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A Multiparametric Nonlinear Regression Approach

for the Estimation of Global Surface Ocean pCO2

Using Satellite Oceanographic Data
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Abstract—Estimation of the partial pressure of carbon dioxide
(pCO2) and its space–time variability in global surface ocean
waters is essential for understanding the carbon cycle and pre-
dicting the future atmospheric CO2 concentration. Until recently,
only basin-scale distribution of pCO2 has been reported by using
satellite-derived climatological data due to the lack of models for
global-scale applications. In the present work, a multiparametric
nonlinear regression (MPNR) for the estimation of global-scale
distribution of pCO2 on the ocean surface is developed using con-
tinuous in-situ measurements of pCO2, chlorophyll-a (Chla) con-
centration, sea surface temperature (SST), and sea surface salinity
(SSS) obtained on a number of cruise programs in various regional
oceanic waters. Analysis of these measurement data showed strong
relationships of pCO2 with Chla, SST, and SSS, because these three
parameters are governed by the complex interactions of oceano-
graphic (physical, biological, and chemical) and meteorological
processes and thus influence pCO2 levels over different spatial
and temporal scales. In order to account for regional differences
in the influences of these processes on pCO2, model parameter-
izations are derived as a function of Chla, SST, and SSS data
with different boundary conditions. Because the strength of each
influencing parameters on pCO2 differed at different Chla, SST,
and SSS ranges, measurement data were grouped with reference
to the Chla, SST, and SSS ranges and significant correlations of
the pCO2 with dominant processes were established: for example,
an inverse correlation of the pCO2 with Chla, SST, and SSS in
polar and subpolar regions, a positive correlation of the pCO2

with SST and SSS and an inverse correlation of the pCO2 with
Chla in tropical and subtropical regions, and an inverse correlation
of the pCO2 with SST and a positive correlation of the pCO2

with Chla and SSS in equatorial regions. This indicates that the
relationship of pCO2 versus biological and physical parameters is
more complex and an individual parameter alone would not serve
as an accurate estimator of basin- and global-scale pCO2 trends.
Thus, changes in Chla, SST, and SSS were systematically analyzed
as they account for biological and physical effects on pCO2 and
best constrained based upon their strong relationships with pCO2

using the MPNR regression approach. The accuracy of the MPNR
was assessed using independent in-situ data and satellite pCO2 data
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derived from global Level-3 Chla, SST, and SSS data. Validation
results showed that satellite-derived pCO2 data agreed with direct
in-situ pCO2 measurements with an RMSE 6.68–7.5 µatm and a
relative error less than 5%, which is significantly small as compared
to the errors associated with earlier satellite pCO2 computations.
The distribution and magnitude of spatial and temporal (monthly
and seasonal) amplitude of satellite-derived pCO2 in climatic zones
and ocean basins were further examined and agreed well with the
shipboard pCO2 observations and climatological surface ocean
pCO2 data.

Index Terms—Carbon dioxide, chlorophyll-a, multiparametric
algorithm, partial pressure of carbon dioxide, satellite
oceanography, sea surface salinity, sea surface temperature.

I. INTRODUCTION

P
ARTIAL pressure of carbon dioxide (pCO2 expressed by

a unit of µatm) in surface ocean waters is a key param-

eter used to study ocean CO2 absorption, acidification, pri-

mary productivity, carbon cycle, source, and sinks of CO2, and

biogeochemistry. Due to the increasing levels of atmospheric

CO2 caused by anthropogenic emissions (e.g., burning of fossil

fuels, deforestation, population growth, land use changes, and

industrial processes) [1]–[3], there is noticeable gradient differ-

ence between atmospheric and oceanic CO2 concentrations that

is likely to be further affected by climate-driven changes and

warming scenarios [4], [5]. It has been shown that the surface

ocean exhibits a much larger spatial and temporal variability in

the CO2 flux compared to the atmosphere owing to the variable

contribution processes other than the ocean carbon sink, such

as upwelling, eddies, and physical mixing [6]–[8]. Presently,

ocean–atmosphere exchange is estimated to be approximately

1.5–2 Gt of carbon per annum [8]. The change of sign in

CO2 flux between sources and sinks largely depends on ma-

jor controlling mechanisms, such as physical pump, biological

pump, and solubility pump [9]–[11]. Major sources of CO2

are respiration and decay of biological organisms and major

sinks are photosynthesis by phytoplankton and construction of

carbonate shells, which contribute significantly to the observed

pCO2 variability in the global ocean [12]. To date, much less

is known about the spatial structures and temporal variability

of basin- and global-scales of the CO2 exchange because of

the limited observations. Thus, it is essential to improve our

knowledge on the global-scale spatial and temporal variability

in the pCO2 distribution for better understanding the response

of the ocean carbon sink to increasing atmospheric CO2 and the
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climate-driven feedbacks and predicting its future trends. This

requires to accurately estimate basin- and global-scale pCO2

trends using decades of satellite data.

Surface ocean pCO2 variations are mainly influenced by ther-

modynamic, biological (production and respiration), and physi-

cal mixing processes [13] due to sea surface temperature (SST),

sea surface salinity (SSS), chlorophyll-a (Chla), mixed layer

depth (MLD), colored dissolved organic matter (CDOM), net

primary productivity (NPP), photosynthetically active radiation

(PAR), wind speed, and other factors. With the advent of remote

sensing technology and data processing/retrieval algorithms,

many of these parameters can be easily and accurately derived

from satellite data that provide advantages over the expensive

in-situ measurements in terms of spatial and temporal analysis

in large scales. In the past decades, a number of remote sens-

ing methods have been developed for the estimation of pCO2

using satellite oceanographic data; for example, multiple lin-

ear regression (MLR) [14]–[18], multiple nonlinear regression

(MNR) [19], [20], multiple polynomial regression (MPR) [21],

[22], random forest regression (RFR) [23], principle component

analysis (PCA) [24], [25], self-organizing map (SOM) [20],

[26], [27] Kohonen feature map (KFM) [28], feed forward

neural network (FFNN) [29], [30], feed forward back prop-

agation (FFBP) [31], machine learning analysis (MLA) [32],

mechanistic semianalytical algorithm (MeSAA) [13], [33], and

quasimechanistic approaches [34]. These methods provide fairly

accurate estimations of regional-scale or basin-scale pCO2 and

yield significant uncertainties in the global-scale pCO2 distribu-

tion due to the limited in-situ data or oversimplified/generalized

model parameterizations. Significant uncertainties in the pCO2

distribution can also be attributed to the inaccurate satellite

oceanographic data products.

On a regional or basin-scale, MLR estimated pCO2 as a

function of SST and longitude in North Pacific Ocean waters

[18]. It was observed that the subtropical North Pacific Ocean

pCO2 levels are chiefly controlled by the SST, and consequently,

the satellite-derived pCO2 agreed well with the in-situ mea-

surements with an RMSE deviation of ±17 µatm. However,

this approach yielded a higher RMSE deviation (±40 µatm)

in Northwestern subpolar regions caused by the influence of

other effects, such as seasonal changes in biological production,

mixing with subsurface waters, and air–sea exchange of CO2.

To improve the accuracy of basin-scale pCO2 using satellite

data, second-order MNR equations were developed and tested

using satellite-derived SST and Chla data [19]. It was shown that

MNR reduced the RMSE to ±14 and ±17 µatm in subtropical

and subarctic regions, respectively. Further improvement was

achieved by using MLR equations in North Pacific Ocean waters

with SST, SSS, and Chla data as inputs, which yielded an RMSE

around 17–23 µatm [17]. Later, a SOM-based approach was

developed to estimate pCO2 as a function of satellite-derived

SST, SSS, MLD, and Chla data and it showed fairly good

agreement with measured data in Pacific Ocean waters with an

RMSE less than 20 µatm [26]. In North Atlantic Ocean waters,

pCO2 was estimated using satellite-derived SST, Chla, and MLD

data with an RMSE less than 15 µatm [14], [20], [21]. Recently,

an artificial neural network based on FFNN was used to estimate

pCO2 as a function of satellite-derived SST, SSS, and Chla

data in tropical Atlantic Ocean waters, where it significantly

improved pCO2 estimations within the RMSE 10 µatm [29].

In the Southern Ocean region, MLR equations were tested on

satellite-derived SST and Chla data, yielding a standard devi-

ation between 2 and 8 µatm [16]. Further improvement was

achieved with an RMSE less than 7 µatm by using an FFBP

approach, which estimates pCO2 as a function of SST, Chla,

latitude, and longitude in the Northern South China Sea [31].

In the river-dominated coastal and estuarine regions, PCA and

MLR were used to produce pCO2 maps from satellite-derived

SST, CDOM, SSS, and Chla data [25].

Besides MLR, MNR, MPR, RFR, PCA, SOM, FFNN, and

FFBP models, a quasimechanistic model was developed to es-

timate pCO2 in river-dominated marginal seas in the Northwest

Pacific Ocean using carbonate system parameters, such as total

alkalinity (TA) and dissolved inorganic carbon (DIC). These

parameters were calculated as a function of SST and Chla and

used to estimate pCO2 [35]. More recently, an MeSAA was

developed to estimate pCO2 in Eastern China Sea waters [13].

In this approach, initial pCO2 levels were calculated due to

individual underlying mechanisms, especially thermodynamic,

biological, and mixing processes, which are parameterized as a

function of SST, SSS, and Chla to improve the MeSAA to infer

pCO2 fields semianalytically as the summation of individual

components contributed by each process. These approaches have

been successfully applied to compute pCO2 fields in regional or

basin-scale oceanic domains within the errors involved in the

empirical analysis and approximation solutions. However, the

accurate estimation of global-scale pCO2 changes remains a

challenge owing to differences in satellite-derived and in-situ

measured parameters as well as inadequate representation of

the influencing processes and thus the seasonal and interannual

pCO2 variability. Though the global estimation of pCO2 is pos-

sible by merging of all regional models, there is an inconsistency

with the parameters used in the models and model equations that

can lead to strong boundary effects across the ocean basins and

latitudes. To overcome these issues, attempts have been made to

construct global monthly climatological pCO2 maps using the

past decades of in-situ measurement data after excluding the in-

tra and interannual variations and coastal regions in the analysis

[8], [12], [36]. Similar improvement was achieved on the global

maps of pCO2 on 10° latitude and longitude spatial grids by

calculating the spatial autocorrelation structure of pCO2 using

nearly 1.7 million in-situ pCO2 observation data [37]; however,

their analysis was restricted to small-scale variability only due

to the coarse spatial resolution. This problem was overcome by

generating global surface ocean climatological maps of fugacity

of carbon dioxide (fCO2) with 1° spatial resolution using an

FFNN approach [30]. A data-driven ocean mixed layer scheme

was also introduced to make global-scale estimation of pCO2

by considering a larger in-situ measurement dataset despite its

known limitations [7].

Recently, Liu and Xie [38] developed a statistical-based sup-

port vector regression method using satellite oceanographic data

products, such as SST, SSS, and Chla. Bitting et al. [39] con-

structed monthly surface ocean pCO2 climatology with a 1°×1°

spatial resolution using Bayesian neural network (BNN). Al-

though global climatological pCO2 maps were produced using
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different remote sensing methods, there is uncertainty on pCO2

estimation by 2–40 µatm in different ocean basins/climatic

zones. Such a global-scale application requires the accurate

estimation of pCO2 fields by an appropriate method that ac-

counts for all major controlling mechanisms. In the present

work, a multiparametric nonlinear regression (MPNR) approach

is developed to estimate basin- and global-scale surface ocean

pCO2 from satellite-derived SST, SSS, and Chla data. These data

products become advantages over shipboard measurements for

deriving pCO2 fields in high space–time resolutions. The MPNR

approach is parametrized using in-situ measurements of SST,

SSS, and pCO2 and corresponding satellite measurements of

Chla from the global ocean. The sensitivity tests on the MPNR

regression equations for pCO2 estimation are carried out using

independent data from both in-situ and satellite observations.

The large-scale spatial and temporal variability of pCO2 is

further studied with regard to ocean temperature, chemistry, and

circulation based on seasonal and monthly climatological maps

at 1° × 1° spatial resolution.

II. DATA AND METHODS

A. In-Situ Data

The in-situ data of direct pCO2 and physical parameters

(SST and SSS) in different oceanic waters were obtained from

the National Oceanographic Data Center-National Oceanic and

Atmospheric Administration (NODC-NOAA).1 It should be

mentioned that these data were contributed by a number of

organizations and institutes, namely Integrated Marine Ob-

serving System (IMOS), Pacific Marine Environmental Lab-

oratory (PMEL), Atlantic Oceanographic and Meteorological

Laboratory (AOML), and Ocean Indien Service d’Observation

(OISO). Although the in-situ pCO2 data are biased spatially,

they are reasonably representative of tropical and subtropical

domains, major gyre systems, warming and stratification con-

ditions, mixing and dilution, fronts, and biological processes in

the Atlantic, Pacific, and Southern Oceans. These regions have

the higher physical and biological effects on pCO2, because

the pCO2 relations with both SST and SSS represent changes

in pCO2 due to physical mixing and dilution (which governs

dissolved inorganic carbon (DIC)) and that with Chla denote

the influence of biological processes on pCO2 variability. TA

has been observed to have the positive relation with salinity.

Hence, these influences of solubility (thermodynamic), dilution

by fresh water, and mixing effects by upwelling, eddies and

surface winds, and phytoplankton production on pCO2 can be

accounted for with the relation of pCO2 with SST, SSS, and

Chla, which would capture pCO2 variability and distribution in

surface ocean waters due to physical, chemical, and biological

factors [2], [17], [36].

The primary and ancillary data (such as parameter, time, lo-

cation, and number of measurements) used for the development

of MPNR regression equations and its validation are described

in Table I and II, respectively, whereas the in-situ measurement

locations are shown in Fig. 1. For this study, the minimum global

1[Online]. Available: https://www.nodc.noaa.gov/oads/stewardship/data_
portal.html

Fig. 1. Map of sample locations for the in-situ measured pCO2 data used for
deriving the multiparametric nonlinear regression equations (solid red circles)
and validating the MPNR results using independent in-situ data (solid blue
circles).

SSS is assumed as 30 PSU and the data containing the lower SSS

of less than 30 PSU were excluded from the analysis. This led to

approximately 57 789 in-situ data comprising the pCO2, SST,

and SSS measurements, and the corresponding Chla data were

obtained from the MODIS-Aqua ocean color observations. For

developing the MPNR regression equations, 40 379 measure-

ments were used and the remaining 17 410 measurements were

used for the in-situ and satellite model validations. Measured

pCO2 ranged from 296 to 488µatm collected over the spatial do-

main of Atlantic, Pacific, and Southern Oceans during the peri-

ods in 2007–2018. Thus, every in-situ measurement dataset con-

tains co-located pCO2, SST, SSS, Chla, and ancillary data. Some

data containing fCO2 measurements were converted to pCO2

using the following relation suggested by Takahashi et al. [40].

pCO2 (µatm) = fCO2 (µatm)
[

1.00436− 4.669× 105

×SST (◦C)] (1)

where fCO2 and pCO2 are used to measure the partial pressure of

real and ideal gas of CO2 in µatm, respectively, and SST in °C.

B. Satellite Data

In order to demonstrate that the new MPNR approach is

robust in deriving basin- and global-scale pCO2 fields and their

variability spatially and temporally, global mapped Level-3 SST

and Chla products (with 4 × 4 km spatial resolution) from

MODIS-Aqua sensor and SSS products (with 1°× 1° resolution)

from Aquarius sensor were obtained from the Goddard Space

Flight Center-National Aeronautics and Space Administration

(GSFC-NASA).2 In addition, the Level-3 SSS (with 70 × 70 km

spatial resolution) from Soil Moisture Active Passive (SMAP)

sensor for the period 2007–2018 were obtained from the Jet

Propulsion Laboratory (JPL-NASA).3 Because of the lack of

in-situ Chla measurements corresponding to pCO2 measure-

ments, MODIS-Aqua Level-3 daily Chla with 4-km spatial

resolution were used along with the in-situ measured pCO2, SST,

and SSS data for deriving MPNR parameterizations. Because

there was a resolution difference between in-situ measurements

2[Online]. Available: https://oceancolor.gsfc.nasa.gov
3[Online]. Available: https://podaac.jpl.nasa.gov/SMAP

https://www.nodc.noaa.gov/oads/stewardship/data_portal.html
https://oceancolor.gsfc.nasa.gov
https://podaac.jpl.nasa.gov/SMAP
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TABLE I
DATA USED FOR THE DEVELOPMENT OF MULTIPARAMETRIC NONLINEAR REGRESSION (MPNR) APPROACH

TABLE II
DATA USED FOR THE MPNR VALIDATION
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and satellite observations, the in-situ measured SST, SSS, and

pCO2 values within 4 km spatial resolution pixel were averaged

corresponding to satellite-derived Chla data.

The SeaWiFS Data Analysis System (SeaDAS) was used

to process the MODIS-Aqua data and establish the matchup

datasets for further analysis. In order to validate the satellite-

derived pCO2 data with the in-situ observations in various

oceanic regimes, we used the daily MODIS-Aqua Level-3 SST

and Chla data (with 4 × 4 km resolution) and the corresponding

Aquarius 7-day composite SSS data (with 1° × 1° resolution).

Since the daily Aquarius Level-3 SSS products had a number

of missing data lines due to the low temporal resolution, seven-

day composite binned images of Aquarius SSS products were

used for this analysis. Because there were differences in spatial

resolution of the Level-3 MODIS-Aqua SST/Chla products (4

km) and Aquarius SSS products (1° degree), the MODIS-Aqua

products were resampled according to the Aquarius products

based on the nearest neighborhood method. Finally, the MPNR

regression equations were applied on the satellite-derived prod-

ucts SST, SSS, and Chla (with 1° × 1° resolution) and produced

global pCO2 maps (with 1°× 1° resolution). For consistency, all

in-situ pCO2 inside each satellite pixel (with 1° × 1° resolution)

were averaged so that the process of co-location is straightfor-

ward and the satellite-derived pCO2 are better compared with

in-situ pCO2 data with minimal uncertainty. To illustrate the spa-

tial and temporal variability of pCO2, the MPNR was applied on

seasonal and monthly global mapped Level-3 (satellite-derived)

SST, SSS, and Chla data to derive the global surface ocean pCO2

maps.

C. Model Description

1) Theoretical Background and Model Formulation: Atmo-

spheric CO2 interacts more with surface oceanic waters giving

rise to the organic and inorganic forms of carbon content, which

eventually leads to changes in the carbonate chemistry of ocean

waters. Consequently, the ocean chemistry changes cause a

reduction in the efficiency of ocean CO2 sink and affect the

marine ecosystem. Thus, the carbonate chemistry plays a vital

role in the pCO2 estimation. The governing chemical processes

in ocean waters due to the atmospheric CO2 are described below.

The atmospheric CO2 interacts with surface ocean water,

dissolves in it, and gives to the aqueous CO2

CO2(g) ↔ CO2(aq). (2)

The aqueous CO2(aq) in (2) reacts with ocean water and results

in the unstable form of carbonic acid (H2CO3)

CO2(aq) + H2O ↔ H2CO3. (3)

The carbonic acid in (3) is a weak and unstable molecule, and

it dissociates rapidly and forms bicarbonate ions (HCO3
−) and

releases H+ ions

H2CO3 ↔ HCO3
− +H+

. (4)

The bicarbonates in (4) again dissociate immediately and

produce carbonate ions (CO3
2−) along with H+ ions

HCO3 ↔ CO3
2− +H+

. (5)

The carbonate ions in (5) further react with calcium (Ca2+)

ions in ocean waters and produce the calcium carbonate shells

(CaCO3).

Ca2+ +CO3
2−

↔ CaCO3 (6)

pH = − log
[

H+
]

. (7)

pH in ocean water, defined as the negative logarithm of H+

ions concentration as given in (7), increases the H+ ions concen-

tration, leading to a decrease in pH value and vice versa. (4) and

(5) give the increased H+ ions concentration in ocean waters,

leading to a decrease in the pH value, which causes ocean acid-

ification that subsequently reduces the metabolic rates, immune

response of the organisms, and effects the carbonate shells/coral

reefs [41]. More the CO2 in the ocean, more the H+ ions released

in the aquatic system, which subsequently leads to a decrease in

the pH levels.

All the organic and inorganic chemical changes that occur

in oceanic waters are primarily governed by the two marine

carbonate chemical parameters, such as TA and DIC, which

play a crucial role in understanding the influence of anthro-

pogenic CO2 in the ocean. The major processes that control

the variation of TA and DIC in oceanic waters are biological

activities (production and respiration), physical mechanisms

(vertical mixing and gas exchange at the air–sea interface), and

chemical processes (carbonate precipitation and dissolution).

Phytoplankton photosynthesizes removing DIC and slightly in-

creases TA in sunlight surface water, whereas cellular respiration

adds DIC and slightly removes TA in dark subsurface waters.

Calcification removes TA and DIC in most of sunlight available

surface waters, while carbonate dissolution adds TA and DIC

mostly in subsurface oceanic waters. Accurate estimation of

these parameters is crucial to the precise estimation of surface

ocean pCO2. Note that the carbonate chemistry of ocean water

is often described in the form of DIC, which is the sum of car-

bonate (CO3
2−), bicarbonate (HCO3

−), carbonic acid (H2CO3),

aqueous CO2 and other minor constituents, and TA, which is the

sum of carbonate species and free H+ and OH− ions.

DIC =
[

CO3
2−
]

+
[

HCO3
−
]

+ [H2CO3]

+
[

CO2(aq)

]

± minor constituents (8)

TA =
[

HCO3
−
]

+ 2
[

CO3
2−
]

+
[

B(OH)4
−
]

+ [OH]− − [H]+ ±minor constituents. (9)

The relative abundance of these carbon compounds is gov-

erned by the pH of the seawater, while the total amount is

controlled by a much more complicated set of factors, such

as biological activities (production and respiration), vertical

mixing, and temperature (solubility by thermodynamic effects)

[17]. To make accurate estimations of DIC in surface oceanic

waters, the scheme requires additional measurements for the

carbonate chemistry parameters as well as the knowledge of the

carbonate dissociation constants, which are difficult to obtain ac-

curately over the spatial and temporal scales across the latitudes

with different physical and biological mechanisms (governed

by evaporation–precipitation, water balance, upwelling/eddies,

vertical mixing, biological production, and decomposition). It
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should be noted that DIC changes in surface ocean waters are

mainly controlled by the changes in SST, SSS, and Chla [17],

[42]; hence, distinct and significant seasonal correlations of DIC

with SST, SSS, and Chla have been found in the North Pacific

Ocean [17] and Arabian Sea [42]. DIC changes can be described

as a function of each influencing parameter SST, SSS, and Chla

as

DIC = f (SST, SSS, Chla) . (10)

Owing to the influence of these parameters on surface DIC

and hence pCO2 in North Pacific waters, a multiparameter MLR

approach was used to estimate the basin-scale distribution of

DIC as a function of SST, SSS, and Chla [17]

DIC = − PSST +QSSS− RChla+ S. (11)

The pCO2 change in surface ocean waters is also regulated

by changes in TA, which is regulated by common physical

and biological processes and influences the changes in pH.

The TA distribution in surface ocean waters is determined by

concentrations of carbonate system species, such as carbonate,

bicarbonate, and boron compounds, and is due primarily to

the SSS changes [43]. In various oceanographic regimes, TA

displayed strong positive relations with SSS with little or no

significant differences in slope between these two parameters

with space and time, for different ranges of SST [17], [42]. Thus,

surface ocean TA can be easily estimated as a function of SSS.

TA = f (SSS) . (12)

According to, [17], [36], [42], and [44], TA is computed from

the first-order linear regression equation using SSS

TA = USSS + V. (13)

The surface ocean pCO2 is correlated to the difference be-

tween DIC and TA [45]

pCO2 = Y (2DIC− TA) + Z. (14)

Substituting (11) and (13) in (14), we can obtain

pCO2 = Y (2 (−PSST +QSSS− RChla+ S)

− (USSS + V)) + Z

pCO2 = − 2PYSST + 2QYSSS− 2RYChla+ 2SY

−UYSSS−VY + Z

pCO2 = − 2PYSST + (2QY −UY)SSS− 2RYChla

+ (2SY −VY + Z) . (15)

Considering A = −2PY, B = (2QY−UY), C = −2RY, and

D = (2SY − VY + Z) and substituting in (15), we can obtain

pCO2 = ASST + BSSS + CChla+D (16)

where P−S, U−V, Y−Z, and A−D are constants for (11), (13),

(14), and (16), respectively, and are obtained using regression

analysis. Using (11) and (13), surface ocean DIC and TA can

be calculated from SST, SSS, and Chla. (14) is essentially a

thermodynamic equation for the estimation of pCO2 from TA

and DIC values. Estimation of pCO2 from (14) using chemical

parameters DIC (SST, SSS, and Chla) and TA (SSS) can lead to

a large uncertainty because of the large seasonal and interannual

variability (caused by physical and biological processes) or

propagation of errors associated with the calculation of DIC

and TA as a function of biophysical parameters (SST, SSS, and

Chla) using (11) and (13). Computation using a straightforward

MPNR approach derived in this study (16) gives an accurate

estimation of basin- and global-scale pCO2 as strength of each

influencing parameters (physical and biological) causing the

changes in pCO2 is well accounted through distinct correlations

of pCO2 with SST, SSS, and Chla.

2) Model Parameterization: The surface ocean pCO2 vari-

ations are primarily influenced by SST changes caused due

to the physical processes, such as solar radiation input, heat

exchange between ocean to atmosphere and atmosphere to

ocean, intense mixing, and mixed layer dynamics. In earlier

studies, SST was considered as a single parameter or one of the

dominant parameters to estimate pCO2 [17], [18], [22], [29],

[34], [38], [42], [46]. Based on the experimental studies and

thermodynamic calculations, Stephen et al. [18] observed the

effect of SST on pCO2 and determined that every 1°C rise in

SST will lead to an increase in pCO2 by 4.23%. In other oceanic

regions, there was a significant deviation of pCO2 from their

observation indicating that other parameters also play a crucial

role in surface ocean pCO2 variations. Thus, an MPNR approach

is developed to estimate pCO2 as a function of all influencing

parameters that have distinct positive or negative correlations

with pCO2. Because of the rapidly changing oceanic regions

and the difficulty in discerning pCO2 trends accurately, many

studies have estimated pCO2 trends over physically and bio-

logically defined regions using multiparameters, either derived

from in-situ observations or from satellite observations [13],

[16], [17], [19], [25], [47], [48]. In the tropical and subtropical

regions of both northern and southern hemispheres, both DIC

and pCO2 are mainly influenced by thermodynamic effects and

exchange processes at the air–sea interface; in polar and subpolar

regions, DIC and pCO2 are affected by biological activities and

chemical factors; and in equatorial regions, the variability in

DIC and pCO2 is mainly due to thermodynamic effects, ver-

tical/lateral mixing, and biological activities. Thermodynamic

effects in oceanic waters are solely controlled by changes in SST,

thus the resulting changes in SST mainly influence the pCO2

levels. Physical mixing with subsurface waters and dilution by

freshwater (e.g., linked to rain events and river discharges) are

chiefly controlled by changes in SSS, thus the resulting changes

in SSS mainly influence the pCO2 levels. Significant seasonal

changes in pCO2 and DIC are regulated largely by biological

activities (as accounted by Chla), deep water upwelling, and

cyclonic eddies. Based on these pCO2 variations in different

oceanic regimes and the theoretical foundation presented in the

earlier section, a multiparametric MPNR approach is developed

to estimate spatial and temporal variations of pCO2 for the global

ocean as a function of SST, SSS, and Chla

pCO2 = A SST + B SSS + Clog10Chla+D (17)

where A, B, C, and D are the coefficients obtained from re-

gression analysis using global in-situ pCO2, SST, SSS, and

corresponding satellite-derived Chla. Changes in phytoplankton

biomass are accounted by intracellular Chla contents based on
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the availability of light, nutrients, seawater physical properties,

and CO2 concentrations [49]. Diurnal variation in phytoplankton

biomass and physiological state of the phytoplankton are greatly

influenced by physical factors and light fluctuations, which may

have a major influence on the relationship between pCO2 and

Chla. Hales et al. [35] suggested that a straightforward linear

relationship between pCO2 and Chla is very difficult to achieve

due to these factors. Thus, biological effect on pCO2 variation

is accounted by the logarithm of Chla [log10Chla] in the present

study. In the absence of concurrent in-situ Chla data, we have

used MODIS-Aqua Level-3 daily binned Chla data with 4-km

spatial resolution corresponding to in-situ pCO2, SST, and SSS

data measured in diverse oceanic waters. The in-situ data were

collected from Pacific, Atlantic, and Southern Ocean waters by

various research teams across the world and contributed to the

NODC-NOAA database for calibration and validation purposes.

Although the data contained a large number of sampled pCO2,

SST, and SSS, some data were excluded from the analysis when

global ocean SSS< 30 PSU, consistent with the previous studies

[17], due to anomalous physical processes where these samples

were collected [2]. This led to a total of 57 789 data points

used in this study for the parameterization and validation of

the MPNR approach. Of these, 40 379 were used for MPNR

parameterization and the remaining 17 410 samples were used

for the in-situ and satellite validations. In-situ measured pCO2,

SST, and SSS data were continuous, whereas Chla were derived

from satellite data with 4-km spatial resolution. To avoid spatial

resolution inconsistencies between in-situ and satellite data, 40

379 in-situ data which is used for MPNR parameterization were

resampled by averaging the values over square cells of 4-km size

so as to be consistent with the Chla data. This led to a total of

10 000 in-situ and satellite-derived measurements of the same

spatial resolution.

Based on the global in-situ measurements of pCO2, SST,

and SSS and the corresponding satellite-derived Chla obtained

from various oceanic regions, it was observed that most of the

pCO2 data showed negative correlation with SST, SSS, and Chla

in polar and subpolar regions; widespread pCO2 data showed

strong positive correlation with SST and SSS data and negative

correlation with Chla data in tropical and subtropical regions;

and the remaining pCO2 data displayed negative correlation with

SST and positive correlation with SSS and Chla in equatorial

regions. Fig. 2 shows all the global observed trends in surface

ocean pCO2 with respect to the SST, SSS, and Chla data.

Based on the observed global trends of pCO2 with respect to

independent parameters such as SST, SSS, and Chla, our find-

ings revealed that the same parameter exhibited different trends

with respect to pCO2 variability in different oceanic regimes.

Because of these complex and rapidly changing trends in differ-

ent oceanic regimes, no single model reported previously was

capable of discerning global-scale pCO2 trends specifically on

spatial and longtime scales when pCO2 has different, significant

trends with the individual parameter mentioned previously. To

overcome this problem, we parameterized our MPNR approach

with respect to specific ranges of SST and SSS (according to the

global trends) using the first-order multiple nonlinear regression

equations. For example, the specific ranges of SST (SST < 15,

15 ≤ SST < 26, and SST≥26) and SSS (30 < SSS ≤ 34.9

Fig. 2. Scatterplots of the relationships of pCO2 with sea surface temperature
(SST), sea surface salinity (SSS), and chlorophyll-a (Chla) concentration for
the (a–c) MPNR-1, (d–f) MPNR-2, and (g–i) MPNR-3 based on the variations
of pCO2 with respect to the physical oceanographic conditions (SST and SSS).

and SSS > 34.9) were considered. Fig. 3 shows the MPNR

architecture based on SST and SSS conditions.

Because the available 40 379 in-situ pCO2 and other data

were randomly distributed spatially and temporally, these data

were separated and regrouped according to the SST and SSS

conditions following the observed global trends of pCO2 with

respect to SST, SSS, and Chla data. After regrouping of the

data, 5151 data were used for the MPNR-1 analysis, 34 313 for

the MPNR-2 analysis, and 915 data for the MPNR-3 analysis.

The available data were co-located corresponding to the satellite

4-km spatial resolution Chla data, which resulted 1502, 8239,

and 259 data points for the MPNR-1, MPNR-2, and MPNR-3

analyses, respectively.

MPNR-1:

pCO2 = − 3.4646SST− 5.1624SSS− 37.3073log10Chla

+ 548(SST < 15, N = 1502) (18)

MPNR-2:

pCO2 = 2.6544SST + 10.5464SSS− 22.41log10Chla− 73

(15 ≤ SST < 26, SST > 26, and SSS > 34.9,N = 8239)
(19)

MPNR-3:

pCO2 = − 29.8310SST + 0.8431SSS + 48.4430log10Chla

+ 1297 (SST ≥ 26 and SSS ≤ 34.9, N = 259) .
(20)

Using the multiparametric and multiple regression analyses

of pCO2 with respect to SST, SSS, and Chla data based on the

SST and SSS conditions (Fig. 3), the new MPNR was derived

that serves as an accurate estimator of global-scale pCO2 from

satellite observation data.
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Fig. 3. Flowchart showing the architecture of MPNR based on the SST and
SSS conditions.

III. PERFORMANCE ASSESSMENT

Quantitative performance assessment of the MPNR approach

is made based on the standard statistical matrices, such as mean

relative error (MRE), mean normalized bias (MNB), root-mean-

square error (RMSE), correlation coefficient (R2), slope, and

intercept. The MRE, MNB and RMSE matrices are defined as,

MRE =
1

N

N
∑

i = 0

∣

∣(pCOestimated
2 − pCOin−situ

2 )
∣

∣

pCOin−situ
2

(21)

MNB =

∑N
i = 0

(

pCOestimated
2 − pCOin−situ

2

)

N
(22)

RMSE =

√

∑N
i = 0

(

pCOestimated
2 − pCOin−situ

2

)2

N
(23)

whereas the slope, intercept, and R2 are calculated from regres-

sion analysis between the estimated (pCO2
estimated) and mea-

sured in-situ (pCO2
in-situ) pCO2 values. The MRE and RMSE

matrices give the systematic and random errors, respectively,

whereas the MNB, intercept, slope, and R2 are used in conjuga-

tion with other matrices to examine deviations of the estimated

pCO2 values from the measured in-situ pCO2 values.

IV. RESULTS AND DISCUSSION

This section presents validation results using independent in-

situ data and satellite matchup data and the spatial distribution

and temporal variability of basin- and global-scale pCO2 using

satellite oceanographic data. The in-situ and satellite validation

are performed using independent data obtained along several

cruise tracks in the Pacific, Atlantic, and Southern Oceans over

the period of 2012, 2014, 2015, and 2018 spanning from January

to November. Several test cases using satellite oceanographic

data from the regional and global ocean regimes were carried

out to detect changes in pCO2 fields due to the dominance of

heating, cooling, mixing, and biological effects as previously

reported with the extensive climatological data.

A. Validation of the Estimated pCO2 With In-Situ (Direct and

Derived) pCO2 Data

The in-situ validation dataset contains simultaneous measure-

ments of pCO2, SST, and SSS with the exception of the Chla

data. Thus, the daily Level-3 MODIS-Aqua-derived Chla data

were obtained corresponding to the in-situ pCO2, SST, and SSS

data. In total, 17 410 independent in-situ data have measured

pCO2, SST, and SSS data and satellite-derived Chla data. For the

purpose of in-situ and satellite matchup analysis, the in-situ data

were converted to the same grid with 1° × 1° spatial resolution

data provided by the satellite sensors. This resulted in a total of

238 sets in the same samples. These data were then regrouped

based on the SST and SSS conditions, and accordingly, the

estimated values (SST, SSS, and pCO2) were compared with the

in-situ measured values. Since pCO2 is dependent on SST, SSS,

and Chla fields, the daily Level-3 SST and SSS fields derived

from the satellite data (MODIS-Aqua, Aquarius, and SMAP)

were compared with measured in-situ data (such a comparison

is not presented for Chla because of the absence of data). Fig. 4

(a, e, i, and m) shows that the satellite-derived SST values are

in good agreement with the measured values with low errors

for SST (MRE 0.026, RMSE 0.65, MNB −0.07) and high

slope and correlation coefficients (Slope 1, R2 0.99). Similarly,

Fig. 4 (b, f, j, and n) shows the satellite-derived SSS values are

consistent with the measured SSS values with small errors (MRE

0.004, RMSE 0.22, MNB 0.006) and high slope and correlation

coefficients (Slope 0.93, R2 0.94).

Slight underestimation of SSS at the lower end of the range

and overestimation of SSS at the intermediate and higher ends

of the range may be caused by diurnal SSS variations [50],

[51] and differences due to pixel measurements by satellites

and spot measurements by in-situ observations. However, the

validation results indicate that the estimated SST and SSS are

consistent with those based on the in-situ measurements within

acceptable errors in the context of satellite data analysis, which

ensures that the pCO2 fields can be estimated reliably using the

satellite-derived products of SST, SSS, and Chla fields. Fig. 4

(c, g, k, and o) shows the comparison of estimated pCO2 with

independent measurement data (SST, SSS, and Chla) in the

Atlantic, Pacific, and Southern Oceans. This validation analysis

yielded small errors and high correlation coefficients (MRE

0.010, RMSE 5.35, MNB 0.049, Slope 0.94, and R2 0.90 for

the cases of waters with SST < 15; MRE 0.019, RMSE 8.48,

MNB 0.69, Slope 0.72, and R2 0.86 for the cases of waters

with 15 ≤ SST<26, SST > 26, and SSS > 34.9; and MRE

0.010, RMSE 5.41, MNB 1.68, Slope 1.00, and R2 0.91 for the

cases of waters with SST≥26 and SSS ≤ 34.9). The overall
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Fig. 4. Scatterplots (first three rows) and line plots (fourth row) showing the comparison of estimated SST, SSS, and pCO2 with the measured values in the Pacific
Ocean (PO), Atlantic Ocean (AO), and Southern Ocean (SO). IV – In-situ validation results; SV – Satellite validation results; MPNR-1, MPNR-2, and MPNR-3
are the validation results based on the three SST and SSS conditions. The combined MPNR represents the overall validation results in PO, AO, and SO waters.
Because of the absence of in-situ Chla data, a similar validation at the pCO2 sampling locations could not be performed.

performance of the MPM for the entire ranges of SST, SSS,

and Chla in different oceanic regimes is also exceptionally

good (MRE 0.014, RMSE 6.68, MNB 0.48, Slope 0.92, and

R2 0.93), which indicates the robustness of the MPNR approach

for global-scale applications.

B. Validation of the Satellite pCO2 With In-Situ Data

To validate the satellite-derived pCO2 data with the in-situ

observations, the MPNR regression equations were applied on

satellite data products (SST, SSS, and Chla) to produce daily

pCO2 products in areas where independent in-situ pCO2 data

were available along ship transects in the Atlantic, Pacific,

and Southern Oceans. In total, 17 410 in-situ measured pCO2,

SST, and SSS and satellite-derived Chla data were used for

the satellite validation. For the purpose of in-situ and satellite

matchup analysis, the in-situ data were converted to the same

grid with 1° × 1° spatial resolution data provided by the satellite

sensors. This resulted in a total of 238 in-situ measured pCO2,

SST, and SSS and satellite-derived Chla data. Of these, 115

samples from Southern and Pacific Ocean waters were used for

validating the MPNR-1, 98 samples from Atlantic and Southern

Ocean waters for validating the MPNR-2, and 25 samples from

Pacific Ocean waters for validating the MPNR-3. Fig. 4 (c, g, k,

and o) shows a comparison of the in-situ measured pCO2 with

those derived from satellite data (red circles in scatterplots and

red lines in line plots) in various oceanic regimes, including the

Atlantic, Pacific, and Southern Oceans. Consistent with the in-

situ validation results, the MPNR reproduced in-situ measured

pCO2 values with the MRE 0.012, RMSE 6.12, MNB −0.10,

Slope 1, and R2 0.89 for the cases of waters with SST < 15;

MRE 0.019, RMSE 8.77, MNB −0.29, Slope 0.72, and R2 0.84

for the cases of waters with 15 ≤ SST<26, SST > 26, and

SSS > 34.9; and MRE 0.016, RMSE 8.45, MNB 3.36, Slope

1.02, and R2 0.82 for the cases of waters with SST≥26 and

SSS ≤ 34.9). The overall agreement of satellite-derived pCO2
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TABLE III
STATISTICS OF IN-SITU AND SATELLITE DERIVED PCO2 VALIDATION DATA

with in-situ measured pCO2 data collected in different oceanic

regimes during different periods was good (MRE 0.016, RMSE

7.56, MNB 0.18, Slope 0.95, and R2 0.91). The mean absolute

differences in satellite-derived and in-situ measured pCO2 were

4.82 µatm for the cases of waters with SST < 15, 7.46 µatm

for the cases of waters with 15 ≤ SST<26, SST > 26, and

SSS > 34.9, 7.08 µatm for the cases of waters with SST≥26

and SSS ≤ 34.9, and 6.14 µatm for the entire validation data.

Slight differences were still observed across some samples due to

differences in SST, SSS, and Chla between in-situ measured and

satellite-derived data, pixel and spot measurements, and influx

and mixing of the waters under different sea state conditions and

continental effects. Table III shows the statistics of in-situ and

satellite validations.

C. Comparison With the Regional Models

The space-time variability of pCO2 in different ocean basins

across the latitudes has been previously reported by several

studies. For instance, in the northern Pacific Ocean, Stephens

et al. [18] estimated pCO2 from the MPR model as a function of

SST and longitude with an RMSE value of ±17 and ±40 µatm

in tropical and subpolar region. Ono et al. [19] applied the

second-order MNR equations to satellite-derived SST and Chla

data to produce pCO2 which yielded an RMSE value of±14 and

±17 µatm in subtropical and subarctic regions. Sarma et al. [17]

estimated pCO2 from the MLR model using satellite-derived

SST, SSS, and Chla products in North Pacific Ocean waters,

which yielded an RMSE of 17–23 µatm. Nakaoka et al. [26]

estimated pCO2 from the SOM as a function of SST, SSS, Chla

and Julian day in Northern Pacific Ocean waters with an RMSE

value of 17–20.2 µatm. In Atlantic Ocean regimes, Jamet et al.

[14] used the MLR to estimate pCO2 as a function of SST, SSS,

and MLD, which produced an RMSE value of 8.98–15.01 µatm.

Chierici et al. [21] developed the MPR equations that estimates

pCO2 as a function of SST, Chla, and MLD for Northern Atlantic

Ocean waters with an RMSE value of 10.8 µatm. Telszewski

et al. [20] developed and tested an SOM approach using the

satellite-derived SST, Chla, and MLD products in North Atlantic

regions, which resulted an RMSE of 11.6 µatm. Friedrich and

Fig. 5. Bar graph showing the comparison of the RMSE of the present study
with the regional pCO2 studies.

Oschlies [28] developed a KFM to estimate pCO2 in North

Atlantic Ocean waters as a function of SST and Chla. This model

yielded an RMSE value of 19 µatm. Chen et al. [48] developed

and tested an MLR model in Southern Atlantic and Indian Ocean

waters, which yielded an RMSE of 21 µatm. Compared to these

regional studies in Pacific, Atlantic, and Southern Oceans, the

MPNR estimated pCO2 trends in close agreement with measured

values with an RMSE of 6.68 and 7.56 µatm for in-situ and

satellite validation results, respectively. While the in-situ data

exhibited discontinuous pCO2 trends in different basins, satellite

products derived from the MPNR captured sharp space–time

variations of pCO2 trends in global oceanic waters caused by

various physical and biological processes. Fig. 5 shows the

RMSE of the present study compared with the regional pCO2

studies.

D. Basin- and Global-Scale pCO2 Fields

1) Individual Effects of SST, SSS, and Chla on the Global

pCO2 Variations: Estimation of the basin- and global-scale

pCO2 fields on the monthly and seasonal time scales is important

for understanding the time–space variability for the air–sea CO2

exchange in different ocean basins and quantify its effects on

the future global climate [8], [14]. Because spatial and temporal

variations of surface ocean pCO2 are influenced by three eas-

ily measurable parameters SST, SSS, and Chla (as controlled

by physical and biogeochemical processes, such as biological

production or respiration, physical mixing, ocean currents, and

circulations), the monthly averaged global satellite images of

SST, SSS, Chla, and pCO2 data (1° × 1° resolution) during the

period January–December 2014 are examined to capture their

seasonal, regional, and global trends ( Figs. 7–10).

This period was considered for two reasons: more inde-

pendent in-situ pCO2 validation data (approximately 10 599)

and availability of in-situ and satellite-based climatological

pCO2 maps for the reference year 2014 [36]. Fig. 6 shows the

MPNR implementation using the satellite-derived data products

(SST, SSS, and Chla). Among the three influencing parame-

ters, SST changes are observed to have the dominant effect

on pCO2 due to direct solar heating, physical mixing, ocean
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Fig. 6. Flowchart showing the implementation of multiparametric model
(MPNR) using satellite oceanographic data in global oceanic waters.

Fig. 7. Global maps of (a and b) MODIS-Aqua Level-3 data of SST at 4-km
and 1° ×1° spatial resolution, (c and d) MODIS-Aqua Level-3 data of Chla at
4-km and 1° ×1° spatial resolution, (e) Aquarius Level-3 SSS data at 1° ×1°
spatial resolution, and (f) pCO2 data at 1° ×1° spatial resolution for the winter
season (January–March) of 2014.

currents/circulations, heat exchange between the ocean and at-

mosphere, and bottom boundary atmospheric effects. Fig. 11(a)

shows the monthly global images of SST (1° × 1° resolution)

during the period from January to December 2014. The tropical

and subtropical band (45°N–45°S) exhibits large SST values

Fig. 8. Global maps of (a and b) MODIS-Aqua Level-3 data of SST at 4-km
and 1° ×1° spatial resolution, (c and d) MODIS-Aqua Level-3 data of Chla at
4-km and 1° ×1° spatial resolution, (e) Aquarius Level-3 SSS data at 1° ×1°
spatial resolution, and (f) pCO2 data at 1° ×1° spatial resolution for the spring
season (April–June) of 2014.

Fig. 9. Global maps of (a and b) MODIS-Aqua Level-3 data of SST at 4-km
and 1° ×1° spatial resolution, (c and d) MODIS-Aqua Level-3 data of Chla at
4-km and 1° ×1° spatial resolution, (e) Aquarius Level-3 SSS data at 1° ×1°
spatial resolution, and (f) pCO2 data at 1° ×1° spatial resolution for the summer
season (July–September) of 2014.
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Fig. 10. Global maps of (a and b) MODIS-Aqua Level-3 data of SST at 4-km
and 1° ×1° spatial resolution, (c and d) MODIS-Aqua Level-3 data of Chla at
4-km and 1° ×1° spatial resolution, (e) Aquarius Level-3 SSS data at 1° ×1°
spatial resolution, and (f) pCO2 data at 1° ×1° spatial resolution for the autumn
season (October–December) of 2014.

Fig. 11. Global distributions of monthly satellite-derived (a) SST, (b) SSS, (c)
Chla, and (d) pCO2 at 1°×1° spatial resolution.

(>15°C), whereas the northern and southern polar and subpolar

band (45°–90°) exhibits small SST values (<15°C). Spatial and

temporal variations of pCO2 in tropical and subtropical bands

are mainly controlled by SST variations [52]; thus, these regions

are most important for the sea–air CO2 exchange [53]–[55].

Solubility of CO2 gas molecules in surface ocean waters is

mainly controlled by SST, which decreases progressively from

equator toward the poles due to differences in their distance to

the sun. Because the solubility of CO2 in surface ocean waters

is inversely correlated with SST [17], [18], cold ocean waters

(low SST) have higher solubility of CO2, whereas warm ocean

waters (high SST) have low solubility of CO2. Thus, polar

and subpolar bands act as a major sink for atmospheric CO2,

whereas equatorial bands (10°N–10°S) act as a major source to

the atmospheric CO2. Polar and subpolar bands of both northern

and southern hemispheres have less solar radiation (low SST)

and hence the solubility of CO2 depends sensitively on the low

SST bands in the polar and subpolar oceanic regions. Biological

activities play a predominant role in high spatial and temporal

variability of pCO2 through the processes of photosynthesis,

respiration, and calcium carbonate (CaCO3) shell production or

dissolution.

Fig. 11(c) shows the monthly global images of Chla (1° ×

1° resolution) during the period from January to December

2014. Tropical and subtropical bands of open ocean waters

show very low Chla values, whereas polar and subpolar regions

show high Chla values due to the strong biological production.

Seasonal variations of pCO2 in polar and subpolar band are

strongly influenced by the seasonal variations of Chla [12].

High biological production leads to a decrease in surface ocean

pCO2 through the process of photosynthesis. The polar and

subpolar bands of northern hemisphere show low pCO2 values

due to the strong biological activity, but the southern polar band

shows high pCO2 values as compared to the northern polar

band due to the low biological production and high solubility

of CO2. SSS is another essential parameter that controls the

horizontal and vertical gradient of surface ocean pCO2 variations

caused by ocean circulation, stratification, and mixing processes

(upwelling and downwelling). Upwelling of ocean water brings

nutrients and CO2-rich cold water to the surface causing changes

in surface ocean pCO2. SSS in ocean waters is mainly controlled

by SST changes due to evaporation, rain events, river inflow,

and melting of the ice sheets at the poles. Fig. 11(b) shows

the monthly global images of SSS (1° × 1° resolution) during

the period from January to December 2014. It is seen that the

open ocean waters of tropical and subtropical regions have high

SSS (>36 PSU) due to evaporation and dry offshore winds, the

polar and subpolar oceanic waters have low SSS (<33 PSU)

due to melting of the ice sheets and freshwater inputs from the

continents, and the equatorial bands have relatively low SSS due

to high precipitation and river inflow.

2) Combined Effects of SST, SSS, and Chla on the Global

pCO2 Variations: Stratified regions of the global ocean associ-

ated with low nutrients and Chla (stratification prevents the verti-

cal mixing of nutrients and thus limits the biological production)

and high SST and SSS exhibit high pCO2 levels throughout the

year, whereas the regions characterized by high nutrients, strong

biological production (high Chla), and relatively low SST and

SSS have low pCO2 levels. In tropical and mid-latitude bands,

pCO2 is mainly controlled by changes in SST and SSS and the

influence of Chla on pCO2 is minimal. In polar and subpolar

oceanic waters, pCO2 is more influenced by Chla variations than
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SST and SSS changes. In equatorial oceanic waters, changes in

all three parameters SST, SSS, and Chla have a profound role in

the pCO2 variations. Regions with high solubility and low Chla

have high pCO2, whereas regions with high solubility and Chla

have low pCO2 due to the fact that the biological productivity

decreases pCO2 values. Considering the global images of pCO2,

southern polar (60°S–90°S) bands have higher pCO2 levels

compared to the northern polar bands, because the enhanced

biological activities (high Chla) in northern polar regions cause

a decrease in pCO2 (through photosynthesis) despite the high

solubility of CO2 and the diminished biological production (low

Chla), and high solubility of CO2 in southern polar regions cause

an increase in pCO2. Regardless of the seasonal variations, the

transitional band between 35° and 55° in both northern and south-

ern hemispheres exhibits low pCO2 values, because of high nu-

trients, biological production and mixing (cooling effect) of the

cold water (moving from the pole to equator), and warm water

(flowing from the equator to the polar region). Eastern part of the

equatorial Pacific Ocean acts as a strong upwelling region due to

the movement of northeastern (NE) and southeastern (SE) trade

winds toward the western side, leading to the flow of surface

waters from the eastern to the western equatorial Pacific Ocean

[56]. Upwelling regions bring bottom cold CO2 rich waters to the

surface causing an increase in pCO2. As a consequence of strong

upwelling in the eastern equatorial Pacific Ocean, high pCO2

occurs in this region as a strong source to the atmosphere CO2.

In the equatorial band (10°N–10°S), satellite pCO2 levels

are higher (>430 µatm) across the western–eastern Pacific

Ocean during winter (Fig. 7). Intermediate pCO2 values (340–

380 µatm) are observed in the western and central equato-

rial Pacific Ocean during spring, summer, and autumn seasons

(Figs. 8–10), and a high pCO2 trend (>400 µatm) is seen from

the central equatorial Pacific Ocean to the eastern equatorial Pa-

cific Ocean. Similar pCO2 trends were observed in the monthly

pCO2 climatological maps produced by Takahashi et al. [36].

The observed pCO2 values are also consistent with the discrete

in-situ data. Seasonal variations of pCO2 levels in the equatorial

Pacific Ocean are owing to the profound effects of SST, SSS, and

Chla, strong upwelling (eastern equatorial Pacific Ocean), and

downwelling (western equatorial Pacific Ocean) [57], which are

greatly influenced by the El Nino and La Nina events.

In the subtropical band, a low pCO2 structure (<335 µatm)

is observed that stretches eastward from east of northern Japan

coast in the North Pacific Ocean (Figs. 7–10). The pCO2 levels

are slightly decreased (<300 µatm) along the east and west

coasts of Japan and America. The position of this low pCO2

structure changed with the seasons; for instance, it was located

between 32°N and 41°N latitudinal band during winter and

spring season (Figs. 7 and 8) and between 41°N and 50°N during

summer and autumn seasons (Figs. 9 and 10). The seasonal

shift in low pCO2 structure in the Pacific Ocean is caused by

intense biological production and mixing of warm and cold

ocean currents as reported previously by Sarma et al. [17] and

Takahashi et al. [36]. The low pCO2 structure was found to be

associated with the Transition Zone Chlorophyll Front (TZCF)

along the 18°C isotherm in the central North Pacific Ocean

[17], [58]. Similarly, a low pCO2 structure (Figs. 7–10) shifts

according to the seasonal change of TZCF between 30°N and

45°N [58]. In the polar band, it is seen that in the North Pacific

Ocean, a weak pCO2 feature (<340 µatm) is observed during

summer (Fig. 9), a moderate pCO2 feature (340–370 µatm) dur-

ing autumn (Fig. 10), and a strong pCO2 feature (370–400µatm)

during winter and spring (Figs. 7 and 8). Similar pCO2 seasonal

trends were observed in the in-situ observation data [36] and

satellite-derived monthly pCO2 climatological maps [17]. The

seasonal variations of surface ocean pCO2 in polar regions are

strongly influenced by seasonal variations of biological produc-

tion (Chla) rather than SST and SSS [17], [36]. In the North

Atlantic Ocean, the pCO2 levels changed with the seasons; for

instance, high pCO2 (370–400 µatm) during winter (Fig. 7) and

low pCO2 (<350 µatm) during spring, summer, and autumn

(Figs. 8–10), which are consistent with the observed trends

in the pCO2 climatological maps [36]. In contrast, the pCO2

levels are noticeably very low (<330 µatm) off the west coast

of South Atlantic Ocean (near to Brazil) due to the mixing of

warm (Brazilian current) and cold (western boundary currents)

ocean currents and high biological production in the region. In

the tropical and mid-latitude band (45°N–45°S), stratified open

ocean waters of South Atlantic Ocean have much higher pCO2

levels (390–430 µatm) in winter and spring (Figs. 7 and 8) than

in summer and autumn (Figs. 9 and 10), which are governed

by the effects of stratification, thermodynamic, horizontal, and

vertical gradients of SST and SSS [8], [12], [17], [36]. Such large

areas of high pCO2 fields in winter and spring and small areas

of low pCO2 fields in winter and spring were earlier reproduced

in the monthly pCO2 climatological maps [36].

Similarly, higher pCO2 levels occupied small areas of the

North Atlantic Ocean (390–430 µatm) in winter and spring

(Figs. 7 and 8) and large areas (390–430 µatm) in summer and

autumn (Figs. 9 and 10), which are consistent with the monthly

pCO2 climatological maps [36], despite the computed pCO2

values in the present study being approximately 10–30 µatm

higher than their pCO2 values. These seasonal variations of

surface ocean pCO2 in tropical and subtropical regions of

both the hemispheres are strongly influenced by SST and SSS

rather than the biological effects [8], [12], [17], [36]. High

pCO2 fields are observed in the Pacific Ocean (370–430 µatm)

and seasonally stratified regions (390–430 µatm) in both the

hemispheres (Figs. 7–10) where seasonal salinity structures are

observed in the Aquarius SSS products. The stratified high pCO2

structures are invisible in the climatological maps of Takahashi

et al. [36]. The Southern Indian Ocean has very high pCO2

patches (>410 µatm) in all the seasons due to the strong

upwelling/vertical mixing which was not observed in Takahashi

et al. [36] monthly pCO2 climatological pCO2 maps.

In contrast, the Bay of Bengal (BOB) is one of the largest

marginal seas of the Indian Ocean strongly influenced by the

southwest and northeastern monsoon systems. During the south-

west monsoon (June–August), this region experiences high

precipitation and river inputs, leading to low surface salinities

and strong stratification [59]. Despite the river inputs affecting

most coastal areas, the open-sea regions of BOB are gener-

ally devoid of nutrients and hence low biological productivity

(low Chla) [60], [61]. As a result, the pCO2 in BOB wa-

ters is increased during January–March (northeastern monsoon)

(>420 µatm) due to the lower biological productivity, vertical
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mixing, and high inflow of organic and inorganic carbon through

the river systems.

V. CONCLUSION

A multiparametric nonlinear regression (MPNR) is presented

here for the estimation of global-scale distribution of surface

ocean pCO2 using satellite-derived SST, SSS, and Chla. Unlike

the earlier models developed using limited in-situ data and

multiple/discrete regression equations for limited locations and

few confirmed pCO2 trends, this study has demonstrated the

robustness of the MPNR in providing continuous coverage of

pCO2 with a greater accuracy using satellite-derived physical

(SST, SSS) and biological (Chla) data. The measured in-situ

pCO2 fields over the basin- and global-scales showed large vari-

ability in the equatorial and tropical domains, and subtropical

and polar oceans despite their strong seasonal amplitudes and

east–west gradients due to physical and biological conditions.

Our analysis showed that spatial and seasonal changes in the

global surface ocean pCO2 fields are closely in phase with the

SST structures as previously confirmed by other studies [12],

[62]–[64]. It was observed that the temperate, subpolar, and

polar regions exhibit large seasonal SST changes due to the solar

radiation input, ocean circulation and vertical mixing, and heat

exchange between the ocean–atmosphere system. Consequently,

the difference in pCO2 amplitudes may be solely attributed to

SST changes on long time scales, but the effect of ocean circula-

tion and biological activity causes persistent CO2 sinks in certain

regional oceanic regimes. The pCO2 trends in such complex

oceanic regimes are difficult to discern from the regional models

and require a multiparametric approach that accounts for all the

controlling factors to accurately estimate pCO2 in global oceans.

The MPNR approach developed here is a promising tool for

the estimation of pCO2 fields on basin- and global scales using

satellite-derived SST, SSS, and Chla data, as these products are

readily available in the most oceanic regions and represent the

dominant processes of thermodynamics, physical mixing, and

biological production.

The pCO2 fields displayed strong positive and negative re-

lations with the physical and biological parameters in the po-

lar and subpolar bands, where pCO2 changes are inversely

correlated with Chla caused by the photosynthetic drawdown

and positively correlated with Chla caused by vertical mixing,

upwelling, and respiration within the mixed layer. The influence

of solubility (thermodynamic) and dilution by fresh water has

been observed to have a positive relation of pCO2 with SST in the

tropical and subtropical bands. In the polar and subpolar bands,

pCO2 changes are inversely correlated with SST due to the in-

creased solubility of CO2 in cold waters (low SST) than in warm

waters (high SST). These changes are well captured by changes

in SST, SSS, and Chla over the different oceanic regimes using

the MPNR approach presented in this study. In-situ validation

data showed that the MPNR reproduced observed pCO2 levels

within an RMSE of 5.35–8.48 µatm and R2 values of 0.86–0.93.

Further application to satellite-derived SST, SSS, and Chla

showed that variations in pCO2 along several cruise transacts

were well reproduced by satellite pCO2 within an RMSE of

6.12–8.77 µatm and R2 values of 0.82–0.91. Compared with

earlier studies, the monthly and seasonal amplitudes of pCO2

changes observed in the satellite-derived products are closely

consistent with the climatological distribution of pCO2 for the

corresponding year 2014 and locations in addition to providing

new insights in regional differences in the influences of physical

and biological processes.

It should be mentioned that the biological activity plays a vital

role in controlling pCO2 variations in polar, subpolar and equato-

rial, and upwelling dominated regions. However, no in-situ Chla

data are contained in the datasets provided by NODC-NOAA to

examine the regional differences. Considering the scarcity of in-

situ measured Chla data, we used MODIS-Aqua data to generate

matchup data corresponding to the pCO2 measurements along

the cruise transects in the Atlantic, Pacific, and Southern Oceans.

The satellite-derived pCO2 using MPNR generally better agreed

with in-situ pCO2 observations in different ocean basins within

an error of less than 7.56µatm. However, the MPNR approach is

robust globally, but it is probably not as accurate as the regional

models that are published in the previous pCO2 studies. Further

improvement of the MPNR can be made by using concurrent

measurements of pCO2, SST, SSS, and Chla in global oceanic

waters. In this process, it may be necessary to incorporate

additional parameters such as MLD, CDOM, PAR, NPP, phy-

toplankton functional types (PFT), wind speed and direction,

and specific pCO2 changes associated with special events across

small spatial scales (i.e., eddy effects, phytoplankton blooms,

and typhoons). MLD plays an essential role in understanding the

effect of episodic events, such as hurricanes, storms, frontal, and

eddy driven upwelling processes that can alter the pCO2 varia-

tions at the sea surface by pumping the subsurface waters into

the surface mixed layer of the ocean [65], and also mixed layer

dynamics of the upper ocean which is forced with wind and heat

fluxes. Similarly, CDOM is one of the major contributors to the

absorption budget of most freshwater systems and can be used as

a proxy to assess nonoptical carbon fractions, such as dissolved

organic carbon (DOC) and pCO2 [66]. Freshwater systems also

contain a large amount of carbon dioxide (CO2) relative to the

atmosphere [67], and the ability to assess both DOC and pCO2

from the CDOM optical properties opens further perspectives

on the use of ocean color remote sensing data for monitoring

carbon dynamics in large running water systems worldwide

[66]. CDOM, more likely adapted to the development of ocean

color remote sensing-based pCO2 inversion algorithms, has been

also considered as a potential proxy of pCO2 [25], [68], [69].

CDOM can be used as either direct driver [66], [70] or proxy for

salinity/riverine inputs, which are used to estimate pCO2 [25].

In the future, spatial and temporal accuracies of surface ocean

pCO2 estimations would be further improved by incorporating

the other related parameters governing the pCO2 distributions.
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