning horizon is usually speci®ed to
re¯ect varying operating periods of the day such as peak or o�-peak periods for meeting
di�erent levels of travel demand. The planning horizon is normally divided into ®xed time
intervals (e.g. on an hourly basis) to facilitate the construction of train schedules (Salzborn,
1969; Bussieck et al., 1997b). The stop-schedule plan and the service frequency are determined
for the speci®ed time interval, called operating period. The ¯eet size is determined for the
planning horizon.

The train service plan is drawn based on some strategic decisions, including O±D pairs of travel
demand, station settings, operating capacities and planning parameters. The plan is used as a
basic guideline to support operational decisions for day-to-day train operations.

E�ective planning for providing passenger services requires a balanced view of demand and
supply. On the demand side, passenger satisfaction is the key to the successful operation of
railroad services. Apart from the safety and comfort factors, convenience is the passenger's major
concern when choosing railroad travel. Convenience is related to the service frequency and
journey time. In the context of train-schedule planning, train schedules that minimize the pas-
senger's travel time can satisfy this passenger's requirement. The passenger's total travel time on a
rail line without branches usually includes waiting time, riding time, and train stopping time. In
the tactical planning model for determining optimal train stop-schedules, we need to consider only
the train stopping time for re¯ecting the passenger's travel time loss. This is due to the following
settings and assumptions: (a) trains are operated based on ®xed and published timetables (in the
case of Taiwan's HSR line), and passengers are assumed to arrive at the station accordingly re-
sulting in no waiting time, (b) the waiting time is to be considered by the operational planning
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model from which detailed timetables are determined, (c) the passenger riding time between any
two stations is assumed to be ®xed and independent of the stop-schedule and the mode of op-
eration.

On the supply side, the railroad operator would demand the overall operating cost minimized.
This can be achieved by a train service plan that optimally allocates minimum train trips required
to meet the travel demand. To balance the requirements between the operator and the passenger,
two planning objectives are considered: (a) minimizing the operator's total operating cost and (b)
minimizing the passenger's total travel time loss. The operating cost of a train trip consists of a
®xed overhead cost and a variable cost depending on the trip distance. The operator's total op-
erating cost is de®ned to be the sum of the ®xed and variable operating costs over all train trips
that are required to meet the travel demand. There is travel time loss for a passenger if the train
stops at an intermediate station at which the passenger does not board or alight. The passenger's
total travel time loss is de®ned as the sum of the time losses for stopping at intermediate stations
for all the passengers served by all train trips.

Fig. 1. Planning hierarchy of passenger train services.
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The two planning objectives con¯ict with each other, and are mainly in¯uenced by the stop-
schedules. This objective setting coincides with the two criteria (carriage miles and intermediate
passenger stops) used by Salzborn (1969) for determining optimal (zone-based) stop-schedules on
a suburban rail line of many-to-one type demand. On an inter-city rail line, the demand pattern of
passenger train services is many-to-many. In other words, passengers are picked up at many
di�erent origins (stations) and conveyed to many di�erent destinations (stations) within its service
line. For meeting a given travel demand during a given operating period, providing only all-stop
services will need fewer train trips, thus reducing the total operating cost. However, this will
increase the passenger's total travel time due to additional time required for stops at intermediate
stations. If express and/or skip-stop services with fewer stops are provided, passengers will spend
less travel time. This will increase the total operating cost, as more train trips are required.

Clearly, a combination of various service types realized by a train stop-schedule plan that
makes best trade-o�s between the minimum operating cost and the minimum travel time loss is
required. In the next section, we formulate a multiobjective programming model to generate the
best-compromise train service plan for the general passenger train planning problem on an in-
tercity rail line.

3. Model formulation

3.1. The planning problem

On a passenger train service line with a set of N stations X � f1; 2; . . . ;Ng, train trips are to be
provided by a ¯eet of n trains which are operated according to a set of R stop-schedules within a
planning horizon T. There are a set of shunting stations U (U 2 X), including stations 1 and N,
which can be used as a start or end station from which a train trip starts or ends. The running time
between any two stations is ®xed. The ®xed overhead cost C1 (per train-day) and the variable
operating cost C2 (per train-km) are given, and are independent of the mode of operation.
The travel demand of many-to-many O±D for a speci®ed or planned operating period
t �t 2 f1; 2; . . . ; Tg� (e.g. one hour) over the planning horizon T is given, and is independent of the
mode of operation. The ¯eet of n trains is designed to meet the total travel demand Dijt from
station i �i � 1; 2; . . . ;N� to station j �j � 1; 2; . . . ;N� for the operating period t.

During an operating period t �t 2 f1; 2; . . . ; Tg� with Ht operating hours, based on a stop-
schedule r �r 2 f1; 2; . . . ;Rg� a train with seating capacity Qtr departs from a start station
s �s 2 X�, passes and/or stops at a number of intermediate stations (e.g. i; j 2 X�, and arrives at
an end station. The distance and running time between station s and station i are Lsi and Usi

respectively. The time required for stops at station i is Wi. During the train trip, there are Pitr

passengers on board when the train stops at stations i, and the passenger volume served between
stations i and j is vijtr. Then the train returns to the start station s following the stop-schedule r in
reverse order, starting from the end station. Gr terminal time is required for making the round
trip. The total trip distance of all train trips based on the stop-schedule r over the period t is Ktr.

The planning problem is to determine (a) the optimal train stop-schedule plan, specifying a set of
R stop-schedules, (b) the service frequency ftr for each stop-schedule r �r � 1; 2; . . . ;R�, and (c) the
minimum operating ¯eet size n required for meeting the total travel demand Dijt within the period t.
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The passenger volume vijtr served by each stop-schedule r is also determined. The planning ob-
jectives are to minimize the total operating cost and to minimize the total travel time loss.

To simplify the solution procedure, the problem is formulated as a multiobjective linear pro-
gramming (MOLP) model. This is achieved by using an arbitrary large constant M in the model
for transforming the nonlinear nature of the two objectives into a linear form. To facilitate this
transformation, a stop-schedule r is represented by a 0-1 integer decision variable xitr. During the
period t, if a train, based on the stop-schedule r, stops at station i, then xitr� 1; otherwise, xitr� 0.

3.2. The model

Objectives

minimize Z1 �
XT

t�1

XR

r�1

C1n� C2KtrHt; �1�

minimize Z2 �
XT

t�1

XR

r�1

XNÿ1

i�s�1

WiPitrHt; �2�

subject to Ktr P 2Lsiftr ÿM�1ÿ xitr�; i � s� 1; . . . ;N ; �3�

Pitr P
Xiÿ1

p�s

XN

q�i�1

vpqtr �
XN

q�i�1

Xiÿ1

p�s

vqptr ÿM�1ÿ xitr�; i � s� 1; . . . ;N ÿ 1; �4�

XR

r�1

vijtr � Dijt; i � 1; 2; . . . ;N ; j � 1; 2; . . . ;N ; �5�

XN

i�s�1

xitr6 �N ÿ s�xstr; �6�

ftr6Mxstr; �7�XN

j�1

vijtr �
XN

j�1

vjitr6Mxitr; i � s; . . . ;N ; �8�

XR

r�1

ftr6E; �9�

Xjÿ1

p�s

XN

q�j

vpqtr6Qtrftr; j � s� 1; . . . ;N ; �10�

Xjÿ1

p�s

XN

q�j

vqptr6Qtrftr; j � s� 1; . . . ;N ; �11�

n P
XR

r�1

Atr

 
�
XNÿ1

i�s�1

Bitr � 2Grftr

!
; �12�
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Atr P 2Usiftr ÿM�1ÿ xitr�; i � s� 1; . . . ;N ; �13�
Bitr P 2Wiftr ÿM�1ÿ xitr�; i � s� 1; . . . ;N ÿ 1; �14�

where t � 1; 2; . . . ; T ; r � 1; 2; . . . ;R; s 2 X; M is a large constant.
The objective function Eq. (1) is to minimize the total operating cost for the planning horizon

T. This includes (a) total overhead costs of n trains and (b) total variable operating costs for the
trip distance Ktr of each stop-schedule r, for the operating hours Ht in each period t. The objective
function (2) is to minimize the passenger's total travel time loss for the planning horizon T. For
each stop-schedule r, the travel time loss within each period t is obtained by multiplying the time
required for stops (Wi) at station i, the number of passengers on board (Pitr) at station i, and the
operating hours (Ht).

Constraints (3) de®ne the total trip distance Ktr for each stop-schedule r in the period t for the
objective function (1). Ktr is obtained by multiplying two (for round trips), the distance between
station s and the end station of the stop-schedule r, and its service frequency ftr together. The use
of the large constant M and the 0-1 variable xitr in (3) ensures that the trip distance Ktr obtained is
the maximum of the distances Lsi between station s and all stations i �i � s� 1; . . . ;N� on the
stop-schedule r (i.e. the distance between station s and the end station). If a stop-schedule r is not
formed (i.e. all xitr� 0), the large constant M in (3) will make Ktr� 0.

Constraints (4) specify Pitr for the objective function (2). Pitr is the number of passengers on
board when the train based on the stop-schedule r stops at an intermediate station
i �i 2 fs� 1; . . . ;N ÿ 1g�. It is determined by the passengers who board at a previous station
p �p 2 fs; s� 1; . . . ; iÿ 1g� and alight at a subsequent station q �q 2 fi� 1; . . . ;Ng�. That is, Pitr

is the total passenger volume (vpgtr and vqptr) served by the round trip of the stop-schedule r be-
tween stations p �p � s; s� 1; . . . ; iÿ 1� and q �q � i� 1; . . . ;N�. The large constant M in (4)
makes Pitr� 0 when xitr� 0, for every i � s� 1; . . . ;N ÿ 1. This indicates no travel time loss in (2)
as the train does not stop at station i.

Constraints (5) impose that the travel demand Dijt between stations i and j for the period t must
be met by the total passenger volume vijtr served by all stop-schedules r �r � 1; 2; . . . ;R�. Con-
straints (6) and (7) specify the conditions for constructing a stop-schedule r. All train trips based
on the stop-schedule r must start from a start station s �s 2 X�, where xstr� 1. That is, the train
stops at station s. If xstr� 0, the stop-schedule r cannot be formed as the train does not stop at
station s. In this case, all 0-1 variables xitr �i � s� 1; . . . ;N� in (6) and the service frequency ftr in
(7) are equal to zero. Constraints (8) ensure that no passenger can board or alight at station i
(where vijtr� vijtr� 0), if a stop-schedule r does not stop at station i (where xitr� 0).

The capacity constraint for the service line and stations is imposed by (9). E is the maximum
number of trains that can be operated during the period t. Constraints (10) or (11) state that the
total passenger volume served by a one-way trip of the stop-schedule r (vpqtr or vqptr) must be
accommodated by the seating capacity of the corresponding train trips (Qtr ´ ftr).

The minimum operating ¯eet size n required is speci®ed by (12). n is the total number of trains
required to provide train trips speci®ed by all stop-schedules. For each stop-schedule r, the
number of trains required is determined by multiplying its total journey time of a round trip by its
service frequency ftr. The total journey time consists of (a) the running time between the start
station s and the end station �maxfUsi � xitrgi�s�1;...;N�, (b) the extra time required for stops �Wi �
xitr� at all intermediate stations i �i � s� 1; . . . ;N ÿ 1� and (c) the terminal time (Gr). To trans-
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form the two nonlinear items in the calculation (namely, (a) ftr �maxfUsi � xitrgi�s�1;...;N and (b)
ftr � Wi � xitr� into a linear formulation, Constraints (13) and (14) are de®ned for Constraints (12).
Atr in (13) and Bitr in (14) can be regarded as the number of trains required due to (a) the running
time between the start station s and the end station and (b) the time required for stops at station i
respectively.

3.3. The solution procedure

Fuzzy mathematical programming has been proven to be an e�ective approach to an MOLP
problem for obtaining the best-compromise solution (Lai and Hwang, 1994). Based on the fuzzy
decision of Bellman and Zadeh (1970), the fuzzy feature of this approach lies in the fact that
objective functions of the MOLP problem are considered as fuzzy constraints of its equivalent
single-objective linear programming (LP) problem. A fuzzy constraint represents the solution
space (i.e. feasible solutions) with respect to its corresponding objective function. It is modeled as
fuzzy sets whose membership function represents the degree of satisfaction of the objective
function. The value of the membership function of an objective function is usually assumed to rise
linearly from 0 (for solutions at the least satisfactory value) to 1 (for solutions at the most sat-
isfactory value).

The objective function of the equivalent LP problem is to maximize the overall satisfactory level
of compromise between objectives, which is de®ned by the intersection of membership functions
of objective functions of the original MOLP problem. Zimmermann (1978) ®rst uses the max±min
operator of Bellman and Zadeh (1970) to aggregate the fuzzy constraints of an LP problem
(transformed from all the objective functions of an MOLP problem) for making best-compromise
decisions that satisfy both the objectives and constraints of the MOLP problem. The drawback of
this operator is that it cannot guarantee a nondominated solution and is not completely com-
pensatory (Lee and Li, 1993). To achieve full compensation between aggregated membership
functions of objective functions and to ensure a nondominated solution, we use the augmented
max±min approach suggested by Lai and Hwang (1994), which is an extension of Zimmermann's
approach. The algorithm for solving the MOLP model for optimal train service planning is given
in Appendix A.

With fuzzy mathematical programming, MOLP problems can be solved easily as LP problems.
In addition, one advantage of using this approach for solving the optimal train service planning
model is that the best-compromise solution will not be a�ected by the units used for measuring the
value of the objectives. As a result of solving the model, the optimal stop-schedule plan, the
optimal service frequency, and the optimal ¯eet size are generated simultaneously. In addition, the
passenger volume served between stations by each stop-schedule can be determined.

4. Empirical study

4.1. Taiwan's HSR system

The model developed by this paper for planning passenger train services was motivated by
the high-speed rail (HSR) project in Taiwan (Lin, 1995). The proposed HSR system is about a
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340-kilometer intercity passenger service line without branches along the western corridor of
the island. It connects two major cities, Taipei and Kaohsiung, with 5 or 8 intermediate sta-
tions proposed. Strategic decisions regarding the operation plan of the system are made po-
litically and economically by The Bureau of Taiwan High Speed Rail, which are the inputs to
the model.

For the 7-station case, Tables 1 and 2 show the relevant data inputted to the model. The
planning horizon T is between 8 am and 6 pm for a normal operating day, and the operating
period t �t 2 T � is one hour. The terminal time (Gr) is required at both ends of a round trip for
turning vehicles, making up coaches, and preparing for the return trip or the next round trip. In
Taiwan's HSR line, this task is carried out at a depot yard, which is about 15 km away from the
terminal station of a trip. The terminal time required thus includes the train running time between
the terminal station and the depot yard.

In Table 2, the ®gures in parenthesis are the distance (km), train running time (min), and
planned hourly passenger volume (passenger-trip/h) between two stations respectively. The
planned hourly passenger volume is derived from daily forecasted travel demand for the planning
horizon of 8 am to 6 pm for 2020.

4.2. Analysis of the optimal train service plan

Table 3 shows the optimal train service plan using data in Tables 1 and 2.
Table 3 illustrates how the best-compromise solution of the MOLP model (minimizing Z1 and

Z2) is obtained by making trade-o�s between the optimal solutions for the two single-objectives,
respectively. For minimizing the total operating cost, the system would prefer lesser train trips
with fewer stop-schedule types. This is because the travel demand is largely met by stop-schedules
with more stops. In the case of minimizing the total travel time loss, more train trips for stop-
schedules with fewer stops are preferred. In an attempt to make trade-o�s between these two
con¯icting objectives, the best-compromise solution balances the number of train trips and the
number of stops in the stop-schedule plan. As a result, it reduces 11.1% of the travel time loss for
the optimal solution of minimizing the operating cost, and reduces 3.2% of the operating cost for
the optimal solution of minimizing the travel time loss.

Table 1

Input parameters of the model

Parameter Value (NT$: New Taiwan Dollar) (US$1 � NT$32)

Set of stations (X) {1,2,3,4,5,6,7}

Set of shunting or terminal stations (U) {1,4,7}

Operating hours (Ht) 1 h

Terminal time required (Gr) 45 min/train (round trip)

Train seating capacity (Qtr) 800 seats/train

Service line and station capacity (E) 15 trains/h

Extra time required for stops at stations (Wi) 3 min/station

Fixed overhead cost (C1) NT$201353/train-day

Variable operating cost (C2) NT$91459/train-km
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Table 2

Distance, train running time, and planned hourly passenger volume between stations (N� 7)

Station i 1. Taipei 2. Taoyuan 3. Hsinchu 4. Taichung 5. Chiayi 6. Tainan 7. Kaohsiung

1. Taipei (0,0,0) (35.8,14,683) (65.6,27,737) (159.5,40,1407) (245.1,65,483) (307.4,83,636) (338.1,84,2257)

2. Taoyuan (35.8,14,697) (0,0,0) (29.8,11,149) (123.7,36,748) (209.3,61,271) (271.6,79,305) (302.3,83,861)

3. Hsinchu (65.6,27,603) (29.8,11,111) (0,0,0) (93.9,24,320) (179.5,48,53) (241.8,67,64) (272.5,71,242)

4. Taichung (159.5,40,1298) (123.7,36,731) (93.9,24,337) (0,0,0) (85.6,22,345) (147.9,40,413) (178.6,44,900)

5. Chiayi (245.1,65,340) (209.3,61,189) (179.5,48,45) (85.6,22,246) (0,0,0) (62.3,17,187) (93.0,29,332)

6. Tainan (307.4,83,513) (271.6,79,270) (241.8,67,68) (147.9,40,295) (62.3,17,222) (0,0,0) (30.7,11,591)

7. Kaohsiung (338.1,84,2105) (302.3,83,776) (272.5,71,241) (178.6,44,768) (93.0,29,465) (30.7,11,817) (0,0,0)
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The total passenger volume served between stations (vijtr) by each train stop-schedule r �r �
1; 2; . . . ; 6� of the optimal plan indicates that the service type of stop-schedules basically matches
the demand pattern of passengers. That is, long-distance passengers are served mostly by express
services (e.g. r� 1, 2), and short-distance passengers are served mainly by skip-stop (e.g. r� 3, 4)
or all-stop services (e.g. r� 5, 6). This re¯ects the fact that the model aims to minimize travel time
losses by allocating passengers to stop-schedules that stop fewer intermediate stations.

The empirical study has also been carried out for the 10-station case. In terms of e�ectiveness of
the model and the implication of the optimal train service plan, the result is similar to the 7-station
case. Stop-schedules with fewer stops should be used to serve stations between which larger
passenger volume exists. On the other hand, it is better to use stop-schedules with more stops to
serve stations between which there is smaller passenger volume. It is noteworthy that the optimal
number of stop-schedule types required by the 10-station case is 6, the same as the 7-station case.
This is because the travel demand for the additional 3 stations is relatively small and is quite
evenly distributed. This re¯ects the fact that the stop-schedule plan is largely a�ected by the
volume and pattern of travel demand.

4.3. The optimal train service plan under a given set of stop-schedules

The above study is conducted for situations where the optimal set of stop-schedules is to be
determined. In fact, the model can be used to explore various speci®c train stopping schemes that
are often proposed by the planner. That is to say that the model can draw an optimal train service
plan from a ®xed set of stop-schedules. This is also the planning scenario commonly studied in the
literature.

To examine how the stop-schedule plan a�ects the train service plan in terms of planning
objectives, we ®rst limit the number of stop-schedule types in the model for the 7-station case. This
has practical implications, as the operator may prefer a stop-schedule plan that is more man-
ageable. This is carried out by solving the model with a speci®ed number of stop-schedule types
(R). We have examined the value of R ranging from 1 to 10. For R P 7, the result is the same as

Table 3

Optimal train service plan for the 7-station case

r Minimizing operating cost (Z1) Minimizing travel time loss (Z2) Minimizing Z1 and Z2

Stop-schedule ftr Stop-schedule ftr Stop-schedule ftr

1 1 ± 7 3 1 ± 7 2 1 ± 7 2

2 1 ± 3 ± 4 1 1 ± 4 3 1 ± 6 ± 7 1

3 1 ± 4 ± 5 ± 7 2 1 ± 2 ± 6 ± 7 2 1 ± 3 ± 4 1

4 1 ± 2 ± 4 ± 6 ± 7 3 1 ± 2 ± 4 ± 5 ± 7 1 1 ± 4 ± 5 ± 7 2

5 1 ± 2 ± 3 ± 5 ± 6 ± 7 1 1 ± 2 ± 3 ± 5 ± 6 ± 7 1 1 ± 2 ± 3 ± 5 ± 6 ± 7 1

6 1 ± 3 ± 5 ± 6 ± 7 2 1 ± 2 ± 4 ± 6 ± 7 3

n 42 44 43

Z1 (NT$) 14314 613 15000 705 14515 965

Z2 (h) 9068.00 3708.20 8058.04

r: stop-schedule type; ftr: service frequency; n: ¯eet size.
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the optimal one in Table 3 (where R� 6). In other words, only up to 6 stop-schedule types (the
optimal number) can be generated, even if R is speci®ed to be greater than 6. For R6 6, the
greater the value of R speci®ed, the better the plan constructed (in terms of planning objectives
and ¯eet size). This indicates that various stop-schedule types are required to match di�erent
travel demand patterns.

We further examine scenarios where the plan is to be drawn from a ®xed set of stop-
schedules. In the planning of Taiwan's HSR system, 7 stop-schedule types, listed in the second
column of Table 4, are considered. Proposed alternative stopping schemes are drawn from
combinations of 4±7 stop-schedule types. We ®rst consider the scheme that all 7 types are used.
With this given set of 7 stop-schedule types as an input to the model, the optimal plan is shown
in the ®fth column of Table 4, which is a trade-o� between the plans shown in the third and
fourth columns.

The service frequency for each stop-schedule of the optimal plan (in column 5 of Table 4) seems
to indicate that express or skip-stop services (e.g. r� 1 or 6) are preferred to local services (e.g.
r� 5). This is mainly due to the fact that the travel demand of long-distance passengers is greater
than that of short-distance passengers.

Although an optimal plan can be drawn from a given set of stop-schedules as often proposed by
the planner, it is not normally the best possible planning outcome. This is because the ®xed set of
stop-schedules may not e�ectively allocate uneven passenger volumes between stations. For ex-
ample, the plan in Table 3 compares favorably with that in Table 4 in terms of planning objectives
and ¯eet size. The optimal plan with ¯exible stop-schedules in Table 3 would reduce 3.5% of the
operating cost and 5.8% of the travel time loss, as compared to the optimal plan in Table 4 with
all 7 stop-schedule types proposed for Taiwan's HSR line. It is noteworthy that in both cases the
optimal number of stop-schedule types (R) is 6, although 7 types are speci®ed for the case of given
stop-schedules.

To explore how other speci®c stop-schedule schemes may a�ect the e�ectiveness of the optimal
plan, we have examined all feasible subsets of stop-schedules listed in the second column of

Table 4

Optimal train service plan under a given set of stop-schedules

Stop-schedules (given) Service frequency (ftr)

Type (r) Stations stopped Minimizing Z1

(operating cost)

Minimizing Z2

(travel time loss)

Minimizing

Z1 and Z2

1 1 ± 7 1 3 3

2 1 ± 4 ± 7 3 2 1

3 1 ± 2 ± 3 ± 4 1 1 0

4 1 ± 4 ± 5 ± 6 ± 7 0 1 1

5 1 ± 2 ± 3 ± 4 ± 5 ± 6 ± 7 1 1 1

6 1 ± 2 ± 4 ± 6 ± 7 3 2 3

7 1 ± 3 ± 5 ± 7 1 1 1

Train ¯eet size (n) 42 46 44

Operating cost (Z1) (NT$) 14314 610 15738 470 15044 010

Travel time loss (Z2) (h) 12 730.73 8197.37 8554.70
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Table 4. The results show that the more the number of stop-schedules in the speci®ed set (re-
gardless of its combination), the better the plan. In comparison with the optimal plan in Table 3,
the operating cost increases by 4.8±24.2% and the travel time loss increases by 12.5±96.7% as the
given number of stop-schedule types decreases from 6 to 4 for the proposed alternative stopping
schemes for Taiwan's HSR line. For cases where the speci®ed set has the same number of stop-
schedules, plans which include express services (r� 1) perform better. This is because relatively
large passenger volume exists between stations 1 and 7, and it is better served by stop-schedules
with no intermediate stops.

The ®ndings from the study conducted above suggest that the number and service type of train
stop-schedules for Taiwan's HSR line should be ¯exibly planned based on the volume and pattern
of travel demand. The model developed can be used to determine an optimal set of stop-schedules
for a given travel demand. If a ®xed set of stop-schedules has to be speci®ed for practical reasons,
it should be set as close to the optimal set of stop-schedules as possible in terms of the number
and/or the service type. In any event, express services between stations 1 and 7 (two major cities)
should be provided to meet the relatively large travel demand between the two stations.

5. Conclusion

E�ective planning of passenger train services requires considering the needs of both the op-
erator and the passenger. In this paper, we have presented a multiobjective programming model
for minimizing both the total operating cost of the operator and the total travel time loss of the
passenger. The model can be solved using fuzzy mathematical programming to generate a best-
compromise train service plan, including the optimal stop-schedule plan, service frequency and
¯eet size. The empirical study conducted on Taiwan's HSR line has demonstrated the e�ectiveness
of the model. For a given travel demand, the model can be used to determine an optimal set of
stop-schedules with or without service types speci®ed. The results of the empirical study suggest
that the train service plan of 6 stop-schedule types is the best for Taiwan's HSR line. The best
planning outcome is the optimal plan not constrained by speci®c stop-schedules. In practical
planning settings where speci®c stop-schedules are proposed, the closer the proposed stop-
schedules to the optimal set in terms of the number and/or the service type, the better the plan. In
particular, express services between the two major cities should be provided for Taiwan's HSR
line.

As a planning decision aid, the model can be used to examine various planning scenarios for
practical planning purposes. It has general application in planning passenger train services of
many-to-many demand on an intercity rail line.
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Appendix A. Solution procedure for solving the MOLP model

Step 1: Construct the payo� table of the positive-ideal solution by solving the single-objective
LP problem with the objective function (1) or (2) (i.e. Z1 or Z2) individually, as shown in Table 5.
The positive-ideal solution is the one that optimizes each objective function simultaneously. In
Table 5, x is the best compromise solution to be found. For the objective function Z1, x�1 is the
feasible and optimal solution, and U1 and L1 are the upper and lower bounds of the solution set.
X�2 is the feasible and optimal solution, and U2 and L2 are the upper and lower bounds of the
solution set for the objective function Z2.

Step 2: Construct the membership functions l1(x) and l2(x) for the two objective functions Z1

and Z2, respectively by

l1�x� �
1 if Z16 L1;
1ÿ Z1ÿL1

U1ÿL1
if L1 < Z1 < U1;

0 if Z1 P U1;

8<: �15�

l2�x� �
1 if Z26 L2;
1ÿ Z2ÿL2

U2ÿL2
if L2 < Z2 < U2;

0 if Z2 P U2:

8<: �16�

Step 3: Obtain the single-objective LP model by aggregating l1(x) and l2(x) using the aug-
mented max±min operator as

Objective

maximize a� e�l1�x� � l2�x��
2

: �17�

subject to a6 l1�x�; �18�
a6 l2�x�; �19�
Objective functions �1�±�2�;
Constraints �3�±�16�;

where a is the overall satisfactory level of compromise (to be maximized) and e is a small positive
number. A nondominated solution is always generated when a is maximized. This is because the
averaging operator used in the objective function (17) for l1(x) and l2(x) is completely com-
pensatory.

The single-objective LP model can be solved using LP software such as LINDO.

Table 5

Payo� table of positive-ideal solution

Z1(x) Z2(x) x

Min Z1 Z1(x�1) Z2(x�1) x�1
Min Z2 Z1(x�2) Z2(x�2) x�2

U1 � max Z1�x�1�; Z1�x�2� U2 � max Z2�x�1�; Z2�x�2�
L1 � min Z1�x�1�; Z1�x�2� L2 � min Z2�x�1�; Z2�x�2�
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