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ABSTRACT

We present a new multiphase method for efficiently simplifying
polygonal surface models of arbitrary size. It operates by com-
bining an initial out-of-core uniform clustering phase with a sub-
sequent in-core iterative edge contraction phase. These two phases
are both driven by quadric error metrics, and quadrics are used to
pass information about the original surface between phases. The
result is a method that produces approximations of a quality com-
parable to quadric-based iterative edge contraction, but at a fraction
of the cost in terms of running time and memory consumption.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—surface and object representations

Keywords: multiphase simplification, quadric error metrics, mas-
sive meshes, out-of-core simplification

1 INTRODUCTION

Whether arising from isosurface extraction or high-precision laser
scanners, automatically generated polygonal surfaces are often very
densely tessellated. Indeed, they are frequently unnecessarily de-
tailed for a variety of applications, most notably interactive display.
Over the last decade, several effective methods have been devel-
oped to automatically simplify polygonal surfaces, producing ap-
proximations that use far fewer triangles. Such simplification tech-
niques have become a standard component of many surface acqui-
sition systems.

Over time, the accuracy of scanning technology has improved
dramatically, and the size of available polygonal meshes has risen at
a similar pace. Most existing simplification methods are iterative in
nature, and can only realistically process models up to 1–2 million
triangles in size. Beyond this point, they tend to either be imprac-
tically slow or require unacceptable amounts of memory. However,
extremely high-precision scans of objects at sub-millimeter accu-
racy are now available. At sizes that reach above 1 billion triangles,
they are far beyond the capacity of iterative algorithms. The desire
to be able to simplify such massive models has lead to the develop-
ment of out-of-core simplification algorithms based on single-pass
spatial clustering rather than iterative deletion of surface primitives.

These are the two fairly distinct classes of simplification algo-
rithms now in common use. Iterative methods generally produce
high quality results, but are incapable of processing truly large mod-
els because of excessive time and space requirements. In contrast,
one-pass spatial clustering methods can process models of any size,
but the quality of the resulting approximations tends to decline quite
rapidly as the desired output size decreases.

We propose a new multiphase simplification system that pro-
vides the benefits of both of these algorithm classes. It is able to
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process models of arbitrary input size, like one-pass clustering, but
is able to produce approximations of a quality comparable to iter-
ative methods. In fact, our system produces results of comparable
quality to the QSlim method [5] but in a fraction of the time and
using substantially less memory — we have routinely been able to
produce nearly identical approximations in 1/5 the time or less. It
achieves this level of performance by combining two distinct sim-
plification passes: an initial spatial clustering phase, followed by an
iterative edge contraction phase. These two phases are coupled to-
gether by passing quadric error information between them. The re-
sulting system, based on well-understood techniques, is quite sim-
ple, can be implemented with little effort, and provides an excellent
balance of efficiency and quality.

2 BACKGROUND

Among the earliest of simplification methods is the uniform ver-
tex clustering algorithm developed by Rossignac and Borrel [17].
The bounding box of the model is subdivided on a regular grid,
and all vertices within a single cell are unified into a single repre-
sentative vertex. This early algorithm was later generalized to use
adaptive partitioning schemes such as octrees [13] and collections
of spheres [11]. The greatest advantage of such clustering meth-
ods is their efficiency. They are typically extremely fast, although
the quality of the resulting approximations degrades rapidly with
decreasing output size. Clustering algorithms can also be designed
to process input models by making a single linear scan through the
data, and can have memory requirements that are independent of the
input size. These properties make them a natural choice for out-of-
core processing of extremely large meshes [8, 9]. Combining one-
pass uniform clustering with a second adaptive BSP pass results in
a slower but generally more accurate out-of-core method [18].

One of the most widely used classes of simplification algorithms
is that based on iterative edge contraction. Such algorithms begin
by ranking all edges of the model by some error metric, and proceed
by repeatedly collapsing the minimum cost edge. It is also possi-
ble to connect topologically separate components by allowing the
underlying algorithm to consider “virtual edges” that connect arbi-
trary pairs of vertices [14, 5]. Hoppe’s algorithm for constructing
progressive meshes [6] generally produces high quality results, but
also has relatively high time and space requirements. This method
can be adapted for use on very large models by segmenting the
original data into tiles, processing them independently, and merg-
ing partially simplified tiles [7, 16]. The quadric-based simplifica-
tion algorithm developed by Garland and Heckbert [5] tends to pro-
vide a good compromise between output quality and computation
cost, producing generally good approximations in short amounts of
time. Lindstrom and Turk’s “memoryless” algorithm [10] is closely
related to the quadric-based method, but consumes less memory at
the cost of somewhat greater running time. El-Sana and Chiang [2]
developed an iterative approach to processing very large models by
combining data segmentation with out-of-core data structures.

These are the methods most directly related to our new multi-
phase algorithm. More complete details on existing simplification
methods can be found in several published surveys [1, 3, 12].
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Figure 1: An 870,000 triangle model is reduced to 1000 faces by (b) two separate simplification passes and (c) two passes coupled by quadrics.
Note the greater fidelity resulting from our coupled multiphase system (e.g., around the tail), comparable to the (d) QSlim results.

2.1 Quadric Error Metrics

Our approach to the simplification problem is based on the quadric
error metric [5], which we briefly summarize. A given triangle with

unit normal vector n defines a unique plane nTv + d = 0. We can
define a weighted quadric Q for which Q(v) is the squared distance
of the point v to this plane, scaled by the weight ω:

Q = (ωA,ωb,ωc) = (ωnnT,ωdn,ωd2) (1)

Q(v) = ω(vTAv+2bTv+ c) (2)

This is the fundamental quadric for the given triangle. The funda-
mental quadric of a vertex is the sum of the fundamental quadrics of
its adjacent faces. The weighted sum of squared distances of a point
v to the planes defined by a set of triangles { f j} can be evaluated

by summing the quadrics for each plane:

∑
j

Q j(v) =
(

∑
j

Q j

)

(v) (3)

We choose the weights ω j to be 1/3 the areas of the corresponding

triangles in order to achieve invariance of the error metric over all
geometrically identical tessellations of the surface [4].

The point v∗ for which Q(v) is minimal is the solution to the
linear system

Av∗ = −b (4)

Since the matrix A is positive semidefinite, Cholesky decomposi-
tion is the preferred approach to solving this linear system [15].

3 MULTIPHASE SIMPLIFICATION

Experience has shown that different approaches to simplification
are often suitable for varying simplification tasks. For example,
uniform vertex clustering is suitable when time and space efficiency
are the paramount concern and the desired level of simplification is
not too aggressive. In contrast, iterative contraction algorithms tend
to be slower and consume more memory, but produce much higher
quality results, particularly as the desired output size shrinks. Our
goal is to produce a single unified scheme for efficiently processing
models of any size, while maintaining the ability to produce high
quality approximations.

3.1 Overview

The idea behind our multiphase simplification system is quite sim-
ple. We combine a uniform clustering phase and an iterative con-
traction phase in a simplification pipeline. The structure of the sys-
tem can be quickly summarized:

1. Perform uniform clustering on input model (of size n), pro-
ducing an intermediate approximation (of size r) with 1
quadric per vertex.

2. Beginning with this intermediate approximation and its asso-
ciated quadrics, perform iterative edge contraction.

Notice that this is not equivalent to merely passing the input model
through a clustering step, writing an intermediate approximation,
and then passing that model through an iterative contraction step.
The crucial difference is that our system couples successive phases
together by passing quadrics accumulated in one phase onto the
next.

While a simple idea, this use of quadrics to pass information
between phases has a very significant practical impact. Figure 1
shows the results of simplifying a dragon model with (b) two sep-
arate passes and (c) two coupled passes. Qualitatively, important
details of the surface (e.g., the tail and mouth) are preserved much
better by our coupled multiphase approach. The mean squared er-
ror is also about 50% lower than that of the model produced by
two separate passes. Indeed, it is nearly identical in quality to (d)
the approximation produced by QSlim alone. But whereas QSlim
requires O(n logn) time and O(n) space, our system requires only
O(n+ r logr) time and O(r) space.

3.2 Phase I: Uniform Clustering

The first phase of the system is quite similar to Lindstrom’s OoCS
method [8]. Briefly, we begin by subdividing the axis-aligned
bounding box of the input on a regular grid1. Within each voxel
of this grid, we maintain a cumulative quadric and mean vertex po-
sition. Each triangle of the input is scanned, and its fundamental
quadric is derived as in Equation 1. This fundamental quadric is
added into the cumulative quadrics for the (up to) three voxels con-
taining the corners of the triangle. The output triangles are exactly
those whose corners fall in three different voxels. Following the
approach proposed by Lindstrom and Silva [9], we also accumulate
edge normals to help preserve open boundaries. Once all input tri-
angles have been scanned, we can compute a representative vertex
location v∗ for each voxel using Equation 4, or the mean vertex po-
sition if A is singular. The choice of position here is not terribly im-
portant, as the next phase will derive its own vertex positions. Only
along boundary curves, where Phase II will reference the interme-
diate geometry to construct boundary constraints, does our choice
of intermediate vertex location effect the final approximation.

1Only a small fraction of the many voxels are typically occupied. Sparse

grid data structures are essential for good performance.
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Figure 2: Multiphase results nearly identical to those of QSlim (except on boundaries), but generated in 1/5 the time.

This initial phase produces an intermediate approximation and
a set of quadrics. Each grid voxel containing one or more input
vertices produces exactly one intermediate vertex. Associated with
each intermediate vertex is exactly one quadric which is the sum of
the fundamental quadrics of all the input vertices contained in the
corresponding voxel. This is the only data passed to the following
phase. All other data, such as mean vertex position and cumulative
edge normals are discarded.

3.3 Phase II: Iterative Contraction

The standard quadric-based contraction algorithm QSlim [5] is
divided into two fundamental stages: (1) initialization assigns
quadrics to input vertices and (2) iteration continues contracting
the current edge of least cost until the desired output size is reached.
Our system uses the standard iteration stage unaltered, but it is pre-
ceeded by a new initialization stage that accepts intermediate results
from Phase I.

Initialization of the iterative phase would normally involve con-
structing fundamental quadrics for each vertex from the planes of
its adjacent faces. But instead of constructing quadrics from the
geometry of the intermediate approximation, we merely use the
quadrics accumulated during the previous phase of the system. This
means that we continue to use quadrics derived from the input ge-
ometry. Provided that the grid used in Phase I was suitably fine,
these quadrics will reliably characterize the local shape of the orig-
inal surface. Having assigned these basic quadrics to each vertex,
we accumulate additional constraint quadrics to preserve bound-
aries [5]. The rest of the simplification algorithm proceeds as nor-
mal, producing the final approximation.

3.4 Selecting Grid Resolution

In order for this system to perform well, it is of course important
that the resolution of the voxel grid used in Phase I be chosen appro-
priately. As a general rule of thumb, we have observed that the grid
resolution should be chosen so that Phase I produces at least 4 times
more intermediate vertices than desired output vertices. While the
user could simply specify the dimensions of the grid directly, we
recommend two general strategies for automatically selecting an
appropriate resolution.

The first alternative is for the user to specify a desired memory
usage limit for the Phase I grid. Since we use a sparse grid data
structure, we cannot guarantee absolute memory limits a priori as
the memory required will depend on the number of occupied vox-
els. While we cannot determine this exactly, we can in fact estimate
it with reasonable reliability by sampling the input vertex density
on a fixed size grid. This estimation comes at the price of an ad-
ditional scan over the data, but it provides the user with a useful

level of control over the storage requirements of the simplification
system. A user particularly concerned with the quality of the out-
put could thus select an extremely fine resolution by allowing the
system to consume a large fraction of all available memory.

A second approach to selecting the grid resolution is to directly
specify the size of an individual voxel. This is currently our pre-
ferred approach, because it provides a guaranteed bound on the
Hausdorff error introduced during Phase I. When clustering on a
grid with voxel diameter d, no output vertex is more than d away
from an input vertex.

3.5 Discussion

Our primary motivation for coupling quadric-based iterative con-
traction with a uniform clustering preprocess was to produce high
quality approximations of arbitrarily large input meshes. However,
there are some additional advantages to this initial clustering step.

First and foremost, is the increased speed and decreased memory
consumption of the overall system. Given that quality of the mul-
tiphase output is comparable to QSlim, this multiphase system can
be used as a much more efficient replacement for QSlim even on
meshes of moderate sizes. Unlike most iterative contraction meth-
ods, the multiphase system can easily process models where coinci-
dent vertices are duplicated (so called “triangle soups”), as the ini-
tial clustering will unify all duplicated vertices. It can also remove
small topological features, which we have found works at least as
well as, if not better than, iterative contraction using additional vir-
tual edges.

Unfortunately, we cannot exercise much control over these topo-
logical modifications. This points to the single greatest disadvan-
tage of the initial clustering pass: we cannot guarantee topological
preservation. The use of a fixed voxel grid also results in the output
approximation being sensitive to translation/rotation of the input
mesh.

4 RESULTS

Our experiments have shown that our multiphase simplification
system performs very well. We have compared its performance
with our own implementations of uniform out-of-core cluster-
ing (OoCS) [8], adaptive out-of-core clustering (BSP) [18], and
quadric-based contraction (QSlim) [5]. Multiphase simplification
is able to simplify models of arbitrary size, like OoCS, but is able to
generate much higher quality approximations at moderate to small
output sizes. Indeed, it consistently produces approximations of
quality comparable to QSlim, but using considerably less running
time and memory, both asymptotically and in practice.
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Figure 3: The multiphase system clearly outperforms uniform clus-
tering when aggressively simplifying large meshes.

All performance tests were run on an 1 GHz Pentium III system
with 4 GB of RAM and running a Linux kernel. Our implementa-
tions all share a common code base, including identical implemen-
tations of the quadric error metric and iterative edge contraction.
Our QSlim software uses an ASCII input format, while the others
use memory-mapped binary files. For this reason, all running times
exclude file I/O time.

Figure 2 demonstrates the comparative performance of our mul-
tiphase system with the iterative QSlim algorithm. Both systems
were used to produce a 1000 face approximation of the 69,451
face original. The multiphase system produced an intermediate ap-
proximation of 9127 faces using a 40×40×31 grid. Visually, the
quality of the approximations is very similar. Rather surprisingly,
the mean squared error of the multiphase approximation is actually
40% lower. And the multiphase system produced this approxima-
tion 4.5 times faster than the QSlim system. The only significant
difference in the quality of the results is in the preservation of the
boundary curves along the base of the model. Because it is forced to
use a weaker heuristic, the initial clustering phase does not preserve
the open boundary as well as iterative contraction.

Figure 3 illustrates the simplification of a moderately large input
model: Michelangelo’s David scanned at 2mm resolution, contain-
ing 8 million triangles. The out-of-core uniform clustering system
used a 11×28×6 grid, and produced an approximation with 1157
faces. The multiphase system produced an intermediate approxi-
mation of 19,000 faces using a 40×101×23 grid. As we would
expect from uniform clustering at this aggressive level, the quality
of the approximation has deteriorated severely. The topology of the
surface has been adversely effected (e.g., the arm joining the hip)
and various features such as the arm have been seriously distorted.
The black regions (e.g., atop the head) are areas where part of the
surface has been turned inside out. The rough outlines of the reg-
ular grid are also apparent in the triangulation, particularly on the
stomach. In contrast, the results from the multiphase system have
preserved the surface details of the original to a much greater ex-
tent. In particular, notice that the eye brow, hair line, nose, and
other facial features are still quite identifiable. This very substan-
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Figure 4: Tradeoff of running time vs. error for the dragon model.
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Figure 5: Approximation error as a function of output size for the
dragon model.
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Figure 6: Effect of grid size on approximation error.



Number of Cells

Dimensions Total Occupied Occupancy Rate

60×42×27 68,040 8073 11.9%
90×63×40 226,800 17,999 7.9%
120×85×54 550,800 31,869 5.9%
150×106×67 1,065,300 48,349 4.5%
180×127×80 1,828,800 66,920 3.7%

Table 1: Grid sizes used for results in Figure 6.

tial increase in quality was achieved with a fairly modest increase
in running time. Multiphase simplification required a total of 43
seconds, as compared to 19 seconds for uniform clustering.

For further comparison, Figures 4 and 5 present the results of
running all four simplification systems on the dragon pictured in
Figure 1. Our QSlim implementation supports both the original
Garland–Heckbert algorithm as well as a “memoryless” variant in-
spired by the Lindstrom–Turk algorithm. These implementations
are equivalent except that the standard form accumulates quadrics
at each step and the memoryless form recomputes quadrics at each
step. We have also tested three variants of the multiphase algo-
rithm: (1) the standard multiphase algorithm presented in Section 3
(2) separate de-coupled passes and (3) de-coupled passes where
the second pass is a memoryless form of iterative contraction. All
multiphase trials in these figures were run with a fixed grid size of
180×127×80. Approximations for the 800,000 face original were
produced at the 100,000, 50,000, 10,000, 5000, and 1000 face lev-
els.

Figure 4 shows the running times of the simplification systems
plotted as a function of the mean squared error of the approxima-
tions generated. As expected, both QSlim variants were substan-
tially slower than the other methods. Uniform clustering was the
fastest, with the multiphase method roughly twice as slow. How-
ever, the error of the approximations produced by the multiphase
system are consistently lower. Surprisingly, it produces higher qual-
ity approximations even than the QSlim system at lower output
sizes. In contrast, the purely clustering-based systems are produc-
ing approximations with more than an order of magnitude greater
error by the time we reach the 1000 face level.

Figure 5 demonstrates in greater detail the output quality of the
various methods. The pure clustering methods produce output with
substantially higher error than all other methods. The quality of
the approximations generated by all three multiphase variants are
all comparable to the results produced by the QSlim variants, and
even produce lower total error at lower output resolutions. Of the
three multiphase variants, the coupled variant that we have pro-
posed consistently produces results with the lowest total error. On
average, our proposed method produced results with 20–30% lower
error than the two de-coupled variants. We have observed that
at very fine grid resolutions, the difference between coupled and
de-coupled multiphase methods becomes fairly negligible. This is
what we would expect, since as the grid resolution increases, more
and more of the simplification work is actually being done in Phase
II. Similarly, as the grid used becomes coarser, the performance gap
between the coupled and de-coupled methods grows significantly,
until the coupled version produces errors which are a factor of 2–3
below that of the de-coupled version.

The choice of grid resolution during Phase I is one of the most
significant factors determining the quality of the approximations
generated by our multiphase system. To help quantify its impact,
we generated several 5000 face approximations of the dragon model
and measured the error of the resulting output. The specific grid
sizes used are shown in Table 1, and the results of the experiment

are shown in Figure 6. As noted above, we see that phase coupling
significantly reduces approximation error, except at very fine and
very coarse grid resolutions. We also see that the memoryless vari-
ant consistently produces less accurate approximations at moderate
resolutions. And as we would expect, there is some point beyond
which error grows very rapidly as the grid resolution is decreased,
ultimately reaching the much higher error rate characteristic of pure
uniform clustering.

Figure 7 provides a more qualitative demonstration of the effect
of Phase I grid resolution on the quality of the final result. The orig-
inal input model has roughly 28 million triangular faces, and we
produced several 5000 face approximations using our multiphase
system. Each approximation is labeled by the Phase I grid size and
the number of triangles in the resulting intermediate approximation.
The rightmost approximation corresponds to uniform clustering, as
the Phase I grid has already simplified the input beyond the target
size. For each subsequent approximation, the Phase I dimensions
were doubled along each axis. As expected, increasing the grid size
does indeed produce better results, and larger intermediate mod-
els. We also see the diminishing returns of increasing grid size.
Increasing the grid size beyond that shown here yields extremely
small incremental improvements. Total simplification times ranged
from 145 seconds for the coarsest grid to 160 seconds for the finest
grid. This relatively narrow variation in running time, as compared
with the variation in grid sizes, is because for data of this size —
500 MB in this particular case — the running time is largely domi-
nated by the cost of simply scanning through the data stream.

We conclude by looking at the performance of our system on
a truly large surface model. The model of Michelangelo’s St.
Matthew shown in Figure 8 was scanned at 0.25mm resolution, con-
tains roughly 372 million triangles, and is over 6.5 GB in size when
uncompressed. The three approximations shown in Figure 8 were
generated in approximately 47 minutes using a constant intermedi-
ate grid size of 300×847×273. The first approximation, containing
1 million triangles, has lost very little of the detail of the original,
and our system continues to produce high-fidelity approximations
at an output size of 100,000 triangles. Even with only 10,000 out-
put triangles, the approximation preserves the overall shape of the
statue quite well. Note that the holes apparent here are actually pre-
serving holes present in the input data, although they have grown in
size.

The images shown in Figure 9 illustrate the performance of our
system on the St. Matthew model in closer detail. The primary
effect of reducing the model from 372 million to 1 million trian-
gles has been to remove the very fine grained chisel marks that
cover the surface, hence the smoother look of the leg in the reduced
model. Even with 100,000 output triangles, the shape of the sur-
face is largely intact. In particular, notice that the contours of the
clothing and the indentation above the knee are represented reason-
ably accurately. Finally, with 10,000 output triangles, a substantial
amount of the original detail has been removed. Nevertheless, the
contours of the leg and the clothing surrounding it remain easily
identifiable.

5 CONCLUSION

We have presented a new multiphase method for efficiently produc-
ing high quality approximations of polygonal models of arbitrary
size. By combining one-pass spatial clustering with iterative edge
contraction, it provides the benefits of both methods. It can pro-
cess models far larger than iterative methods are capable of, and
produces higher quality approximations than pure clustering meth-
ods, especially at small output sizes. The two phases of the system
are coupled together by attaching quadric error data to the inter-
mediate model passed between them. Just as quadrics have proven
effective at driving iterative edge contraction and spatial clustering
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Figure 7: Simplification to a target output size of 5000 faces using different Phase I grid resolutions. Model sizes shown are for intermediate
models; the rightmost model is already beyond the target size, so this is also the output size.
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Figure 8: Multiple approximations of a very large (6.5 GB) surface model using a constant Phase I grid resolution of 300×847×273.
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Figure 9: Close-up view of models shown in Figure 8. Note the
preservation of surface details even after extremely aggressive re-
duction.

separately, they are also an effective means of communicating in-
formation between these different simplification frameworks. We
believe that this new algorithm is truly general purpose, in that it
can be applied to inputs of any size, from a few thousand to a few
billion faces, and can successfully produce high quality approxima-
tions in fairly little time.

While the current system has performed quite well, there are a
number of areas for future work that could potentially improve its
performance appreciably. Currently, the choice of grid resolution
for the clustering phase is completely fixed, either by memory limit
or voxel size. It would be desirable to have a method that could au-
tomatically select an adaptive grid size based on the structure of the
input surface itself. It is also apparent that our proposed multiphase
system is only a single instance of a much more general system
where multiple simplification phases are combined in a pipelined
fashion. Many alternative designs for the individual stages could
be explored, but we believe that it would be most productive to in-
vestigate alternative adaptive clustering strategies, such as octrees
or BSP trees. Finally, we were quite surprised to find that the mul-
tiphase algorithm frequently produced results with error lower than
the results of the fully iterative QSlim method. This rather counter-
intuitive result deserves more careful scrutiny.
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