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Abstract

Identifying natural allelic variation that underlies quantitative trait variation remains a fundamental problem in genetics.
Most studies have employed either simple synthetic populations with restricted allelic variation or performed association
mapping on a sample of naturally occurring haplotypes. Both of these approaches have some limitations, therefore
alternative resources for the genetic dissection of complex traits continue to be sought. Here we describe one such
alternative, the Multiparent Advanced Generation Inter-Cross (MAGIC). This approach is expected to improve the precision
with which QTL can be mapped, improving the outlook for QTL cloning. Here, we present the first panel of MAGIC lines
developed: a set of 527 recombinant inbred lines (RILs) descended from a heterogeneous stock of 19 intermated accessions
of the plant Arabidopsis thaliana. These lines and the 19 founders were genotyped with 1,260 single nucleotide
polymorphisms and phenotyped for development-related traits. Analytical methods were developed to fine-map
quantitative trait loci (QTL) in the MAGIC lines by reconstructing the genome of each line as a mosaic of the founders. We
show by simulation that QTL explaining 10% of the phenotypic variance will be detected in most situations with an average
mapping error of about 300 kb, and that if the number of lines were doubled the mapping error would be under 200 kb.
We also show how the power to detect a QTL and the mapping accuracy vary, depending on QTL location. We demonstrate
the utility of this new mapping population by mapping several known QTL with high precision and by finding novel QTL for
germination data and bolting time. Our results provide strong support for similar ongoing efforts to produce MAGIC lines in
other organisms.
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Introduction

Most plant traits of agronomic and economic interest, such as

seed dormancy, flowering time, fruit production, disease resis-

tance, etc., vary quantitatively and have complex genetic

inheritance. Their phenotypic expression is determined by the

combination of many genetic and environmental factors. Naturally

occurring genetic variation is a valuable source of alleles for

economically important traits, but much of the genetic basis of

natural variation in these traits remains unresolved [1,2]. Thus,

new resources to dissect and exploit this variation are needed.

Arabidopsis thaliana is an ideal species in which to develop

resources because it is a model for the study of plant genetics, and

extensive natural variation segregates among accessions of A.

thaliana for many ecological and developmental traits [3–5]. In

addition, an extensive repertoire of genomic tools facilitate the

cloning of quantitative trait loci (QTL) [6–8]. Because A. thaliana is

in the same family as a number of important crops (rape seed,

cabbage, broccoli and other brassicas), identification of causal

genes may lead to the identification of homologous loci important

for improving crop quality and productivity [9–11], as well as have

broader applications [12].

The populations of A. thaliana used for genetic mapping so far

can be classified into naturally occurring inbred lines (accessions)

and synthetic populations. Genetic association in the former is a

more recent development [13], whilst the mapping of QTL in the

latter is well established [14–16]. Synthetic populations include F2,

backcrosses, recombinant inbred lines (RILs) and advanced

intercross lines (AIL), all created from a cross between two

accessions that differ for the trait of interest (reviewed in [17], and

[18]); many QTL for complex traits have been mapped using these

crosses and RILs. Their two advantages are that the power to

detect a QTL segregating in a two-allele system is high, and that

synthetic populations usually have no population substructure.

The power to detect a QTL in any mapping population depends

on the fraction of the phenotypic variance it explains. If the QTL

is diallelic then this is proportional to p(12p), where p is the minor

allele frequency at the QTL. This quantity is greatest when

p = 0.5, as is approximately the case in the majority of synthetic

populations descended from two parental lines. The lack of

substructure means there are few long-range correlations between

genotypes and consequently the QTL can be mapped indepen-

dently, with little risk of false positive ‘‘ghost’’ QTL. The main

disadvantage is poor mapping resolution: QTL identified using
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these designs typically have confidence intervals of 5 to 20 cM

[19–21], corresponding on average to 1.2 to 4.8 Mb and covering

hundreds of candidate genes.

Genetic association using naturally occurring accessions has

complementary strengths and weaknesses: minor allele frequencies

underlying a QTL are rarely close to 0.5, with many rare alleles

[22], so the QTL discovery rate is not as efficient. However, the

advantage of association mapping is its higher mapping resolution;

because linkage disequilibrium decays very quickly in natural

accessions, it is sometimes feasible to map QTL to near single-gene

resolution [23]. The main challenge for association studies at the

moment is population sub-structure (due to demographic causes),

which requires more sophisticated analyses such as linear mixed

models [13,24] to control for false positives.

In classical synthetic populations further fine-mapping is

required before QTL can be cloned, which is slow and expensive.

In addition, only a limited number of QTL may be identified

within each cross, since only QTL for which the two accessions

differ can be detected. The limited scope of each QTL study

means that mapping the same trait in different panels of RILs

commonly yields different QTL [21,25–27], and it is not possible

to investigate interactions between QTL identified in different

panels. More than two alleles are likely to segregate per locus, and

the direction of QTL effects may vary depending on the genetic

background due to epistasis and pleiotropy [20] and gene by

environment interactions [28]. Therefore simple synthetic popu-

lations do not capture the full genetic architecture of complex

traits.

The use of heterogeneous stocks (HS) improves the power to

detect and localise QTL, and model genetic architecture more

realistically. HS are the result of repeated crosses between multiple

parental lines over many generations to produce a highly

recombinant heterozygous outbred population. This strategy has

been successfully used for fine-mapping QTL using eight parental

strains in mice [29,30] and Drosophila [31]. A disadvantage with

HS is that each individual’s genome is unique and heterozygous,

and therefore the population must be genotyped at high density

each time it is phenotyped. A related strategy, that avoids the need

to re-genotype, is to generate RILs from multiple parents [32,33],

where the genomes of the founders are first mixed by several

rounds of mating and then inbred to generate a stable panel of

inbred lines. The name MAGIC (for multiparent advanced

generation intercross) has been suggested for this type of

population [33]. The large number of parental accessions

increases the allelic and phenotypic diversity over traditional

RILs, potentially increasing the number of QTL that segregate in

the cross. The larger number of accumulated recombination

events increase the mapping accuracy of the detected QTL

compared to an F2 cross [34]. Thus, MAGIC lines occupy an

intermediate niche between naturally occurring accessions and

existing synthetic populations.

Here we present the first set of MAGIC lines. They are derived

from an advanced intercross of Arabidopsis thaliana produced by

intermating 19 natural accessions for four generations (as

described in [35]) and then inbreeding for 6 generations. The

resulting nearly homozygous lines form a stable panel of RIL that

do not require repeated genotyping in each QTL study. We

describe their construction and genomic structure, and demon-

strate that these lines can be used for QTL fine-mapping using

examples of developmental traits. Finally, we establish the

statistical and computational tools and resources required for

their analysis, and propose new candidate genes for germination

date and bolting time.

Results

Construction of the MAGIC lines
The MAGIC lines were initiated by intermating the 19

‘‘founder’’ accessions of A. thaliana listed in Table 1 for 4

generations as described in [35]. To avoid assortative mating

during the mixing of the accessions, we used a staggered planting

scheme and replanted families as needed to perform the randomly

assigned crosses. The founders were selected either because they

originate over a wide geographical distribution or are commonly

used (i.e. Col-0 and Ler-0). The intermating produced 342 F4

outcrossed families. From each F4 family we derived up to 3

inbred MAGIC lines (MLs) by selfing an F4 plant for six

generations. Lines derived from the same F4 can be thought of as

‘‘cousins’’, as they are expected to share 25% of their genomes by

descent.

Given the random mating design, each F4 family incorporates a

variable number of accessions in their pedigree, with an average of

9.97 distinct founder accessions per F4 (the distribution is plotted

in Figure 1); Table S1 lists the lines, the cross they were derived

from and which accessions contribute to their pedigree. Although

there are 1026 MLs in production, in this paper we focus on a

subset of up to 527 lines for which genotype data is currently

available (the exact number of lines phenotyped varies for each

trait). The ML germplasm is being made available through the

Arabidopsis stock centre (http://www.arabidopsis.org).

Phenotypic variation among MAGIC lines
Each ML was planted in 5 replicate pots, and grown in a

greenhouse or growth chambers. The frequencies of lines

expressing the qualitative trait ‘‘glabrous’’ (i.e. whether their

leaves were completely devoid of trichomes, which would have

been derived from accession Wil-2) or ‘‘erecta’’ (i.e. had a compact

inflorescence with sword shaped fruits, typical of accession Ler-0)

were 4.4% and 7.2% respectively, close to the expected frequency

of 1/19 (5.2%).

Extensive variation was observed for developmental quantitative

traits (see Table 2). For these traits, we measured the heritability h2

among MLs in two ways: (i) h2
L is the proportion of variation that is

due to genetic differences between lines, using the phenotypic

average of the replicates within each line. (ii) h2
P is an estimate of the

genetic variance if only one replicate per line were phenotyped.

Author Summary

Most traits of economic and evolutionary interest vary
quantitatively and have multiple genes affecting their
expression. Dissecting the genetic basis of such traits is
crucial for the improvement of crops and management of
diseases. Here, we develop a new resource to identify
genes underlying such quantitative traits in Arabidopsis
thaliana, a genetic model organism in plants. We show
that using a large population of inbred lines derived from
intercrossing 19 parents, we can localize the genes
underlying quantitative traits better than with existing
methods. Using these lines, we were able to replicate the
identification of previously known genes that affect
developmental traits in A. thaliana and identify some
new ones. This paper also presents all the necessary
biological and computational material necessary for the
scientific community to use these lines in their own
research. Our results suggest that the use of lines derived
from a multiparent advanced generation inter-cross
(MAGIC lines) should be very useful in other organisms.

Fine-Mapping with MAGIC Lines in Arabidopsis
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Thus h2
P measures the true genetic variance between individual

plants, while h2
L is the effective genetic variance in an experiment

with replication (as is the case in this study). In all cases h2
L§h2

P and

h2
L increases with the number of replicates. These estimates are

given in Table 2 along with the sample sizes for each trait. As highly

inbred lines were used, within-line variability is almost entirely non-

genetic, and hence the mean of each line was used for QTL

mapping. Therefore h2
L is the upper bound of h2

QTL, the fraction of

the variance that is due to mapped QTL; h2
QTL indicates how much

genetic variability has been found by mapping.

Genetic variation among the 19 founder accessions
For the 1260 SNPs for which all MLs were genotyped, the

minor allele frequency was 0.22 in the founders; the distribution of

allele frequencies is shown in Figure 2. On average 70% of SNPs

are shared between any pair of founders, and each founder is

about equidistant from the others (Figure 3). The two exceptions

are Col-0 and Ler-0, which share only 52% SNPs, most likely due

to bias in SNP ascertainment (see Materials and Methods); and the

closely related pair Oy-0 and Po-0, for which 86% of alleles are

shared. Po-0 has higher heterozyogosity (5.4%) than for any of the

other founders (range 0% to 0.7%), suggesting it is a hybrid. This

finding did not result from DNA contamination, as it was

replicated when Po-0 was re-genotyped separately from other

accessions. We also genotyped DNA from the original seed stocks

Table 1. List of accessions used to found the MLs.

AIMS stock center # Accession Origin

CS6643 Bur-0 Ireland

CS6660 Can-0 Canary Isles

CS6673 Col-0 USA

CS6674 Ct-1 Italy

CS6688 Edi-0 Scotland

CS6736 Hi-0 Netherlands

CS6762 Kn-0 Lithuania

CS20 Ler-0 Germany

CS1380 Mt-0 Libya

CS6805 No-0 Germany

CS6824 Oy-0 Norway

CS6839 Po-0 Germany

CS6850 Rsch-4 Russia

CS6857 Sf-2 Spain

CS6874 Tsu-0 Japan

CS6889 Wil-2 Russia

CS6891 Ws-0 Russia

CS6897 Wu-0 Germany

CS6902 Zu-0 Germany

doi:10.1371/journal.pgen.1000551.t001

Figure 1. The distribution of the number of distinct founder
genomes contributing to a ML. Each ML is descended through a
funnel mating design from up to 16 distinct founder genomes. This
histogram shows the fraction of lines descended from a given number
of distinct founders.
doi:10.1371/journal.pgen.1000551.g001

Table 2. Range in measured phenotypes and heritabilities for the traits measured.

Trait Range nP nL h2
P h2

L nQTL h2
QTL

Days to germination 4–31 2227 433 0.50 0.84 1.94 27.34

Growth rate 29–17b 1706 351 0.22 0.46 2.05 28.02

Days to bolt 13–85 2202 433 0.72 0.93 3.63 63.70

Days from bolt to flower 3–37 2176 433 0.40 0.76 2.32 33.26

Days to Flower (LD) 21–126 1228 336 0.58 0.81 3.04 55.12

Days to Flower (SD) 33–128 1104 323 0.54 0.78 3.69 63.60

RLN (Long Day) 8–96 1228 336 0.58 0.81 3.27 60.26

RLN (ShortDay) 8–181 1104 323 0.25 0.51 3.58 56.19

erecta 2412 465 0.73 1.00 80.36a

glabrous 2412 465 0.77 1.00 87.09a

aFor binary traits h2
QTL is estimated as the fraction of the deviance.

bGrowth rate is the residual of the number of leaves at day 28 after regression on the number days to germination; hence the minimum value in the range is negative.
nP is the number of plants phenotyped for the trait, nL is the number of MLs. h2

P is the estimated heritability between plants and h2
L the estimated heritability between

lines. nQTL is the average number of QTL found in multiple QTL models fitted to 500 resampled data sets. h2
QTL is the average fraction of variance accounted for by the

multiple QTL models. LD = Long day; SD = short days and RLN (Rosette leaf number).
doi:10.1371/journal.pgen.1000551.t002

Fine-Mapping with MAGIC Lines in Arabidopsis
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received from the Arabidopsis stock center, and ruled out

germplasm contamination during the study.

We measured the local haplotypic diversity among the founders

using a moving window of k adjacent SNPs. With k = 5

(corresponding to a genomic interval of approximately 400 kb),

the founders partition into 8.5 distinct haplotypes on average, and

into 14.3 with k = 10. The number of distinct haplotypes using

k = 10 across the genome is plotted in Figure 4A. The variation

appears sporadic without large-scale structure, except for an

apparent loss of variability around the centromeres.

Genetic variation among the MAGIC lines
The average SNP minor allele frequency in the MLs is also 0.22,

and is distributed similarly to that in the founders (Figure 3), with the

exception that there are fewer alleles with intermediate frequencies,

as expected by drift. The extent of allele sharing between MLs was

consistent with their breeding history. Cousin MLs, descended from

the same F4 family, share 74% of alleles on average whilst those

from different F4 families share 68% (Figure 3). Thus, as expected,

cousins share slightly more alleles than the founders and non-

cousins slightly less. We found 19 pairs of lines that share over 95%

of their genotypes, and three pairs were identical. We believe this is

most likely due to errors during breeding; these 38 lines were

therefore omitted from the heritability analysis and QTL mapping.

We found that SNP-sharing is only a weak predictor of haplotype

sharing. The distribution of 10-SNP haplotype-sharing percentage

between the MLs is also plotted in Figure 3. MLs descended from

different F4 families share on average 7.5% of 10-SNP haplotypes.

This suggests that the genotyped SNPs separate the 19 founders into

about 14 10-SNP haplotypes (1/14 = 7.1%). On average haplotype

sharing among cousin lines is 25.4%, which is very close to the

expected degree of 25% identity by descent. Haplotype-sharing

Figure 2. Distribution of the minor allele frequency for the 1,260 genotyped SNPs. (A) in the 19 founders; (B) in 527 MLs.
doi:10.1371/journal.pgen.1000551.g002

Figure 3. Distribution of allele and 10-SNP Haplotype sharing among the 19 founders and the MLs. Sharing between and within F4
families are plotted separately.
doi:10.1371/journal.pgen.1000551.g003

Fine-Mapping with MAGIC Lines in Arabidopsis
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between founders is very small, with mean 2.5%, as would be

expected since linkage disequilibrium among accessions of A.

thaliana breaks down, on average, within 10 kb [36]. The spatial

distribution of 10-SNP haplotype diversity in the MLs does not track

that in the founders except in regions (such as the centromeres)

where there is a reduction in haplotype diversity. In general there

are more ML haplotypes present at a locus because recombination

breaks up the founder haplotypes (Figure 4A).

The average decay in linkage disequilibrium (LD) in the MLs, as

measured by the correlation R2, is plotted as a function of distance

Figure 4. Genome-wide properties of the MLs. In each panel the x-axis represents the complete 120 Mb genome of A. thaliana, with vertical red
lines marking the chromosome boundaries and the pale blue vertical bars indicating the centromeres. (A) Number of 10-SNP haplotypes observed
among founders (black) and MLs (red) across the genome. (B) The maximum posterior founder probability, mLi at locus L, averaged across all MLs i. (C)
The maximum posterior founder probability, mLi for the ML i = ‘‘ML-100’’. The vertical grey lines indicate probable recombination breakpoints where
the identity of the most probable founder changes. (D) The posterior founder probabilities for ML-100. The vertical axis represents the 19 possible
founders, s, in alphabetical order. The probability P

Lð Þ
is for founder s at locus L is represented by a grey bar at coordinate (L,s), the shade of grey

varying from white (P = 0) to black (P = 1). (E) The locus-specific power to detect a QTL explaining 10% of the phenotypic variance, from 40,000
simulations. In each simulation a 10% QTL was placed randomly along the genome. Successful detection is defined as the event that the genome-
wide maximum in the genome scan for the QTL is within 3 Mb of the true QTL location. (F) The locus-specific median mapping error for the
successfully detected QTL in (E).
doi:10.1371/journal.pgen.1000551.g004
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in Figure 5. The mean correlation between SNPs decays to 0.17 by

about 0.5 Mb, and approaches the background level of ,0.05 by

about 15 Mb. The genome-wide distribution of R2 is plotted in

Figure 6 and shows that there is minimal LD between

chromosomes. For SNPs on different chromosomes, the mean

value of R2 is 0.04; it exceeds 0.5 for 0.00016% of SNP pairs and

exceeds 0.15 for 0.5% of pairs. These results suggest first that the

QTL mapping resolution should be under 500 kb, and second that

population structure in the MLs is unlikely to give rise to ghost

QTL due to genotype correlations between chromosomes (see

simulations). Consistent with other studies, we found that among

the founders, mean R2 decays within 10 kb (data not shown).

The six generations of selfing used to generate each ML should

produce genomes that are nearly homozygous. We identified 32

regions of residual heterozygosity in 29 MLs, defined as loci

spanning at least 10 SNPs (ranging in length from 287 kb to

2.8 Mb) in which the density of heterozygotes exceeded 50%. Six

of these were more extensive regions spanning at least 20 SNPs,

the largest spanning 36 SNPs. Thus, at the level of resolution

visible by the current genotype density, only about 1% of 527 ML

exhibit residual heterozygosity, extending over about 1% of their

genomes. Therefore, for the purposes of QTL mapping, we

neglected all heterozygous genotypes.

QTL Mapping
There are many statistical methods for mapping QTL in

diallelic populations such as F2 crosses, advanced intercrosses and

RILs descended from two parents. These methods are optimized

to exploit the simplicity of the diallelic genetics. However, the

analysis of multi-parental populations requires a different

approach, because single marker association or interval mapping

can fail to detect a QTL if the causative alleles do not segregate

Figure 5. Distribution of the decay in mean LD (R2) as a
function of distance between SNPs in the MLs.
doi:10.1371/journal.pgen.1000551.g005

Figure 6. Genome-wide patterns of LD (R2) in the MLs. The chromosome boundaries are marked by black lines. The intensity of the LD
between SNPs at loci x,y is indicated by the colour in the corresponding x,y coordinate, using the scale indicated in the legend.
doi:10.1371/journal.pgen.1000551.g006
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between the founders in the same way as the individual markers

[37]. Furthermore, when mapping QTL in structured populations,

as is the case here, the evidence for the existence of a QTL has to

be considered in the context of other QTL which might explain

some of the same component of variation [30]. Population

structure can produce long-range correlations between genotypes

and hence ‘‘ghost’’ QTL, although the LD analysis suggests that

the MAGIC population is relatively immune to this phenomenon.

To deal with these issues, we apply three QTL mapping

methods. The first two approaches use fixed-effects QTL models

but accommodate population structure, in different ways, either by

multiple-QTL modeling or by including random effects to explain

correlations introduced by population structure. The third

addresses the problem of the large number of parameters required

in a fixed effects model, by introducing a hierarchical Bayesian

random effects model. All approaches model the mosaic structure

of the MAGIC genomes as described in [30,37,38] and

implemented in the R package HAPPY. We also investigated

the simple alternative of single-marker association, but the results

are not presented in detail here. The genome scans from all

methods can be viewed through our genome scan browser, at

http://gscan.well.ox.ac.uk/arabidopsis/wwwqtl.cgi.

In complex trait analysis, multiple QTL of small individual effect

are expected to segregate, and the evidence supporting a given QTL

will depend on which other QTL are included at the same time. The

variation explained by different QTL can overlap, especially when

there is significant population structure, and which can generate false

positive ‘‘ghost’’ QTL. Therefore, evidence for each QTL is

evaluated in the context of many different multiple QTL models

in the three step process described in more detail in Materials and

Methods.

In the first step, a probabilistic reconstruction of the haplotype

mosaic of each ML was calculated, taking into account information

from multiple markers and the genetic map. Using a hidden Markov

model, we computed the probability P
Lð Þ

is that the founder is s at the

locus L for individual i. The maximum posterior mLi~maxs P
Lð Þ

is

n o
measures the certainty of the reconstruction at a locus L for

individual i; high certainty, when mLi&1, implies most of the

probability is concentrated on a single founder. The mean of mLi

across all SNPs and MLs is 0.83, and mLiw0:8 at 72% of loci

(Figure 5B). Ambiguities generally occur near the chromosome

boundaries and the centromeres. Figure 5C and 5D shows the

probabilistic reconstruction of a typical line, ML-100, and shows

that except near recombination breakpoints the identity of the

founder haplotype is usually known with high probability. These

results suggest that increasing the density of SNPs would not

significantly improve the haplotype reconstruction, except possibly

near the centromeres, where it is unclear if the loss of haplotypic

diversity in Figure 5A is genuine or is due to SNP ascertainment.

The relatively high density of SNPs used here is already 5–10 times

greater than for other RILs.

In a second step, the genome is scanned for evidence for a QTL

in each SNP interval using a fixed effects model, and ignoring the

effects of other QTL. This corresponds to a standard genome scan.

Simulations were used to estimate genome-wide thresholds for

statistical significance when no QTL were present. We found that

on average the genome-wide maximum logPMAX = 2.8, and 95%

of scans satisfy logPMAX,3.52. Thus linkage disequilibrium causes

the 1255 marker intervals that are tested to behave like about

102.8 = 630 independent tests (as the expected most extreme p-

value from N independent tests is 1=Nz1ð Þ. We used logP = 3 as a

threshold in the multiple QTL modeling described below.

Simulations also show that both the power to detect a QTL and

the expected mapping resolution are weakest near the centromeres

and chromosome ends, but are fairly uniform across the rest of the

genome (Figure 5E and 5F). Both quantities also depend on the

effect size of the QTL. For example, the power to detect a QTL

accounting for 10% of between-line phenotypic variance is close to

1 except at the centromeres (overall median 0.93) and the median

mapping resolution (defined as the distance between the locations

of the true and predicted QTL) is 0.33 Mb, whereas for a 5%

QTL the median power is 0.52 and resolution 0.56 Mb. Thus, as a

guide to future QTL-mapping studies using the same number of

,460 lines phenotyped here, the transition zone for reliable

detection and fine-mapping lies between QTL effect sizes of 5%

and 10%. Note that these are effect sizes for the mean phenotypic

value over the replicates within each line, not the effect size in

individual plants, so increasing the level of replication would

improve the power to detect and fine-map QTL of small effect.

We also investigated the power and accuracy that would be

achievable if the complete MAGIC population of 1026 lines were

used, by simulating an instance of the full cohort. We found the

power to detect a QTL that explains 5% of the variation increased

to 79% and the median mapping resolution was reduced to

0.29 Mb. The corresponding figures for a QTL that explains 10%

of the variation were 96% and 0.19 Mb.

Because QTL effect size is not a direct measure of statistical

significance (i.e., the logP corresponding to a given effect size

varies), the distribution of the width of QTL confidence intervals

was modeled instead as a function of the peak height logPMAX at

the locus (see Materials and Methods). Figure 7 shows the

distributions for the mapping error (i.e., half the width of the

confidence interval) for a range of logPMAX values, and Table 3

gives 90% confidence intervals for the QTL mapped in this study.

We also investigated whether QTL are likely to generate

‘‘ghosts’’ on other chromosomes [39], from simulations with a

single large-effect QTL explaining 15% of the variance. The

distribution of the maximum logP on chromosomes other than

that containing the QTL was very close to that of the null model

with no QTL, (data not shown) indicating that inter-chromosomal

Figure 7. Distributions of the mapping error in QTL location for
QTL in which logPMAX is 5, 10, 15, or 20. Each curve is estimated
from simulations as described in Materials and Methods. The width of
the corresponding confidence interval is twice the mapping error. The
horizontal dashed lines cut the distributions at the 50% (lower) and 90%
(upper) points.
doi:10.1371/journal.pgen.1000551.g007
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LD is unlikely to generate false positives, and that the effects of

MAGIC population structure on QTL are small.

Finally, the evidence in favour of a QTL is re-evaluated by

resampling the data 500 times and fitting multiple QTL models.

Each resampling produces a different set of QTL, and the fraction

of models containing a given QTL is the measure of support for

the QTL. Because the location of a QTL (defined as the marker

interval with maximum logP in the region) may shift between

resamples, we integrate the fraction over neighbouring loci, to

estimate the expected number of QTL in the region, or EQ.

Where this number is greater than 1, it suggests that more than

one linked QTL is present. Table 2 lists the mean number of QTL

identified for each trait, and the mean fraction of phenotypic

variance explained by all QTL found for the trait, averaged across

all sampled multiple-QTL models. It is unlikely all QTL are

detected so this fraction should be less than h2
L. Table 3 lists the

individual QTL with EQ.0.25, which was used in an earlier

QTL study in mice [30] where it was shown by simulation to be a

reasonable threshold. However, the interpretation of EQ as an

indicator of a QTL depends, in a complex way, on the number

and effect sizes of the other QTL present and on the population

structure. Therefore it is difficult to give a simple interpretation of

EQ as a probability of a QTL.

QTL heritability is defined as the fraction of variance accounted

for by QTL, averaged across all sampled multiple-QTL models,

and is given in Table 2. Overall, Table 2 indicates that, depending

on the phenotype, up to 63% of the between-line heritability is

accounted for by the mapped QTL. The sources of the missing

heritability might include environmental interactions, undetected

QTL with small genetic effects, and epistasis. Dominance effects

should be negligible given the lines are effectively inbred.

Linear Mixed Effects Model (Empirical Bayes) and
Hierarchical Bayes QTL mapping

We also mapped QTL using two alternative methods. The first,

an Empirical Bayes linear mixed effects model, assesses the

evidence for a QTL taking into account the expected population

structure. This class of method has been shown to be effective at

controlling for population structure in association mapping with

natural accessions of A. thaliana and in other species [13,24]. Our

model assumed that mean trait values on lines descended from the

same F4 are likely to be more similar than otherwise. We found

that the QTL logP values produced by this method were slightly

smaller than the fixed effects model described above, but that the

difference was generally negligible. This result, suggests again that

population structure does not have a strong impact.

Table 3. List of QTL identified and their location.

Phenotype SNP Position logP EQ chr 90% CI

lower Upper

Days to germ MN3_15977654 15987185 6.46 1 3 14847114 17108129

MN4_1553589 1569395 3.04 0.944 4 0 3406581

Growth rate MASC00349 12006105 3.12 0.85 2 9976948 13672649

MASC04651 903706 3.11 1.192 4 0 2751043

Days to bolt MASC00497 20335845 5.03 0.26 1 18885610 21742617

NMSNP1-24738247 24745092 4.36 0.89 1 23166542 26309953

FRI_2343 286096 20.07 1 4 0 709276

MN5_3491425 3494784 9.18 1.02 5 2646180 4336671

Days to Flower (LD) MN1_21908389 21926683 3.23 0.582 1 20086750 23730457

MN5_476404 476595 7.32 2.272 5 0 1493246

Days to Flower (SD) MASC00545 19174205 3.08 0.254 1 17097612 20797655

MN4_428535 428637 3.56 0.98 4 0 2198574

NMSNP4-10977574 10989679 5.09 1.02 4 9558787 12396362

MASC03480 890796 6.86 0.272 5 0 1820618

MN5_4318001 4318184 9.35 0.834 5 3481276 5154727

RLN (LD) MN4_241821 255541 4.13 1.062 4 0 1864192

MN5_1399718 1399835 11.09 1.966 5 681914 2117515

RLN (SD) PHYE_1561 10094177 3.05 0.588 4 8189089 11901220

MN5_3227635 3254762 4.80 1.306 5 1732469 4722802

MN5_6222071 6222177 4.13 0.474 5 4599779 7844364

MN5_22414731 22414852 4.23 0.784 5 20819417 24009986

Days from bolt to flower MN4_142943 192383 6.32 1.002 4 0 1317117

MN5_3289426 3309828 6.12 1.306 5 2085426 4493427

Erecta MN2_11300378 11315919 27.45 0.998 2 10957708 11643037

Glabrous MN3_10363610 10372891 24.01 0.998 3 9944539 10782684

Each row refers to one QTL. SNP is the identity of the left-hand SNP in the marker interval at the QTL peak; logP is 2log10(ANOVA P-value) at the QTL peak; EQ is the
expected number of QTL estimated from 500 resamples; chr is the chromosome and the 90% confidence interval (CI) for the QTL based on simulations are given in the
final two columns.
doi:10.1371/journal.pgen.1000551.t003
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The second, Hierarchical Bayesian, method ignores population

structure but models the founders’ trait values at a QTL as

random effects sampled from a Normal distribution. The variance

of this distribution is expressed as ks2 where s2 is the total

phenotypic variance and k is the proportion of variance explained

by the QTL. The rationale behind this approach was that the

power to detect a QTL might be increased if only a single

parameter k needed to be estimated, compared to up to 18 with a

fixed effects model. We investigated several measures of the

posterior evidence for a QTL, such as the log Bayes factor, and

found the most useful was the posterior mode of k, which tracks

the variance explained by the QTL. The genome-wide threshold

for k was calculated via simulation as 5.8%, which is close to the

approximate minimum QTL variance (5%) at which the fixed

effects model can detect QTL with 50% power. We found little

difference between the Hierarchical Bayesian and the fixed effects

analysis. Consequently, the remainder of the paper focuses on the

fixed effects resampling methodology. However, the genome scans

for all three methods are available from the GSCANDB browser

http://gscan.well.ox.ac.uk/arabidopsis/wwwqtl.cgi. The browser

also shows the results of standard single marker association (SMA).

We do not report the results of SMA except to remark that in

general they are harder to interpret than the haplotype-based tests

because the significance of each tested SNP at a QTL can oscillate

wildly depending on whether the allelic distribution pattern among

the founder accessions matches that of the causative polymor-

phism.

Successfully identified known genes associated with
binary phenotypes

Our analysis correctly identified the genomic regions that

contain the genes known to be responsible for the glabrous and

erecta binary traits. For the erecta trait, the analysis identified a

single QTL on chromosome 2 between 10.94 and 11.59 Mb (90%

confidence region), EQ = 0.998, peak logP = 27.4 (Figure 8). The

gene ER (ERECTA) is at 11.21 Mb and within 150 kb of the peak

locus in the genome scan. Furthermore, analysis of those lines

predicted to carry the Ler-0 haplotype at this locus (defined as the

lines with Pi Ler.0.8) identified all of the plants with the erecta

phenotype. Likewise, analysis of the glabrous phenotype yields a

single and narrow QTL on chromosome 3 between 9.94 and

10.79 Mb, which encompasses the gene GL1 at 10.36 Mb.

Analysis of the locus correctly shows that all variation is due to

the haplotype from Wil-2, the only founder accession that is

glabrous.

Quantitative trait loci
Analysis of variation in bolting time in the greenhouse identified

4 QTL, on chromosomes 1, 4 and 5 (Table 3). Together they

explain 63% of the total phenotypic variance in bolting time. The

QTL on chromosome 4 (,0.35 Mb) explains most of the variation

(40%), and is likely to be caused by FRIGIDA (located at 0.26 Mb),

a gene well known to affect flowering time [40]. The mean bolting

times for each founder haplotype match the expected effect of

FRIGIDA: haplotypes known to have a deletion that makes this

locus non-functional [35] bolt earlier, and haplotypes known to

have functional alleles flower later (Table S2). The QTL on

chromosome 5 (,3.5 Mb) is likely due to another gene well known

to affect natural variation in flowering time: FLOWERING LOCUS

C (located at 3.2 Mb). The QTL on chromosome 1 may be a

complex of two linked QTL. The confidence interval for the first

QTL on chromosome 1 (,20.3 Mb) does not contain genes for

which natural variation is known to affect bolting time. However,

it is interesting to note that at 20.35 Mb is ETHYLENE

INSENSITIVE 5, where T-DNA insertions have been previously

observed to cause delay in flowering [41]. The second QTL on

chromosome 1 (,24.7 Mb) is likely due to FLOWERING LOCUS

T (located at 24.3 Mb), a gene previously suggested to harbor

natural variation that affects flowering time under long days [42].

Accordingly a co-localizing QTL was observed only under long

day, but not short day conditions (see below). However,

Interpretation of the QTL on chromosome 1 requires caution,

since confidence intervals for linked QTL need not follow the

same distribution as for an isolated QTL.

Flowering time was also phenotyped in growth chambers under

long and short day conditions. Flowering time was measured as

the number of days to flowering and the total number of leaves

produced; leading to the identification of 2 QTL for each of the

traits under long days, and 4 or 5 QTL under short days (Table 3).

All QTL identified in the growth chamber were also on

Chromosomes 1, 4 and 5. Some of these QTL co-locate with

QTL identified in the greenhouse. However, a few locations

suggest new candidate genes for natural variation in flowering

time: On chromosome 4 (,10.9 Mb), we found a QTL that

explains a large proportion of the variation in flowering time and

rosette leaf number under short day conditions only (16 and 21%

of the variation respectively, Table 3). This QTL is in close

proximity to PHYTOCHOME E (at 10 Mb); a locus where mutants

that flower earlier under short day conditions have been previously

observed [43]. The region on Chromosome 5 (,0.76 Mb), which

has QTL for flowering time in both long and short day, seems too

distant to be still due to FLOWERING LOCUS C. A possible

candidate gene for this region is ETHYLENE INSENSITIVE 2

(located at 0.78 Mb), for which mutants with delayed flowering

have been previously observed [44].

We also mapped QTL for vegetative growth rate (measured as

the relative number of leaves, given their germination date), and

the number of days between bolting and flowering. We found two

QTL for each of these traits (Table 3), which together explain a

small proportion of the genetic variance; approximately 28% in

each case (Table 2). However, it is interesting to note that for both

traits, a QTL located closely to FRIGIDA (on top of the

chromosome 4) was found, which suggests that FRIGIDA may

have a larger role in development timing, beyond just determining

the onset of reproduction.

Finally, we detected two QTLs on chromosomes 3 and 4 for the

number of days to germination. The QTL on chromosome 3

(,15.9 Mb) is particularly interesting as it is located in the nitrilase

gene cluster (NITRILASE 1, 2 and 3). These enzymes are thought

to be involved in the production of the growth hormone indole-3

acetic acid, and NITRILASE 2 is specifically expressed in

developing embryos. While the role of this gene in A. thaliana has

been thought as being mainly in pathogen defense, nitrilase genes

have been shown to be involved in seed germination in maize [45].

It is possible that this QTL collocates with a previously identified

QTL, named DELAY OF GERMINATION 6 [46]. This QTL

was identified as linked to the CAPS marker TOPP5, which is

located at 17.2 Mb (the casual gene has not been identified).

Online resources
All genotype and phenotype data and analysis software are

available from our web site http://gscan.well.ox.ac.uk/arabidopsis.

SNPs are also available from TAIR. The genome scans can be

viewed using the browser http://gscan.well.ox.ac.uk/arabidopsis/

wwwqtl.cgi which is an Arabidopsis-specific version of the genome

scan browser GSCANDB [47]. The browser displays the genome

scans and QTL, with genome annotations from TAIR, at arbitrary

resolution.
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Discussion

We have described a new panel of genetically diverse and highly

recombinant inbred lines of A. thaliana. Like other recombinant

inbred lines they do not require repeated genotyping, and since

unlimited replicates of each line can be grown, data for many traits

can be accumulated, facilitating the study of trait correlations,

genotype by environmental interactions, and the genetic basis of

phenotypic plasticity. They represent a significant improvement

over standard RILs descended from just two founders in that they

capture more of the genetic and phenotypic variation present.

Furthermore, they have a higher density of recombinants, which

improves mapping resolution. We have shown how to take

account of the increased genetic complexity in the analysis, and

our results show that mapping accuracy and detection is much

improved in the MLs when compared to traditional two-parent F2

and RIL mapping populations. Consequently, the MLs are an

important new tool for the study of the genetic basis of plant

growth and yield under multiple environments. Improved

understanding of the genetic basis of such quantitative traits is

important for the improvement of crop varieties, and to improve

our basic knowledge of plant form, growth and development.

These lines are the first completed population of RILs

descended from a large number of founders. Other populations,

descended from eight founders are in production in A. thaliana

[50], and Mus musculus (the Collaborative Cross [51,52]). There are

also ongoing efforts to produce similar populations in a number of

crops including wheat, rice and sorghum with financial support

Figure 8. Examples of QTL scans. The orange bars indicate the 90% confidence intervals for the identified QTL. (A,B) show QTL scans for bolting
time on Chromosome 4; (A) Fixed effects (black) and mixed effects (red) logP, and (B) Hierarchical Bayes percentage of QTL variance (maroon); (C)
fixed effects logP for the binary phenotype erecta on chromosome 2.
doi:10.1371/journal.pgen.1000551.g008
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from Generation Challenge Programme (http://www.genera-

tioncp.org, and Ian Mckay (NIAB), personal communication).

The analysis of all these populations presents similar challenges, so

lessons learnt with our lines should be valuable to the others.

Current strategies for QTL mapping in Arabidopsis range in

complexity from F2 crosses, through panels of recombinant inbred

lines and advanced intercross lines derived from two accessions

[48], through combining multiple panels of RILs [27,49], the

MAGIC lines described here, and finally association mapping

using a large collection of natural accessions. The MAGIC lines

represent a compromise between the extreme simplicity of a

diallelic system found in a RIL panel descended from just two

progenitors with no population structure other than that due to

segregation distortion [48], and the much greater complexity

encountered in the natural accessions [13].

The power to detect a QTL in any mapping population depends

on the phenotypic variance it explains, which ultimately depends on

the frequency of the minor allele frequency at the QTL. The range

in QTL minor allele frequency starts at 0.5 in diallelic populations,

to at least 1/19 (0.052) in MAGIC (with mean value 0.22, if the

genotyped SNPs are representative), to a potentially lower value in

natural accessions (where many variants are unique to one accession

[22]). Thus, to fine map QTL of small effect, a larger number of

plants and genotypes are likely to be needed in a study using

MAGIC lines or natural accessions, when compared to diallelic

populations. Increasing replication within lines reduces non-genetic

variance and improves power. However, even an infinite degree of

replication cannot increase the fraction of variance explained by a

single QTL to more than the fraction of total genetic variance it

explains. Hence mapping QTL of very small effect and low minor

allele frequency is likely to remain a challenge.

The genetic architecture of the traits we have mapped in this

study range from simple – one QTL of large effect – to complex,

with many QTL of smaller effect, some of which are physically

linked. As expected, it is straightforward to map unlinked QTL,

and the power and mapping resolution improves as the fraction of

variance explained by the QTL increases. The dissection of

multiple linked QTL is harder and the methodologies we have

presented here could be improved. Nonetheless it is reassuring that

the three methods we used – i.e., resample-based, hierarchical

Bayesian and empirical Bayesian – all produce concordant QTL

predictions. This suggests that the population structure of the MLs

is not an impediment.

While previous RIL QTL studies have produced confidence

intervals in the range of 2–20 Mb [53], the MAGIC lines generally

produce much better resolution. The 90% confidence intervals

were always smaller than 6 Mb, with some of the confidence

intervals under 1 Mb; simulations indicate that for QTL with 10%

effect size, the mean distance between the true QTL location and

the midpoint of the marker interval containing the QTL peak is

about 300 kb. Our results were in agreement with this

expectation. For known QTL of large effect, as in the case of

ERECTA, GLABROUS, FRI; the distance from the observed peak

to the probable candidate genes was less than 300 kb. Certainly, in

cases where these lines will be used for gene discovery, the size of

the confidence intervals will still be an issue. However, we show

that reasonable candidate genes are also found in close proximity

to QTL even when a priori candidate genes were not known (e.g.

in the case of EIN 2, 5 and PHYE).

We have shown that accuracy of about 300 kb is achievable in

the ML using the statistical methodology described here.

However, in association mapping the resolution is much greater

(measured in the low tens of kb, or close to single gene) thanks to

the very rapid decay in linkage disequilibrium with distance

among wild accessions. Improvements in the power and mapping

resolution of MLs are likely to come from using additional lines

(currently in production) containing independent recombination

events in which mapping resolution of under 200 kb should be

achievable. We also expect to improve resolution by incorporating

information about sequence differences between the founder

strains (Resequencing the 19 founders of the MAGIC lines is now

being conducted using sequencing by synthesis [54]). We plan to

use merge analysis [55] to determine whether the allelic

distribution of a variant across the 19 founders is consistent with

the inferred phenotypic pattern of action, in order to test whether

the variant could be causal for the QTL..

Finally, the combination of MAGIC and association mapping

may prove fruitful. While association mapping may be able to

identify QTL with better accuracy, the population structure

observed among natural accessions requires much care to

distinguish between true QTL and false positives [39]. In

comparison, the structure of the MLs is relatively simple. If there

are common variants in MLs and natural accessions, the MLs may

provide an ideal material to verify QTL identified with association

mapping.

Materials and Methods

Genotyping
We built a SNP database using information available at the time

(2006/2007) from TAIR (http://www.arabidopsis.org), MSQT

(http://msqt.weigelworld.org/), M. Nordborg’s 1500 short se-

quences on 96 accessions [56] and http://walnut.usc.edu/2010);

and unpublished data kindly provided by M. Koornneef (Max-

Plank Institute, Cologne) and M. Purugganan (New York

University, USA). From these data we selected 1536 SNPs for

genotyping with the aim of covering the genome as uniformly as

possible. SNPs that were predicted to be polymorphic between at

least two accessions in our population and had a frequency of

higher than 10% over all accessions previously genotyped were

preferred. Since at the time of selection most genotypic

information available was on accessions Col-0 and Ler-0, the

selected SNPs are somewhat biased towards SNPs polymorphic for

these accessions. The SNPs’ flanking sequences were remapped to

the Col-0 consensus sequences NC_003070, NC_003071,

NC_003074, NC_003075, NC_003076 using BLAT [57] to

obtain accurate localizations.

We genotyped 527 MLs and the 19 founders using the Illumina

GoldenGate assay. SNPs with mean Illumina GenTrain quality

score below 0.4 were removed and the few lines for which the

overall genotype had GC quality score,0.4 were also removed.

This left 1418 SNPs with an average missing data rate of 0.55%.

We removed a further 115 SNPs that were found to be non-

polymorphic among the founders and 43 SNPs with hetero-

zyogosity exceeding 5%, leaving 1260 SNPs for analysis with mean

spacing of 96 kb apart. For the QTL mapping all heterozygous

genotypes were set to missing, resulting in a final missing data rate

of 2.9%. We genotyped the founders in triplicate, and 53 MLs in

duplicate; all 84074 repeated genotypes with QC scores.0.4 were

concordant (the threshold of 0.4 was chosen to minimize

discordant genotypes whilst maximizing the call rate). The

complete list of SNPs is in Table S3, on our web site, and will

be deposited with TAIR.

Phenotyping
459 ML plus the 19 parental accessions were grown in five

2.5 inch pots filled with John Innes #3 compost in a greenhouse at

the FIRS Botanical experimental grounds (Manchester), with
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16 hours of artificial light/day, and the temperature set for 18uC.

Each ML was planted into 5 pots, with each pot being randomly

assigned to a tray. Trays were rotated throughout the greenhouse

every week; and pots were reassigned to new trays approximately

every 30 days. Due to space constraints in the greenhouse,

phenotyping was performed in two separate batches. In each pot,

we placed 3 seeds which were monitored daily for the day of

cotyledon emergence (germination date). Two weeks later, only

one of the seedlings that germinated was left at random. Plants

were monitored daily and the date the flowering buds and open

flowers were first noticed was recorded. Bolting time was

calculated as the numbers of days between germination and the

day the first flower bud was noticeable. We counted the number of

leaves present in each plant 28 days after the seeds were sown to

determine differences in growth rate. Growth rate for each plant

was then calculated as the residual of the regression of number of

leaves on germination date. At this time we also visually inspected

the plants to determine if they were ‘‘glabrous’’. After plants had

flowered we scored them for their ‘‘erecta’’ phenotype.

Plants were also phenotyped in growth chambers at New York

University using EGC walk-in chambers, under both long day

(14 hrs light: 10 hrs dark) and short day conditions (10 hrs light:

14 hrs dark) at 20uC. Five individuals each for 360 MLs were

grown in a randomized design in 72-cell growing flats, where each

ML was randomly assigned to a given position in a flat (to avoid

association between genotype and the microenviromental condi-

tions experienced by a flat). The flats were repositioned within the

chamber every 7 days and watered by sub-irrigation every 4 days.

Flowering was determined as the number of days between planting

and the primary inflorescence had extended more than 1 mm

above the rosette, and by the number of rosette leaves present on a

plant when transitioned to flowering. The possible effects of the

tray was taken into account by using in the phenotype mapping

the least square residuals, removing tray effects.

Heritability analysis
To determine the fraction of phenotypic variation due to

genetic variation, we estimated the heritability among MLs by

fitting the random effects model:

yij~mzlizeij

where yij is the phenotype measured on the jth replicate plant of

line i, m is the overall mean, li s the phenotypic effect of the

genotype of each line i, which is modeled as a random variable

drawn from a normal distribution with mean 0 and variance s2
P,

and eij is the variation due to non-genetic causes, which is assumed

to be normally distributed with mean 0 and variance s2
e .

We report two heritabilities: (i) the heritability of individual plants

h2
P~

s2
P

s2
Pzs2

e

� �
and (ii) the heritability of the phenotype averaged across replicates

within MLs:

h2
L~

1

nL

X
i

s2
P

s2
Pzs2

e

�
ni

� �

where ni is the number of lines and ni the number of replicates within

line i. Both are computed by substituting the maximum likelihood

estimates ŝs2
e and ŝs2

P.

QTL mapping
A hidden Markov model (HMM) is used to make a multipoint

probabilistic reconstruction of the genome of each ML as a mosaic

of the founder haplotypes [37]. The ML breeding design means

that each genome is made up of segments of the founder genomes,

with a transition between founders occurring whenever a

recombination has occurred. Diallelic SNPs cannot distinguish

between all founders so information from neighboring SNPs is

used to compute the posterior probability P
Lð Þ

is that at a given locus

L, the ML i is descended from founder s. Here, a locus is defined to

be the interval between two adjacent genotyped SNPs, labeled by

the name of the left-hand SNP.

The HMM makes the following approximations and assump-

tions (i) the genome of each ML is completely homozygous (we

ensure this by deleting the small fraction of heterozyous

genotypes). (ii) The effective number of generations, c, since the

cross was originated is 6, comprising 4 generations of crossing

during the funnel breeding phase, plus two effective generations

from the selfing phase (because on average only two informative

meioses per Morgan are accumulated during selfing). (iii) The

identity of the founder in a given segment in the mosaic is

uncorrelated with other segments for that individual (iv) the length

of segment in centiMorgans is exponentially distributed with mean

length d=c, where d is the genetic length of the segment,

corresponding to a Haldane mapping function with c~6 fold map

expansion.

Evidence for a QTL within each locus is first evaluated when

the effects of all other QTL are ignored; this step corresponds to a

standard genome scan. Suppose there is a QTL segregating at

locus L in which the phenotypic effect due to founder haplotype s

is bs, the phenotype yi in ML i is modeled as

yi~
X

s

P
Lð Þ

is bszei

where P
Lð Þ

is is the HMM probability computed in step 1. This may

be rewritten as

y~P Lð Þbze ð1Þ

where y is the vector of phenotypes, P Lð Þ is the matrix representing

P
Lð Þ

is and b the vector representing bs. The hypothesis that there is

no QTL is equivalent to testing if the bs are identical, by fitting a

fixed-effects linear model with up to 18 degrees of freedom and

performing an ANOVA. The statistical significance of the genome

scan at each locus L is summarized by logP = 2log10 (ANOVA P-

value), so that logP increases with the significance of the QTL.

This method is most powerful when the probabilities P
Lð Þ

is are

either 0 or 1, but it extracts useful information even when this is

not the case provided they are not all equal. Many phenotypes that

are not normally distributed (e.g. binary and survival traits) can be

accommodated by extending the formalism to a generalized linear

model framework (see [38] for details).

The evidence for each QTL is re-evaluated in the context of

other segregating QTLs, by averaging over many likely multiple

QTL models. To do this, a random subsample of 80% of the total

number of MLs is made, and a multiple QTL model created by

forward selection, adding loci to the model until it is not possible to

improve the fit of the model significantly. The locations of the

QTL are recorded and the process is repeated 500 times. Each re-

sampling of the data produces a different multiple QTL model,

and the fraction of models containing a given QTL is the measure

of support for the QTL (the Resample-based Model Inclusion
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Probability, or RMIP). Clusters of nearby loci with positive RMIP

are treated as the same QTL; a dynamic-programming algorithm

is used to identify the clusters, and the value reported for the QTL

is the sum of the constituent RMIP values, the expected number of

QTL within the region, which we call the Expected QTL (EQ). If

the EQ.1 then some multiple QTL models contain more than

one QTL for the same region, suggesting QTL is likely to contain

several linked loci. The multiple QTL mapping was performed

using the R program bagphenotype (http://www.well.ox.ac.uk/

,valdar/software/bagphenotype).

Estimation of founder strain effects at a QTL
Least-squares estimates b̂b regð Þ from fitting the fixed-effects

multiple regression Eqn 1 at a QTL are unbiased but numerically

unstable whenever some founders are almost indistinguishable at a

locus. This results in near multicollineanity in the matrix P Lð Þ and

in pairs of estimates of very large magnitudes but opposing signs,

which cancel each other out, and therefore are hard to interpret

biologically.

Instead, stable unbiased estimates are obtained by multiple

imputation [58]; M~100 design matrices X 1ð Þ,X 2ð Þ, . . . ,X Mð Þ are

sampled from the distribution P Lð Þ such that each matrix X kð Þ has

the same dimension as P Lð Þ, precisely one element in the i’th row is

1 and the rest are 0, with Pr X
kð Þ

is ~1
� �

~P
Lð Þ

is . Next, the linear

model y~X kð Þbze (in fact a one-way analysis of variance) is fitted

to each imputed matrix, giving a sequence of least squares

estimates b̂b kð Þ, each with an error following a t-distribution (with

degrees of freedom that can vary between imputations depending

on the rank of X kð Þ). The distribution of the imputed strain effects

b̂b imputeð Þis estimated as the average of the distributions of the b̂b kð Þ

e.g.

Pr b̂b imputeð Þ
s ƒx

� �
&

1

M

X
k

Pr b̂b kð Þ
s ƒx

� �

Binary-valued phenotypes zi[ 0,1f g are treated in a conceptually

similar way, with ps modeling the penetrance when the founder

strain is s, i.e ps~Pr zi~1 Xis~1jð Þ. Then p̂p
kð Þ

s ~

P
i

X
kð Þ

is
ziP

i

X
kð Þ

is

~
r kð Þ

s

n kð Þ
s

,

say, and r
kð Þ

s ~r
kð Þ

s p̂p
kð Þ

s is distributed as Binomial n
kð Þ

s ,ps

� �
. Then

Pr r imputeð Þ
s ƒx

� �
&

1

M

X
k

Pr r kð Þ
s ƒx

� �

and the imputed penetrance is defined as

p̂p imputeð Þ
s ~

Mr
imputeð Þ

sP
k

n
kð Þ

s

Power simulations
To understand the locus-specific properties of QTL mapping

using the MLs we estimated the power to detect and fine map a

single QTL of varying location and effect size. In each simulation,

the locus position L was selected randomly and a diallelic QTL

simulated in which 4 randomly chosen accessions carried the

minor allele and the remainder the major allele (corresponding to

a minor allele frequency close to the observed average value of

0.22). The unobserved founder strain genotypes at the QTL were

simulated by sampling from the HMM distribution P QTLð Þ for the

marker interval containing the QTL. The phenotypic effect due to

each allele was adjusted so that the QTL effect size (the fraction of

variance explained by the QTL in the mapping population)

equaled a target value in the range 5% to 30%. Then a genome

scan was performed and the location of the most significant locus

with the maximum logP recorded. If this maximum was within

3 Mb of the QTL then the simulation was classified as a success

and the mapping resolution computed as the displacement

between the true QTL location from the midpoint of the marker

interval containing the maximum logP. We simulated over

350,000 QTL. We then divided the genome into 1 Mb segments

and, within each segment and for each QTL effect size, estimated

power as the fraction of successful simulations for QTL in the

segment, and mapping resolution by the distribution of QTL

displacements for the successful simulations. For each simulation

we also recorded the maximum logP.

We used those 285399 simulations in which the QTL lay

outside of the centromeres, was detected at genome-wide

significant (logPMAX.3) and mapped to within 3 Mb of the true

location, to estimate the distribution of mapping resolution as a

function of logPMAX. If xQTL is the true location of the QTL and

xMAX, logPMAX are the location and logP -value of the maximum

in the genome scan, then we estimated the empirical cumulative

distribution function Pr( | xQTL2xMAX|,d | logPMAX) from

those simulations whose global maximum logPSIMULATED was

close to logPMAX, specifically for which |logPMAX 2 logPSIMU-

LATED|,0.25. No attempt was made to localize a QTL within a

marker interval, because the mapping resolution is generally

poorer than the average spacing between markers.

The null distribution of the genome-wide maximum logP was

estimated from 10000 simulations when no QTL was present. To

understand the impact of large effect QTL on inflating

background values of logP, we compared, for the set of simulations

with a single QTL explaining 15%of the variance, the distribution

of the maximum logP on chromosomes excluding that containing

the QTL with the null distribution.

To estimate power and mapping resolution in the complete

MAGIC cohort of 1026 lines, we used the program valbreed

(http://www.well.ox.ac.uk/,valdar/software/valbreed) to simu-

late the genomes of the complete population from the 19 founders,

using the observed genotypes in the founders. We then simulated

10,000 5% and 10,000 10% QTLs, and estimated power and

mapping resolution in this simulated population in the same way

as for the real lines.

Comparison with Empirical Bayes and Hierarchical Bayes
QTL mapping methods

We implemented an Empirical Bayes mixed effects QTL

mapping method that takes into account the MAGIC population

structure [13,24]. The fixed effects model (Eqn 1) is augmented by

an additional random effect representing the increased phenotypic

similarity expected between lines descended from the same F4

cross. Thus, if F4 ið Þ is the identity of the F4 cross for ML i, then

yi~
X

s

P
Lð Þ

is bszaF4 ið Þzei ð2Þ

where aF4 ið Þ is distributed as N 0, s2
f

� �
.. The variance s2

f

summarizes the effects of other QTL, so

Var yð Þ~Is2
ezFs2

f
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where the matrix F is defined as

Fij~
1 if F4 ið Þ~F4 jð Þ
0 otherwise

�

This is both a linear mixed model and an Empirical Bayes

model, fitted using the lme4 R package. Statistical significance of

the test for presence of the QTL is assessed as the logP of the

likelihood ratio test statistic comparing the fit of the model to the

null model where b~0. Genome-wide significance thresholds are

estimated by simulating phenotypes from the null model and

performing 200 genome scans. Full details of the method are

described in Valdar et al [37].

We also developed and implemented a Hierarchical Bayes

method that treats b as a random effect (C Durrant; manuscript in

preparation). The rationale for this approach is that a large

number (up to 18) of degrees of freedom are required to fit a fixed-

effects model, but we would expect that in many QTL the

causative DNA polymorphism will have far fewer alleles. In our

hierarchical Bayesian re-interpretation of Eqn 1, the distribution

of the founder effect bs is modeled as N 0, ks2
� �

, where m is the

overall mean, s2 is the total phenotypic variance and k measures

the fraction of the variance explained by the QTL. The prior

distribution of k is Uniform[0,1], a non-informative prior for a

proportion. The resulting estimate of the proportion of variance

due to the locus estimates the true variance between the founder

strain effects, independent of the observed sample frequencies of

the founder strains. Hence this estimate will not always match the

one-way ANOVA, which is dependent on the sample frequencies.

If the HMM probabilities are all either 0 or 1, then these priors

produce a joint posterior distribution which factorizes completely

and avoids the need to use MCMC techniques. If we consider the

HMM probabilities as the posterior distribution for the founder

strains for each individual at that locus, we can extend the

factorization of the joint posterior to include the case when the

HMM probabilities are not all 0 or 1. This results in the parameter

estimates being averaged over all possible combinations of founder

strains at that locus, a Bayesian analogue of the multiple

imputation approach described above. The mode of the posterior

distribution of k is used as the point estimate reported for the

genome scan, rescaled to represent the percentage of the

phenotypic variance due to the locus.

Supporting Information

Table S1 List Of MAGIC lines, the F4 family they are derived

from, and the accessions that entered each pedigree.

Found at: doi:10.1371/journal.pgen.1000551.s001 (0.08 MB

XLS)

Table S2 Phenotypic variation among accessions in bolting

time, known FRIGIDA and FLOWERING LOCUS C allele type,

and haplotype effects at bolting QTL.

Found at: doi:10.1371/journal.pgen.1000551.s002 (0.02 MB

XLS)

Table S3 List of all SNPs scored in the 19 founder accessions

and MLs. All genotypes are homozygous and indicate by a single

letter.

Found at: doi:10.1371/journal.pgen.1000551.s003 (1.40 MB

TXT)
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