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A solute diffusion model, aimed at predicting microstructure formation in metal castings, is 
proposed for dendritic solidification of alloys. The model accounts for the different length scales 

existing in a dendritic structure. This is accomplished by utilizing a multiphase approach, in 

which not only the various physical phases but also phases associated with different length scales 
are considered separately. The macroscopic conservation equations are derived for each phase 

using the volume averaging technique, with constitutive relations developed for the interfacial 
transfer terms. It is shown that the multiphase model can rigorously incorporate the growth of 

dendrite tips and coarsening of dendrite arms. In addition, the distinction of different length 
scales enables the inclusion of realistic descriptions of the dendrite topology and relations to 

key metallurgical parameters. Another novel aspect of the model is that a single set of conser- 
vation equations for solute diffusion is developed for both equiaxed and columnar dendritic 

solidification. Finally, illustrative calculations for equiaxed, columnar, and mixed columnar- 

equiaxed solidification are carried out to provide quantitative comparisons with previous studies, 
and a variety of fundamental phenomena such as recalescence, dendrite tip undercooling, and 
columnar-to-equiaxed transition (CET) are predicted. 

I. INTRODUCTION 

M O D E L I N G  of transport phenomena occurring dur- 
ing dendritic alloy solidification has received consider- 

able research attention in the past several decades, m 

Recently, interest has been focusing on an important and 
promising approach, namely micro-macroscopic mod- 

eling. The main goal of this approach is to incorporate 
descriptions of fundamental microscopic phenomena, 

such as nucleation, undercooling, and grain growth, into 

macroscopic heat-flow calculations in order to predict 
microstructure formation of a solidifying material on the 

system scale. A review of micro-macroscopic modeling 
has been provided by Rappaz [2] and recent developments 
have been reported in conference proceedings. [3] 

In an attempt to achieve detailed coupling between 
micro- and macroscopic phenomena, Ni and 

Beckermann [4] proposed a two-phase model for mass, 

momentum, energy, and species transport in a solidi- 
fying system. The model is formulated by viewing the 

solid and liquid phases separately and averaging the field 

properties of each phase over a representative elemen- 
tary volume. Through the volume averaging process, 
phase interaction terms appear in the resulting macro- 

scopic balance equations that reflect the effects of the 

transport phenomena occurring on the microscopic 
scale. These interaction terms are all proportional to the 

solid/liquid interfacial area-per-unit volume, which rep- 
resents the sole microscopic length scale. The same 

volume-averaging technique was employed by Ganesan 
and Poirier LS] to derive macroscopic mass and momen- 

tum equations for a stationary solid phase. 

Nevertheless, volume-averaged two-phase models are 
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not well suited for incorporating microstructural features 

present in dendritic solidification. This problem origi- 
nates from the single-scale averaged description of phase 

behaviors. In traditional volume averaging, no distinc- 
tion is made between properties of a phase associated 

with different microscopic length scales. The phenom- 

ena occurring on various microscopic length scales are 

smeared and modeled using a single mean characteristic 

length (i.e., the interfacial area concentration). In real- 

ity, in dendritic growth there exist at least three disparate 

microscopic length scales that are smaller than the char- 

acteristic size of an averaging volume: (1) the overall 

size of  the crystal or the primary dendrite arm spacing, 

(2) the secondary dendrite arm spacing, and (3) the ra- 

dius of a dendrite tip. Obviously, the transport phenom- 

ena occurring on the various microscopic scales differ 

greatly from one another and cannot be well described 

based on a single mean characteristic length, although 

they are all taking place within the same averaging vol- 

ume. In other words, a single-scale model provides in- 

sufficient resolution to capture dynamic behaviors on 

several microscopic length scales. Such resolution is, 

however, required for the complete incorporation of 

microscopic effects in a macroscopic model and the pre- 

diction of microstructure formation in a solidifying 

system. 

Considerable progress has been made to account for 

the heterogeneous nature of microstructures in the 
micro-macroscopic modeling of both equiaxed L6,7'8] and 

columnar [9,1~ dendritic solidification. In the models of 

equiaxed dendritic growth, the necessary resolution is 

obtained by viewing the liquid phase in a control volume 

as two distinct fluids associated with two length scales: 

the liquid within the dendritic structure and the liquid 

outside the equiaxed grain. It is then possible to sepa- 

rately account for the different solute diffusion phenom- 

ena in the interdendritic structure and the dendrite tip 

region and, more importantly, to incorporate a growth 
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model for the dendrite tips. Similarly, when analyzing 

columnar dendritic solidification, Flood and Hunt t9j dis- 

tinguish between the liquid in the interdendritic region 

and that outside the columnar front and also take into 

account the undercooling at the primary dendrite tips. 

Although these recent investigations have obtained 

successful results, they fail to provide a consistent and 

general framework for micro-macroscopic modeling of 

dendritic solidification. For example,  in Dustin and 

Kurz 's  model t6J of equiaxed growth and in Flood and 

Hunt 's  model OJ of  columnar solidification, the growth 

model for the dendrite tips is introduced at the expense 

of not conserving solute outside of  the grain envelope or 

at the columnar front.t21 The same practice was repeated 

by Kerr et al. tlu The only model that not only conserves 

solute but also incorporates a dendrite-tip-growth model 

in a rigorous and consistent manner is due to Rappaz and 

Thevoz. tTl Unfortunately, lengthy calculations are re- 

quired to obtain the microscopic solute profile outside 

each equiaxed grain, which limits its utility in a macro- 

scopic model. Although the analytical version of the 

model t81 is suitable for incorporation into a macroscopic 

model, it is implied that the average concentration of the 

liquid outside of  the grain remains at its initial value, 

which may not be valid in some cases (e.g., in the pres- 

ence of macrosegregation). Finally, none of the previ- 

ously mentioned micro-macroscopic models accounts for 

finite-rate solute diffusion in the solid on a microscopic 

scale. 

The aim of this article is to formally and rigorously 

develop a micro-macroscopic model of  dendritic solid- 

ification by utilizing a multiphase approach and volume 

averaging. Moreover, an attempt is made to construct a 

unified theory for both equiaxed and columnar dendritic 

solidification. As a first step, this article solely deals 

with solute diffusion. Due to the large value of the Lewis 

number for metallic alloys, thermal equilibrium is as- 

sumed to prevail on a microscopic scale, while the 

macroscopic temperature distribution is considered to be 

known from the solution of the energy equation. The 

inclusion of melt convection and solid movement  is non- 

trivial and will be covered in a future publication. In the 

following, the basic model is introduced, and the rele- 

vant supplementary relations are provided, with the last 

two sections focusing on practically useful limiting cases 

and both qualitative and quantitative comparisons with 

previous studies. 

I I .  BASIC M O D E L  C O N S I D E R A T I O N S  

A. Multiphase Approach 

Consider a small volume element that contains several 

equiaxed or columnar dendritic crystals, as schemati- 

cally illustrated in Figure 1, in which two different inter- 

facial length scales can be distinguished. An interfacial 

scale (having the unit of length) is defined as the ratio 

of  the volume of the structure to the interfacial area. In 

the equiaxed case, the solid crystal and the interdendritic 

liquid share a common interfacial length scale of  10 -5 

to 10  -4  m, whereas the interface between the liquid out- 

side the grains and the interdendritic liquid has a larger 

length scale (of the order of  10 -4 to 10 -3 m). The same 

/ V 0  
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(b) 

Fig. 1 - -  Schematic illustration of  the averaging volume and the den- 
drite envelopes (interrupted lines) for (a) equiaxed growth and 

(b) columnar  growth. 

is true for the columnar case, if one notes the difference 

between the primary and secondary arm spacings (see 

Figure l(b)). The size of  the volume element is chosen 

such that it is much larger than all interfacial length 

scales but small compared to the system scale (of the 

order of  10 -j to 10 ~ m). Hence, a proper volume element 

could have a radius between 10 -3  and 10 -2 m. A volume 

element of  this size is what all macroscopic models are 

actually based on. 

The hypothetical interface between the interdendritic 

liquid and the liquid outside the crystals is referred to as 

the dendrite envelope. The specification of this envelope 

is somewhat subjective. However,  a reasonable choice 

appears to be a smooth surface connecting the primary 

and secondary dendrite arm tips, as shown by the inter- 

rupted line in Figure 1. More details on the envelope 

topology can be found in Section IV. 

Now, the volume element can be considered to consist 

of three different phases: the solid phase and the two 

liquid phases. The two liquid phases separated by the 

dendrite envelope are distinguished by their different 

interfacial length scales. This multiphase approach to a 

heterogeneous system is realistic, since a fluid within a 

structure of  a larger scale really could have different 

macroscopic properties than the same fluid in a smaller 

scale structure. It has long been recognized that the ef- 

fective transport properties of  a fluid within a micro- 

structure are not only dependent on its physical 
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properties but also on the geometry of the 
structure.t~2,13,14] 

In the multiphase approach, separate macroscopic 
conservation equations are formulated for each phase. 

These macroscopic equations are linked through inter- 
facial transfer terms, which reflect the microscopic 

transport phenomena present at the interfaces. The new 

interface between the two liquid phases (i.e., the enve- 
lope), thus, provides an opportunity to incorporate ad- 

ditional microscopic phenomena in the model and 
transmit information from the two different length 
scales into the macroscopic equations. The macro- 

scopic conservation equations are derived using the 

volume-averaging technique, which is described in 
Section II-B.  

B. Volume Averaging 

Volume averaging has been a popular technique to de- 

rive macroscopic conservation equations for multiphase 
transport phenomena with and without phase change. In 

its application to solidification, a number of advantages 
have been pointed o u t .  [41 Volume averaging shows how 

the various terms in the macroscopic equations arise and 

how the resulting macroscopic variables are related to 
the corresponding microscopic ones. This gives consid- 

erable insight into the formulation of  constitutive rela- 
tions for the incorporation of the microscopic 

phenomena. In this work on heterogeneous solidification 

systems, volume averaging is also attractive, because it 
shows how physical phenomena occurring on one length 
scale are linked to those on another scale in a macro- 

scopic description. 
The averaging volume, Vo, is shown in Figure 1. Rig- 

orously, the spatial smoothing of a physical property be- 
longing to the smaller-scale phase over the averaging 

volume, Vo, requires the knowledge of the transport 
equations first averaged over a smaller volume. Hence, 

in order to develop a macroscopic equation for the 

smaller-scale phase in a heterogeneous system, based on 
the volume Vo, the microscopic or point equation must 

be spatially averaged successively over two averaging 
volumes of different size. This is the basic idea under- 

lying the so-called dual-scale volume-averaging tech- 

nique that was r ecen t ly  developed by Wang and 
Beckermann. tla However, the averaging theorems es- 

tablished for that technique reduce identically to those 
in the conventional volume-averaging method, if it is as- 

sumed that the smaller averaging volume is spatially in- 

dependent (but it can be time dependent) inside the 
larger volume, Vo. Therefore, for the sake of simplicity, 

the conventional volume-averaging method is employed 
here, and each fluid having a distinct length scale is 

viewed as a separate phase. While the details of the 
method have been well documented; ~6 19] only the av- 

eraging theorems are provided in the following: 

< Oqrk~_O(~k> 1 fa ~ k w ' n d A  [la] 
--o-ft / ot Vo 

(V'k> = V(**) + ~00 *kndA [lb] 
k 

where the averaging operator and the intrinsic volume 

average are defined, respectively, as 

1L 
(~k) = ~ Xkqtk dV [2a] 

l f v  ~ 
(*k)k = -~k Xk*kdV [2b] 

with Xk denoting a phase function, equal to unity in 

phase k and zero elsewhere, and Vk is the volume of 

phase k in V0. 
The factor n in Eqs. [la] and [lb] denotes the out- 

wardly directed unit vector normal to an interface, and 
w is the velocity of the interface. Note that Ak stands for 

the total interfacial area of the k-phase adjacent to all 

other phases j; i.e., 

A~ = E AkJ [3] 
j,j~:k 

Equations [la] and [lb] are utilized in Section I I -C to 

derive the macroscopic transport equations. 

C. Macroscopic Equations 

In the absence of melt convection and solid move- 
ment, the relevant equations governing solute diffusion 

are the statements of mass and solute conservation 
within each phase. Their microscopic versions can be 

written as 

Opk 
- -  = 0 [41 
Ot 

and 

0 
~ (pkCk) = --V "Jk [5] 
Ot 

where Jk is the diffusive species flux in phase k. Making 

use of the averaging theorems, Eqs. [la] and [lb],  we 
obtain the corresponding macroscopic versions as 

follows: 

and 

0 
- -  ( p k e ~ )  = ~'~ F~j 
Ot j, je'k 

[61 

0 
O--t (p~ek (Ck> k) = - V " ((jk)) + E Jkj [7] 

j , j#k  

where ek is the volume fraction of phase k within the 
averaging volume, Fkj denotes the net rate of mass ex- 

change of phase k at the k-j interface, and Jkj is the spe- 

cies transfer rate of phase k at the k-j interface. The 
interfacial species transfer rate, Jkj, consists of two parts: 

namely, 

Jkj = J[j + J{j [81 

where the first part is due to interfacial movement and 

the second arises from species diffusion. Note that the 
motion of the solid-interdendritic liquid interface is 
caused by phase change, whereas that of the dendrite 
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envelope is induced by dendrite tip growth. The volume 

averaging procedure results in the following explicit re- 

lations for the interfacial transfer terms: 

1s 
= pkw" ndA  [9] 

Jg = p C:'-da [lOl 

�9 1 s  
JJkj - Vo jk . ndA  [11] 

kj 

These terms are constrained by interfacial balances on 

each k-j  interface; i .e. ,  

Fk; + Yak = 0 [ 12] 

and 

Jks + J :  = 0 [13] 

Obviously, an overall interfacial balance follows by 

summing up the interracial balances for each interface. 

The specification of the interfacial transfers in terms of 

macroscopic variables requires the development of  con- 

stitutive relations for the system under consideration. 

III. BASIC CONSTITUTIVE RELATIONS 

Constitutive relations are formulated for a three-phase 

system consisting of the solid (k = s), the interdendritic 

liquid (k = d), and the extradendritic liquid outside the 

dendrite envelopes (k = l), so that G + ed + ez = 1. It 

is further assumed that the solid (s) has only pointwise 

contact with the liquid (l) outside the dendrite envel- 

opes, so that 

Asd = Ads = As, Adl = Aid = A~, and A,t = Aa = 0 

[141 

These geometrical relationships imply that there exists 

no direct coupling between phases s and l, while phase 

d interacts with both phases s and 1. 

A.  Model ing  o f  the Interfacial Transfers Due  to 

Interface Movemen t  

The exact expressions for the interfacial transfers of  

mass and species due to interface movement  are given 

by Eqs. [9] and [10]. Using the mean value theorem for 

integrals, these terms can be modeled as the product of 

an interracial area concentration, Ss = As/Vo or Se = 

Ae/Vo, and a mean interracial flux. Hence, at the s-d 

interface: 

F~d = -F~s = S~p,v~,s [15] 

where # , ,  is defined as the average normal velocity of 

the solid-interdendritic liquid interface, which is solely 

due to phase change. Similarly, at the d-I interface: 

Fdt = - Ftd = S~pavv,,~ [ 16] 

where uv,~ denotes the average normal velocity of  the 

dendrite envelope. As mentioned before, the movement  

of the envelope is related to the kinetics of the dendrite 

tips, which is discussed in more detail in Section VI. 

In a like manner, the interfacial species transfers due 

to interface movement  can be modeled as 

J~r.d = CsdF,d; JVa, = Ca, Fd, [171 

for the s-d interface, and 

j r  = Ca,Fa,; j r  = CzaFtd [18] 

for the d-I interface. The overbars denote an average 

over the interfacial area, As o r  A e. 

B. Model ing  o f  the Interfacial Species Transfers Due 

to Dif fusion 

The exact expression for the interracial species trans- 

fer due to diffusion, J~j, is given by Eq. [11]. Physically, 

this term describes the interfacial diffusion process 

caused by species concentration gradients. The integral 

in Eq. [ 11 ] can be evaluated again as the product of the 

interfacial area concentration, S, and a mean interracial 

diffusive flux. The flux is  directly proportional to its 

driving force, namely, the difference between the inter- 

facial and volume-averaged concentrations of a phase. 

On the other hand, the flux is inversely proportional to 

a so-called solute diffusion length, l, which characterizes 

the resistance to diffusion. Hence, the following math- 

ematical expressions can be written down: 

J.~a S D = ,Ps 7 -  (C,a - ( C y )  [19] 
lsd 

and 

j~.,. Dd _ 
= S,p,t-~a ~ (Cj~ - (Ca) a) [201 

for the s-d interface. It should be noted that Pd and Dd 

are not necessarily equal to Pt and Dr, respectively, be- 

cause these properties are functions of  the local concen- 

tration and temperature. Likewise, one has that 

Dd - 
JJlt = SePd ~ (Cd, --  ( C a )  d) [21] 

and 

DI 
J{d = SePl ~ld (Cld -- (Cl) l) [221 

at the d-I interface. 

Figure 2 schematically illustrates the microscopic con- 

centration distributions in the solid, interdendritic, and 

extradendritic liquid regions. The interfaces depicted in 

Figure 2 represent infinitesimal sections of  the interfaces 

shown in Figure 1 and are drawn, for simplicity, as 

straight lines. The physical meanings of  the various dif- 

fusion lengths, l, are also shown therein. Mathemati- 

cally, a diffusion length is defined as 

G s  - (Ck) k 

lkj - OCk [23] 

On kj 

2790- -VOLUME 24A, DECEMBER 1993 METALLURGICAL TRANSACTIONS A 



where the denominator represents the mean concentra- 

tion gradient in phase k normal to the kj interface. The 

diffusion length is generally a complicated function of 

the microscopic phenomena, and its determination re- 

quires a formal microscopic analysis of  the diffusion 

processes in a phase. Several simple analytical results 

are presented in the Appendix. 

C. Modeling of  the Macroscopic Species Fluxes 

In order to model the macroscopic species fluxes, it 

is assumed that the species diffusion is governed by 

Fick's  law and that the fluctuating components of  the 

density and the mass diffusivity of phase k are negligibly 

small. Hence, 

(Jk) = --Dkpk (VCk) [24] 

Following Ni and Beckermann, ~41 Eq. [24] can be re- 

written by applying an averaging theorem and introduc- 

ing an effective mass diffusivity, D*, such that 

(jk) = - D *  pkekV(Ck) k [25] 

where D* is generally different from its microscopic 

counterpart, Dk. Although we have formally included 

species diffusion on a macroscopic scale, in practice this 

term may be negligible, because the solute diffusion 

length is much smaller than the characteristic length for 

diffusion into or out of  an averaging volume. Mathe- 

matically, this can be shown by comparing the magni- 

tudes of  the macroscopic diffusion term and the 

interfacial transfer term due to diffusion in Eq. [7]. Not- 

ing that the interfacial area concentration and the dif- 

fusion length are proportional to l i d  and d, respectively, 

where d is a representative microscopic length, the ratio 

of the magnitudes of the two terms is 

V(--(jk)) * 2 d 2 D k pkekAC/L 
. . . .  << 1 [26] 

Jk# SpkDkAC/1 L2 

where L is a macroscopic length and AC stands for a 

suitable concentration scale. The same has been argued 
by Rappaz and Voller t2m and Poirier et al. ~21~ in different 

ways. 

I V .  G E O M E T R I C A L  R E L A T I O N S  

The interfacial area concentrations, Ss and Se, char- 

acterize the topology of the interracial structures and are 

thus related to complex microscopic phenomena, such 

as the growth of various solid microstructures, impinge- 

ment of  interfaces, and coarsening of dendrite arms. The 

area concentrations play important roles in the modeling 

of the interracial transfer terms and need to be modeled 

through supplementary relations, which can be devel- 

oped from either experiments or certain theoretical con- 

siderations. In fact, it has recently been proposed to base 

micro-macroscopic models directly on the specific sur- 

face area, Sv. E22~ The inverse of  the specific surface area 

is a more accurate measure of the length scale of  a 

microstructure than the traditionally employed spac- 

ings E2J and can easily be measured. The interfacial area 

concentration, S, is related to Sv by S = Sv(1 - e), where 

lsd ~ s d  /Cds s-d interface 

/dll ' ~ 0  1 '"~Odl .  , d-l interface 
/ "~.~lld .,, 

Cld ~ ,,01 E~xx~den~t~lc 
�9 ~ ~" k, Liquid J 

<CI>I ! l ~ # 

Fig. 2--Illustration of the species diffusion lengths. 

e is the volume fraction of the microstructure under con- 

sideration. Hence, once relations for Sv become avail- 

able, they can be used in the present model. 

In the following, a more traditional approach is taken, 

and an attempt is made to relate the interfacial area con- 

centrations to certain dendrite spacings, the nuclei den- 

sity, time (through coarsening), and the various volume 

fractions (which are also functions of  time). In the pres- 

ent model, different length scales have been distin- 

guished, and, thus, it is possible to relate the interfacial 

area concentrations to such metallurgical parameters. 

This also enables the incorporation of microstructural 

phenomena (e.g., coarsening) that occur only on a par- 

ticular length scale. L23j This matter was obscured in a 

previous two-phase model t4J through the use of  mean 

geometrical parameters for the averaging volume. 

A. Solid~Liquid Interface 

The area concentration of the interface between the 

solid and the interdendritic liquid can be modeled by as- 

suming a simple one-dimensional platelike geometry of 

the secondary dendrite arms as shown in Figure A1. This 

is applicable to both equiaxed and columnar structures 

and is traditionally adopted in most microscopic anal- 

yses. For such a geometry,  it is readily shown that 

es A2 
d, - [27] 

1 - ez 

and 

2 
Ss = - -  [28] 

/~2 

Substituting Eq. [27] into Eq. [28], we obtain a relation 

between Ss and the mean characteristic length 

(diameter) as 

2e~ 
Ss - [29] 

(1 - eDds 

It is interesting to see that this result matches well with 

the general expressions obtained by DeHoff  and 
Rhines t24~ and Bird et al. t251 The numerical factor can be 

adjusted for other choices of  the geometry. In addition, 

we note that Eq. [28] is ready for the incorporation of  
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the coarsening effect. For example, by using the coars- 
ening law established by Kattamis et al. 32< 

~2 ~- [~tla/3 [301 

Eq. [28] gives 

Ss ~ C 1/3 [31] 

where t,, is the local "aging" time. This result is consis- 
tent with the coarsening experiments conducted by 
Marsh et al.t271 at a constant solid fraction. 

Note that due to the assumption of a one-dimensional 
platelike geometry for the solid/liquid interface, the 

interfacial area concentration, S,, is not an explicit func- 

tion of the solid volume fraction (but S~ is; see earlier). 

This may not be a good approximation during the initial 
and final stages of solidification when the interface ex- 
periences qualitative changes in its topology. This prob- 

lem can be overcome by using the correction factor for 
the interfacial area due to Avrami t28~ to account for im- 

pingement of interfaces or the empirical relation pro- 
posed by Speich and Fisher. lz9J 

B. Dendrite Envelope 

The area concentration of the dendrite envelope is 

modeled by introducing an envelope shape factor de- 
fined as 

~) = Aequivalent/Aactual [32] 

By equivalent we mean an equivalent sphere or cylinder 
of the same volume as the actual crystal envelope. 
Equiaxed crystal envelopes are most appropriately de- 

scribed by equivalent spheres, while equivalent cylinders 

are chosen for the columnar case. The shape factors are 
schematically illustrated in Figures 3(a) and (b). A shape 

factor always lies between zero and unity, since a sphere 

and a cylinder have the least possible surface area for 
three-dimensional and axisymmetric bodies, respec- 

tively; however, for envelope shapes similar to the ones 
shown in Figure 3, ~be is relatively close to unity. 13~ If 

the envelope is shape preserving during growth, ~b,, can 
be taken as a constant. 

1. Equiaxed growth 

For equiaxed growth, it can easily be shown that 

1 6 ( 1  - el) 
Se - [331 

Note that this result is consistent with Eq. [29]. In 

Eq. [33], d~ is the diameter of the equivalent sphere that 
can be related to the number of crystals per unit volume, 

n ,  a s  

(6(1_ - e,)) 1/3 [34] 

de=  \ n~r 

where n must be calculated from a nucleation model, t21 

Substituting Eq. [34] into Eq. [33] results in the follow- 
ing relation for & in terms of  the nuclei density: 

1 1 
Se = ~ee (36~') /3 h i /3  ( l  - -  e l )  2 /3  [35] 

J 

j 

Equiaxed dendrite 

~ Envelope 

Surface area, A e 
Volume, V e 

Envelope volume equivalent sphere 

Volume, V e 

Diameter, d e 

(a) 

equivalent volume cylinders 
e~['~ of dendrite envelopes 

"~" ~ 

i phase I ~'1 

Primary arm spacing 

(b) 

Fig. 3 - - S c h e m a t i c  of  shape factors for (a) an equiaxed dendrite en- 

velope and (b) a square arrangement of  columnar dendrite envelopes. 

2. Columnar growth 

For the equivalent cylinders assumed in columnar 

growth, we have that 

1 4 ( 1  - et) 
S,, = - -  [36] 

~be de 

By assuming a square pattern of the columnar dendrites 
on a transverse cross section, as shown in Figure 3(b), 

the equivalent diameter, d,,, can be related to the familiar 

primary arm spacing, hi, such that 

( 4(1 - eO 
de = " ~r ~1 [ 3 7 ]  

Then, substitution of Eq. [37] into Eq. [36] yields 

1 (4~)1/2 ( l  - - e l )  1/2 1 [38] : 

The primary arm spacing, AI, depends mainly on the co- 
lumnar front velocity and the temperature gradient and 
can be calculated from an appropriate model. ~3u It 

should be mentioned that Eqs. [37] and [38] are also 
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valid for other arrangements of the dendrites except for 
a slight change in the numerical factor. 

By comparing Eq. [35] with Eq. [38], it is apparent 
that the number density of equiaxed crystals, n, can 

equivalently be viewed as the number density o f  primary 

arms in columnar solidification, that is n / ~ 1/h~. 
Furthermore, Eqs. [35] and [38] reveal the following im- 
portant parametric relation: 

S e ~ rt 1/3 or l/A1 [39] 

The final equivalent radius (R I = de~2) of a dendrite, 
which is useful in the calculation of the diffusion lengths 

(Appendix), can be obtained from Eq. [34] or [37] by 

taking el = 0. Similar to the solid/liquid interface, the 
envelope area concentrations expressed by Eqs. [35] and 

[38] need to be modified during the initial and final 
stages of  solidification. In particular, Se should be equal 

to zero for el = 0. 

V.  T H E R M O D Y N A M I C  R E L A T I O N S  

Under the assumption of local thermodynamic equi- 

librium, the following conditions are valid at the solid/ 

interdendritic liquid interface: 

Csd/Cd~ = K [40] 

T - T ,  
Cd~ -- - -  [41] 

mt  

where we utilize the symbol T without a subscript to rep- 

resent the single temperature of an averaging volume 
(Section I). 

At the d-l interface, phases d and l are actually the 
same liquid. Hence, 

Cat = Cld = Q [42] 

where Ce denotes the liquid concentration on the dendrite 
envelope. The envelope concentration cannot be ob- 

tained from the phase diagram but is determined by the 
interfacial species balance. Substituting Eqs. [16], [18], 

[21], and [22] into Eq. [13] results in 

(Ct~ - Cdz) Plane 

Dl Dd 
= pi~t d (Ctd -- <CJ) + Pd --Idi (Call -- <Ca> a) [43] 

In recognition of Eq. [42], Eq. [43] can be solved for 
C~ to obtain the following: 

piDi (CS  + pdDd (Cd) d 

Ce = lid lal [441 
ptDl paDd 

lla ldt 

The use of Eq. [44] to determine Ce excludes the pos- 

sibility of obtaining the envelope velocity, #he, from 
Eq. I45]. Therefore, this velocity is no longer deducible 

from the conservation equations themselves but must be 
supplied through an independent relation governing the 

growth of the dendrite envelope. This is accomplished 
in Section VI. 

VI .  G R O W T H  M O D E L  F O R  

T H E  D E N D R I T E  E N V E L O P E  

As shown in Figure 1, the envelope is a smooth sur- 
face connecting both the primary and secondary dendrite 

arm tips. Therefore, the envelope velocity, rPne, can be 
taken to be equal to some mean tip velocity. Generally, 
each tip moves at a different speed depending on the 

local solutal undercooling in the extradendritic liquid ad- 
jacent to the tip. In particular, there may be considerable 

differences in the speeds of the primary and secondary 
dendrite arm tips. In spite of this complex situation, it 

is assumed in this study that the mean dendrite tip ve- 

locity and, hence, the envelope velocity can be uniquely 
related to the average solutal undercooling in the extra- 

dendritic liquid, i .e. ,  Ce - (CJ .  The irregular topog- 

raphy of the envelope caused by the different speeds of 
the dendrite tips is accounted for through the use of the 

envelope shape factor as described in Section IV. 
Numerous studies have been performed to establish a 

relation between the dendrite tip undercooling and its 
growth velocity, and the basic derivations can be found 
in References 31 and 32. For conciseness, only the final 

result, written in terms of the present nomenclature, is 
stated here: 

D t m ( K -  1)C~ 
[Iv-L(f~)] 2 [451 

~ne = 7rZF 

where f~ is the dimensionless solutal undercooling and 
is defined as 

Ce - (C i )  l 
1~ - _ [46] 

C e ( l  - t() 

and Iv- t ([1) is the inverse function of  the Ivantsov trans- 
port function, t3~] Equation [45] assumes a parabolically 

shaped dendrite tip and neglects the thermal and cur- 

vature undercoolings. It is worth noting that Eq. [45] is 

applicable to both columnar and equiaxed growth, be- 
cause only solute diffusion is considered. If adopting the 

hemispherical needle approximation to the shape of a 
tip, the Ivantsov function simplifies to ~ = Iv(Pe,) = 
P e t ,  [3H s o  that 

Iv -1 (12) = ~ [47] 

Then, substituting Eq. [47] into Eq. [45], we obtain the 
following quadratic relation: 

Dim(K - -  1)Ce ~'~2 [48] 
Wne = w2F 

This equation has been used by Rappaz and Thevoz t71 

and is employed below in the comparisons for equiaxed 

solidification. 

V I I .  S U M M A R Y  O F  

G O V E R N I N G  EQUATIONS 

A set of model equations is summarized and discussed 

in this section for situations where the following as- 
sumptions can be invoked. 
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(1) Species diffusion on a macroscopic scale is neg- 

ligible for all phases (see also Eq. [26]); i.e., 

D * = D *  = D * ~ 0  [49] 

(2) The densities of the solid and the liquid phases 

are equal and constant. 

Under these circumstances, the general model pre- 

sented in the preceding sections reduces to a system of 
five conservation equations, which can be summarized 

as follows: 

Dendrite envelope motion 

0 SeDlml (K-  1)Ce 
- -  ( e ,  + e d )  = S ~ W ~  = 
at "n'2F 

Solute balance of  phase s 

O(es(CY) _ Csa __Oe" + S,D, 

Ot Ot lsd 

Solute balance of phase d 

O(eZCd)~) (Ce - C',~s) Oe--2s 
at ot 

[IV 1 (~'~)]2 [50]  

(Q~ - (c3) [511 

C =e - - +  OEd S~D~ + 
Ot 

SsD d _ 

(Cds -- (C J )  
ld, 

SeDa 
+ - -  (C~ - (c ,S)  

lat 

[52] 

Solute balance of phase 1 

O(et(CJ) C~ Oe, S~Dt 
- -  - - -  + ( C , ,  - ( C , ) ' )  [ 5 3 ]  

Ot Ot ltd 

Interfacial solute balance at the s-d interface 

dE s _ SsDd S,.D, 
(Cd~. - C~.d) at l ~  (Cd.,. - -  (Cd) d) + ~ (C~d -- ( C , )  ~) 

[54] 

Equations [51] through [54] have been obtained by elim- 

inating v~,,, and ~,~ in favor of es and ed. They constitute 

a full system of differential equations for five unknowns: 
e~, ed, (Csf, (Ca) d, and (CJ ,  while C~ is calculated from 

Eq. [44]. When supplied with the expressions for the 
diffusion lengths, thermodynamic conditions, and geo- 

metrical relations, these equations represent a complete 

model for solute diffusion. It is noteworthy that all 
model equations have clear physical interpretations. For 

example, Eq. [51 ] simply states that the change in mass 
of solute in the solid results from the combined contri- 

butions of movement of the solid/liquid interface and 

solute diffusion across the interface. Another salient fea- 

ture of the present model is that it provides the same set 
of conservation equations for both equiaxed and colum- 

nar dendritic solidification. In other words, the model 

represents a unified theoretical framework for both 
modes of solidification while leaving descriptions of the 

different physical characteristics of  each mode to sup- 

plementary relations. 

VIII .  L I M I T I N G  CASES 

A. Physical Significance of  Limiting Cases 

In this subsection various limiting cases with regard 

to microscopic solute diffusion in the solid, the inter- 

dendritic liquid, and the extradendritic liquid are ex- 
amined separately. For the solid phase, Eq. [51] 

indicates two possible limiting cases: 

S~D~ 
- -  ~ ~ [ 5 5 ]  

lsd 

and 

SsOs 
- 0 [ 5 6 ]  

l,d 

The first condition implies complete mixing of solute in 
the solid. Under this circumstance, the volume-averaged 

concentration, (C,) ~, must be equal to the interfacial con- 

centration, Csa, in order for both sides of Eq. [51] to 
remain finite. The other limiting case given by Eq. [56] 
characterizes vanishing solute diffusion in the solid. 

Recognizing that S, -- 1/3.2 and lsd ~ A 2 (see Eqs. [28] 
and [A6]), it is apparent that both extremes can be of 

practical significance. For example, a relatively high 
solid-mass diffusivity and a small secondary dendrite- 
arm spacing favor Eq. [55], while a low-mass diffusivity 

and a relatively large secondary-arm spacing support 

Eq. [56]. 
Similarly, Eq. [52] reveals an important limiting case 

for the interdendritic liquid: the interdendritic liquid be- 

comes solutally well mixed if 

SsDd SeOd 
or --> o0 [57] 

ld.,. ld, 

Since both sides of Eq. [52] must be finite, Eq. [57] 

suggests that the average concentration, ( C y ,  must be 
equal to either Ca., or C~. Furthermore, if the microscopic 

concentration profile in the interdendritic liquid varies 

monotonically, with the only maxima and minima pres- 
ent at the two interfaces (as shown in Figure 2), Eq. [57] 

actually implies that the average concentration must be 

equal to both interfacial concentrations, i.e., 

< C j  = Od, = C,, = Q [58] 

Utilizing the fact that Ss ~ 1 /A2  and lds - /~2  (see 
Eq. [A9]), the first condition given by Eq. [57] can 

equivalently be expressed as 

Dd 
- -  ~ ~ [591 
A~ 

For typical liquid-mass diffusivities and secondary-arm 

spacings occurring in alloy solidification, Eq. [59] is 
generally satisfied. The assumption of a solutally well- 

mixed interdendritic liquid is therefore employed 

throughout the remainder of the article. 

Finally, from Eq. [53] we learn that if 

SeDl 
- -  ~ oo  [ 6 0 ]  
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a state of complete solutal mixing is reached in the extra- 

dendritic liquid. Once more, this condition forces the av- 

erage liquid concentration to be equal to the 
corresponding interfacial one in order for both sides of 

Eq. [53] to remain finite. Physically, Eq. [60] implies 
that a large envelope area-per-unit volume and a small 

diffusion length lead to a solutally well-mixed extra- 
dendritic liquid. 

Note that all terms on the left-hand sides of Eqs. [55] 

through [57], [59], and [60] represent the inverse of the 
characteristic time for solute diffusion on the various 

microscopic scales. Obviously, several combinations of 
the limiting cases correspond to familiar assumptions 

that are often utilized in the analysis of alloy solidifi- 

cation. In Section B, the present model equations are 
simplified for a few selected cases. 

solidification in cases where the assumptions of a well- 
mixed interdendritic liquid and vanishing solute diffu- 

sion in the solid can be invoked. It is noteworthy that 

Eq. [62] is uncoupled from the other differential equa- 
tions and only needs to be solved if ( C y  is desired. 

There is another interesting observation that follows 
from Eq. [64]: to be physically meaningful, d(CJ /d t  

must be greater than zero, which leads to the following: 

SeDI Dz 
l,a --< - -  - [651 

del/dt l~ne 

This poses a constraint on the diffusion length. The 

expressions for the length I~a developed in the Appendix 

satisfy this constraint and are therefore suitable for in- 

corporation in the present model. 

B. Well-Mixed Interdendritic Liquid~Finite-Rate 
Diffusion in the Extradendritic Liquid 

The first category to be considered assumes finite-rate 

solute diffusion in the extradendritic liquid and complete 
diffusion in the interdendritic liquid. Hence, under- 

cooling at the dendrite tips is accounted for in this type 
of model. Depending on the extent of solute diffusion in 

the solid, two cases (i.e., finite-rate and vanishing dif- 
fusion in the solid) can be further distinguished. 

1. Finite-rate diffusion in the solid 

All model equations can be retained in this case except 
for Eq. [52], in which the interfacial species fluxes on 

the right-hand side become indeterminate under 

Eq. [57]. Their evaluation must resort to the interracial 
balances, Eqs. [54] and [43], so that Eq. [52] becomes 

OCe Oes 
- - +  ( K -  1 ) ( 7 ~ - -  

ed Ot Ot 

SeDI (Ce - (Ci) I) SsDs 
- ll~ - ~ (Csa- ( C y )  [61] 

Now Eqs. [50], [51], [53], and [61] represent the com- 
plete set of model equations in this case. 

2. No diffusion in the solid 

By neglecting solute diffusion in the solid, as stated 
by Eq. [56], all terms involving Ds on  the right-hand 

sides of Eqs. [51] and [61] vanish, so that the equations 
simplify to 

0 ( c , ( c y )  _ 0e~ 
- K C e -  [621 

Ot Ot 

OC e _ 0 6  s S e D l  

ed - -a t  -]- (K -- 1)C e at  - --ll d (Ce - (Ci) l) [ 6 3 ]  

where use has been made of the fact that Csd = KCe and 
Ctd = Ce, in order to reduce the number of unknowns. 

Also, for reasons that will become apparent sub- 
sequently, we rewrite Eq. [53] as 

O(CI) l ( S e D I  Oct t 
et - + (C,~ - (CJ) [64] 

Ot \ lid Ot / 

Now, Eqs. [50] and [62] through [64] represent a com- 
plete model for both equiaxed and columnar dendritic 

C. Well-Mixed Interdendritic and 
Extradendritic Liquids 

In order to investigate this more restricted case, it is 

instructive to write down the overall solute balance that 
results from summing up the species conservation equa- 
tions for all three phases and canceling out the interfacial 
terms; namely, 

0 0 0 
s 

Ot (e~(CI)l) + ~ (ed(Cj)  + ~ (es(C) ) 0 [66] 

For solutally well-mixed 1 and d phases, Eq. [66] can be 
simplified as 

0 0 
s 

Ot [(1 - es)Ce] + ~t (es(Cs)) = 0 [67] 

or, in integrated form, 

(1 - c , )Ce  + e , ( C , )  s = C o  [681 

Now, depending on the extent of solute diffusion in the 

solid, the following three subcases result. 

(1) Complete diffusion in the solid 

In this case, we have that (Cs) s = Csd ~- KCe, and 

Eq. [67] reduces to the following differential form of the 
Lever rule: 

a C  e - d[es(1 - K)Ce] = 0 [69] 

(2) NO diffusion in the solid 

Making use of Eq. [62], Eq. [67] leads to the follow- 

ing differential form of Scheil's equation: 

d[( l  - es)Ce] + KCede, = 0 [70] 

(3) Finite-rate diffusion in the solid 

In this case, the present model reduces to a set of only 
two equations, namely, Eqs. [51] and [67]. Restricting 

further attention to a parabolic solidification rate, 

Eq. [51] can be rewritten as 

d ( C y  
e s -  = (1 + 6a) ( K C  e - -  (Cs) s) [71] 

de, 

where the independent variable has been changed from 

t to es with the help of the parabolic solidification equa- 
tion esdes/dt = 1/2tf. Use has also been made of the 
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relations S~ = 2/A2 and lsa = e,a2/6 as developed pre- 

viously. The parameter a is the traditional diffusion 

Fourier number based on the secondary dendrite-arm 

spacing, which characterizes the extent of  solute diffu- 

sion in the solid. Further substituting Ce for (C,)* in 

recognition of Eq. [68], one arrives at the following 

first-order differential equation for Ce: 

- -  "1- - - -  - -  q -  C e  - C 0  

de,  1 - e~ e~(1 - e,) 

[721 

which has a closed-form analytical solution for finite and 

constant values of a: 

Co 

6a(1 - 6 ~ )  ( 1 + 6 ' ~ ) ~ - 1  (e~ 

)0 
66 ~-1 (1  __ /~) (l+6~)Kde 

[73] 

It has been shown ~33) that Eq. [73] produces accurate re- 

suits for microsegregation of P in 6-Fe. To obtain a more 

simple expression for microsegregation, Ohnaka t34~ in- 

troduced additional assumptions in his integral method. 

IX.  I L L U S T R A T I V E  E X A M P L E S  

Illustrative calculations are carried out in order to 

compare the present multiphase model to several pre- 

vious models for dendritic solidification. For the sake of 

clarity, comparisons are made separately for purely 

equiaxed, purely columnar, and, finally, mixed 

columnar-equiaxed solidification. 

A .  E q u i a x e d  G r o w t h  

Two solute diffusion models for equiaxed dendritic 

growth have been put forward by Rappaz and 
Thevoz. 17,81 In both models, it is assumed that there is 

absent back diffusion in the solid and complete mixing 

of solute in the interdendritic liquid. Therefore, the sim- 

plified version of the multiphase model, consisting of 

Eqs. [50] and [62] through [64], is a suitable candidate 

for direct comparison with the two studies. Also, Rappaz 

and Thevoz p'81 assume a spherical dendrite envelope, so 

that the shape factor in Eq. [35] should be taken equal 

to unity. It can be seen that the present multiphase model 

differs from that of  Rappaz and Thevoz tV~ only in that 

the former model utilizes an integral representation of 

solute diffusion in the extradendritic liquid together with 

the concept of  a diffusion length, while Rappaz and 

Thevoz tVl solve a partial differential equation instead. 

However,  this difference would not be of  significant 

consequence, because the present diffusion length is de- 

rived from an analytical solution of the differential equa- 

tion governing solute diffusion in the extradendritic 

liquid (Appendix). 
The second model of  Rappaz and Thevoz tSl is analyt- 

ical in nature and can thus be compared more closely. 

If  it is assumed in the present model that the average 

concentration, ( C j ,  outside the envelope remains equal 

to its initial value, Co, such that d ( C J / d t  = 0, then the 

species conservation equation, Eq. [64], reduces to 

D/ 
lta - [74] 

Wne 

This is exactly the key result in the analytical model of 

Rappaz and Thevoz.tSl However,  Eq. [74] should not be 

deemed as another general expression for the liquid dif- 

fusion length (compare to Eq. [A18]), because the as- 

sumption on which Eq. [74] is based may not generally 

be valid. Moreover,  this assumption leads to the failure 

of arriving at a state of complete solute mixing in the 

liquid during the later stages of  solidification. As a rem- 

edy, Rappaz and Thevoz E81 implement a certain correc- 

tion procedure so as to ensure a smooth transition to the 

state of  complete solute mixing. By contrast, the use of 

Eq. [A18] together with the solute conservation equation 

for the extradendritic liquid, Eq. [64], does not suffer 

from these shortcomings, 

To illustrate these comparisons quantitatively, a nu- 

merical study based on the present model has been per- 

formed for a uniformly solidifying system with an 

equiaxed dendritic morphology. The system is chosen to 

be the same as that studied by Rappaz and Thevoz. 17~ 

The temperature is assumed to be uniform, so that the 

energy equation can be written as: 171 

CpJ" = Ah de ,  d C e 
-- Cpm l [75] 

dt dt  

Also, the quadratic relation, Eq. [48], is employed as 

the growth model for the dendrite tips (i.e., Iv-~ (~)  = 

f~ in Eq. [50]). The initial conditions for Eqs. [50], [62] 

through [64], and [75] are es = ed = 0, (C,) ~ = KC0, and 

C~ = ( C J  = Co. This set of  equations is numerically 

solved using the standard fourth-order Runge-Kutta 

method. Results are obtained for an A1-5 wt pct Si 

alloy, a cooling rate, 7", of  45 K s -I ,  and three different 

nuclei densities: n = 2.39 x 1011, 2.39 x 108 , and 

2.39 x 105 m -3, which correspond to final grain radii 

of  10 -4, 10 -3, and 10 -z m, respectively. It is assumed 

that nucleation occurs instantaneously at the liquidus 

temperature. The physical properties are taken from 

Reference 7. 

The predicted cooling curves near the recalescence 

stage are displayed in Figure 4, where the more exact 

solutions due to Rappaz and Thevoz tVl are shown as 

dashed lines. It is seen that the two predictions are 

indeed in close agreement, as they should. The minor 

difference for the case of n = 2.39 x 10 ~ m -3 is due 

to the fact that the present model utilizes an approximate 

analytical diffusion length, while Rappaz and Thevoz 's  

model tV~ calculates solute diffusion in the extradendritic 

liquid more accurately from a partial differential equa- 

tion. However,  a comprehensive parametric study using 

different choices of the diffusion length leads to the con- 

clusion that the diffusion length is not a crucial factor in 

the present model/TM This, by the way, explains why 

the second model of Rappaz and Thevoz tSl employing 

the approximate diffusion length, Eq. [74], yields good 

results. 
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Fig. 4 - - C o m p a r i s o n  of  cooling curves for equiaxed solidification of  
an A1-5 wt pct Si alloy and nuclei density of  (a) 2.39 • l0  II m 3, 
(b) 2.39 x 108m 3, and (c )  2.39 x 105 m 3. 

B. Columnar Solidification 

For columnar dendritic solidification, we employ the 

same assumptions as in the equiaxed case, which include 

no macroscopic species diffusion, equal densities of the 
solid and liquid phases, no solute diffusion in the solid, 

and complete mixing of solute in the interdendritic liq- 
uid. Hence, the simplified model given by Eqs. [50] and 

[61] through [64] is still applicable in the present 

situation. 

There have been several attempts to incorporate 
dendrite-tip undercooling into microsegregation models 
for columnar growth. Flood and Hunt Eg~ and, more re- 

cently, Kerr et al. f~l~ simply truncate the Scheil equation 

at the tip temperature. However, this model fails to sat- 
isfy the solute balance, as pointed out by Rappaz. TM This 

can be illustrated using the present model, as explained 

subsequently. 
Summing up Eqs. [63] and [64] yields the following 

conservation equation (note that Ce is equal to the liquid 
concentration at the solid/liquid interface; see Eq. [58]): 

d C  e des d [e~(Ce - (CJ)]  [76] 
(1  - es) ~ t  + (K - 1) Ce d t  - -  dt 

where the interracial terms have canceled out. By ar- 

ranging the left-hand side in the differential form of 

Scheil's equation, it becomes clear that the two previous 
studies [9'11~ neglected the tip undercooling in the solute 

conservation equation; i.e., 

Ce - (Ci)  l~-" 0 [77] 

With this simplification the right-hand side of Eq. [76] 

vanishes and the left-hand side can be integrated to yield 

Scheil's equation: 

e, = 1 - [781 

which was used to calculate the solid volume fraction. 
Obviously, Eq. [78] is not solute conserving in the pres- 

ence of tip undercooling. 
The other more recent model of columnar solidifica- 

tion by Giovanola and Kurz El~ is free from the preceding 

shortcoming and conserves solute everywhere. The 
model treats the mushy zone as two regions, with under- 

cooling accounted for only in the tip region and a state 
of complete solute mixing assumed in the region where 

the solid fraction exceeds a sufficiently large value. 

Then, an empirical curve fit is applied to construct the 
solid fraction profile in the tip region, and Scheil's equa- 

tion is utilized in the other region. In contrast, the pres- 
ent model employs a single differential equation that is 

valid throughout the mushy region; i.e., 

(1 --  Es) d ~ e  d 
- -  "~- (K --  1 ) C  e = - -  [ e l ( C  e - (c i ) l )]  [79]  
de, des 

Equation [79] is obtained by rewriting Eq. [76] in terms 

of es. With increasing e, (i. e., away from the tip region), 
the undercooling diminishes in the extradendritic liquid 

and gradually approaches zero (so does the liquid frac- 
tion). As a result, Eq. [79] naturally reduces to Scheil's 

equation in an asymptotic manner. 
For a volume element containing columnar dendrites 

whose temperature is nearly uniform, it is reasonable to 

assume a constant cooling rate, namely 

dT d C  e 
- m l -  = J" [ 8 0 ]  

dt dt 

where the cooling rate is equal to the product of the 

growth velocity of the columnar front, V,, and the ther- 
mal gradient. The latter can be determined by, for ex- 
ample, the heat flow model of Campagna. t35'36~ The 

appropriate initial conditions to Eqs. [50], [62] through 
[64], and [80] are e, = t; d - -  0 ,  (Ci )  I = Co,  and C e  --  

Co = f ( V 3 ,  respectively, with the last relation obtained 
from the growth model, Eq. [45]. Solving this set of 

equations simultaneously, a microsegregation pattern in 

the presence of tip undercooling can be predicted. An 
example calculation has been performed for an Ag-15 

wt pct Cu alloy with the front velocity equal to 0.12 m 
s-1 and a primary arm spacing of 0 .3/xm.  [37] The inter- 

face kinetics are accounted for by using a kinetic instead 
of equilibrium partition coefficient, as done in 
Giovanola and Kurz. tl~ The physical properties of the 

alloy have been listed in Wang and Beckermann. t33J The 

predicted microsegregation pattern is presented in 

Figure 5. It is seen that for this case of rapid solidifi- 

cation, the microsegregation curve greatly deviates from 
the described by the Scheil equation, and solidification 

proceeds at an almost constant concentration until a state 
of complete solutal mixing in the liquid is reached. In 

addition, three important features may be noted from 

Figure 5. In comparison to the Scheil model: (1) the con- 
centration in the initially solidified solid is higher, (2) 

the concentration in the finally formed solid is lower, 
and (3) the eutectic fraction decreases. Also shown in 
Figure 5 are Giovanola and Kurz's predictions t1~ and ex- 

�9 - r  [37] perimental data of Bendersky and Boettlnge . It is ob- 
served that the present prediction agrees well with 
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Giovanola and Kurz 's  result as well as with the experi- 

mental data. 

C. Mixed Columnar-Equiaxed Solidification 

With the allowance of undercooling at the columnar 

front and in the presence of nucleation sites in the bulk 

liquid, equiaxed grains can appear and subsequently 

grow ahead of the advancing columnar front. This re- 

sults in a mixed columnar-equiaxed growth structure in 

a casting. At present, there are few models available for 

this mixed type of solidification and the prediction of the 

columnar-to-equiaxed transition (CET) in solidified al- 

loys. The only attempt by Flood and Hunt [9[ utilizes the 

truncated Scheil equation as discussed in Section B. 

Since the present model features a set of  conservation 

equations that is applicable to both modes of solidifi- 

cation, a single-domain, fixed-grid numerical method- 

ology for mixed columnar-equiaxed solidification 

becomes possible. The columnar front is tracked only for 

the purpose of specifying the complementary relations 

in the different subregions having different dendrite mor- 

phologies. This can be done using the implicit scheme 

recently developed by the present authors.j38[ The finite- 

volume method [39[ is employed to solve the heat equa- 

tion, [2[ and the present solute-diffusion model is 

integrated by simple time-marching. A two time-step 

technique is introduced to allow for a much smaller time- 

step in the solution of the solute-diffusion model, while 

keeping a reasonably large time-step in solving the heat- 

flow equation. The reader is referred to Wang and 

Beckermann [38~ for more details on the numerical tech- 

nique used in the CET simulations. The CET position is 
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Fig. 5 -  Comparison of microsegregation profiles for a Ag-15 wt pct 

Cu alloy solidified with a columnar dendrite tip velocity of 

0.12 m s -~. The crosshatched regions are the range of experimental 

data measured by Bendersky and BoettingerJ 37{ 

considered to occur when the equiaxed grain-volume 

fraction (1 - et = es + ea) immediately ahead of the 

columnar front is equal to 0.49, a criterion developed by 

an argument regarding the probability of  a columnar 

trunk being obstructed by sufficiently large equiaxed 
grains. [40[ 

One-dimensional simulations have been carried out to 

simulate a series of  experimental runs conducted by 
Ziv and Weinberg [411 for an A1-3 wt pct Cu alloy in a 

100-mm-wide mold, using the physical properties of the 

alloy listed in. [38[ The mold bottom is subject to a con- 

vective cooling condition so that solidification proceeds 

vertically upward. Some preliminary numerical results 

for the CET as a function of the convective heat transfer 

coefficient are displayed in Figure 6 together with the 

experimental data of  Ziv and Weinberg. t4~l The grid size 

of the computational mesh for the results presented here 

was 2.5 mm,  and the time-step was 0.05 second during 

the nucleation period and 0.5 second after the termina- 

tion of nucleation. It can be seen that the prediction of 

the CET position is in qualitative agreement with the 

experiments. More detailed comparisons between 

theory and experiment can be found in Wang and 
Beckermann. [38] 

X. C O N C L U S I O N S  

A multiphase approach to the modeling of solute dif- 

fusion during dendritic alloy solidification is proposed. 

The macroscopic transport equations are developed sep- 

arately for the solid phase, the interdendritic liquid, and 

the extradendritic liquid, using the technique of volume 

averaging. The model distinguishes different micro- 

scopic length scales present in a dendritic structure and 

I I I I I I 
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3 

[] 

[] 

[] Ziv & Weinberg [41] 

1 This work 
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30 40 50 60 70 80 90 100 

Heat transfer coefficient at the chill, W/m2K 

Fig. 6 - - Compar i son  of predicted CET with experimental data of Ziv 

and Weinberg t411 for a one-dimensional A1-3 wt pct Cu casting. The 

calculations employ the growth model for a parabolic tip, Eq. [45], 

and a modified instantaneous nucleation law {421 that results in an 

exact match with the measured grain density in the equiaxed zone: 
n = K 3 + K , ( d T / d t )  2, with K3 = 106 m 3 and K4 = 10 l~ s 2 K -2 m 3. 
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links the microscopic phenomena occurring on each 

length scale to the macroscopic equations. In particular, 

the model incorporates dendrite tip growth in the pres- 

ence of undercooling in the extradendritic liquid, as well 

as accounts for dendrite geometry, coarsening, and 

finite-rate solute diffusion in the solid. The model should 

lead to improved predictions of  dendritic solidification 

and microstructure formation on the system scale. 

Furthermore, the present model consists of a single set 

of conservation equations for both equiaxed and colum- 

nar growth, thus providing a unified theoretical frame- 

work for both modes of  solidification. Illustrative 

calculations have shown that the proposed model is suc- 

cessful in addressing a variety of  phenomena, such as 

recalescence in equiaxed growth, dendrite tip under- 

cooling during rapid columnar solidification, and CET. 

Efforts are currently underway to generalize the model 

to include melt convection and solid movement  (for 

equiaxed grains) utilizing the same multiphase approach. 

a 

A 

As 

Ae 

b 

C 

C 

cp 

d 

d~ 

D 

Iv 
J 
J 

k 

1 

L 

ml 

n 

n 

Pe 

Pe, 

r 

R 

S 

Sv 

t 

T 

T 

V 

v~ 

Vo 
v, 

N O M E N C L A T U R E  

constant, in the A pendix 

interracial area, Am~ 

area of  the solid/interdendritic liquid 
interface, m 2 

area of  the dendrite envelope, m 2 

constant, in the Appendix 

constant, in the Appendix 

concentration of a chemical species, weight 

percent 
volumetric specific heat, J m - 3  K 1 

microscopic length scale, m 

mean characteristic length or diameter of  the 

solid phase, m 

mean characteristic diameter of  the dendrite 

envelope, m 

diffusion coefficient, m 2 s -~ 

Ivantsov function 
species diffusion flux, kg m -2 s 1 

interfacial species transfer rate per unit of  
volume, kg m - 3  s - 1  

constants in the nucleation law, see Figure 6 

species diffusion length, m 

macroscopic length scale, m 

liquidus line slope 
nuclei density, m 3 

outwardly directed unit normal vector 

envelope Peclet number, "~neRJD~ 

solutal Peclet number at the dendrite tip, 

VtRt/2Dt 

radial coordinate 

radius, m 

interfacial area concentration, A J V o ,  m -1 

specific interfacial area, Ak/Vk, m 1 

time, s 

temperature, K 
cooling rate, K s -1 

velocity, m s -1 

volume of phase k, m 3 

averaging volume, m 3 

dendrite tip velocity, m s-  

W 

Wn 

X 

X 

interface velocity, m s- t  

normal interface velocity, ms -~ 

position vector 

phase function 

Greek Symbols 

a diffusion Fourier number, 4Dsty/h~ 

/3 a factor 

F interfacial mass transfer rate due to 
interface movement  (kg m - 3  S J) or Gibbs- 

Thomson coefficient (mK) 

Ah volumetric latent heat of  phase change, 
j m  3 

volume fraction 

partition coefficient 

dendrite arm spacing, m 

density, kg m 
- 3  

shape factor 

a field property 

a field property 

solutal supersaturation 

E 

/( 

A 

P 

4, 

qt 

f~ 

Subscripts 

d interdendritic liquid 

e dendrite envelope 

f final dimension of the dendrite envelope 

j phase j 

k phase k 

kj pertinent to phase k on the k-j interface 

l extradendritic liquid 

m melting point of  pure metal 

n normal direction 

o initial state 

r in the r-direction 

s solid 

t dendrite tip 

Superscripts 

j due to species gradients 

F due to interface movement  

- interfacial a rea - -averaged  

* effective or dimensionless 

A P P E N D I X  

Microscopic analysis of  the diffusion lengths 

Solid region 

The modeling of the diffusion length in the solid is 

important for the prediction of finite-rate solute diffusion 

and, hence, microsegregation in a solidified alloy. For 
dendritic solidification, Ohnaka t341 has presented an el- 

egant model that gives good agreement with experimen- 

tal data and fits well into the framework of the present 

formulation. Following his procedure, the present deri- 

vation is based on a one-dimensional platelike dendrite 

arm geometry,  as shown in Figure A 1. A parabolic con- 

centration distribution is assumed in the solid 

C s =  a + bx + cx 2 [A1] 
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The three coefficients are determined by the following 
boundary conditions 

dCs 
- 0 at x = 0 (symmetry) [A2] 

d r  

Cs=Csd at x = d s / 2  [A3] 

and the known volume-averaged concentration, (Cs) s, 

which can be calculated from 

2 f d*/2 
= Csdx [A4] {Cs>S 

Using Eqs. [A2], [A3], and [A4], the concentration pro- 
file is found to be given by 

Csa - C,  6 
- ( d 2 / 4  - x 2) [A5] 

(~sd- ( C y  ds 

With the definition of the diffusion length, Eq. [23], it 

is readily shown that 

lsd = d J 6  [A6] 

The mean diameter of the solid phase, ds, can be related 

to the secondary dendrite arm spacing, A2, and the vol- 

ume fraction G (Section IV). The derivation can be mod- 
ified for other dendrite arm geometries such as cylinders 

and spheres. The same result is obtained except for a 
change in the numerical factor of the order of unity. 

Interdendritic liquid 

For a dendrite envelope closely encompassing the den- 
drite arms, a similar analysis as that for the solid yields 

that the diffusion lengths in the interdendritic liquid, ljs 

and ld~, are proportional to the characteristic inter- 
dendritic spacing; i . e . ,  

(/~2 --  d~) 
lds = ]31 - -  [ A 7 ]  

2 

(& - ds) 
ldt = ]32  - -  [A8] 

2 

where 131 and ]32 are constants of the order of unity. In 
recognition of Eq. [27], the two diffusion lengths given 

by Eqs. [A7] and [A8] suggest that 

G and /d /  ~ A 2  [A9] 

Together with Eq. [A6], this implies that diffusion 
lengths in the interdendritic liquid and the solid are of 

the same order of magnitude. However, because the liq- 

uid mass diffusivity is typically several orders of mag- 
nitude larger than that of the solid, it is usually safe to 

assume that the interdendritic liquid is solutally well 

mixed and, thus, it is unimportant to accurately model 
finite-rate solute diffusion in the interdendritic liquid. 

Extradendritic liquid 

In contrast, one has to carefully model the diffusion 

length in the liquid outside the dendrite envelope in order 

to account for solutal undercooling of the liquid ahead 

Fig. A I - - O n e - d i m e n s i o n a l ,  platelike model of  a dendrite arm and 

illustration of the solid concentration profile. 

of the dendrite tips. This is done here by assuming that: 

(1) the envelope is spherical with an equivalent radius 

Re and (2) solute diffusion is quasi-steady in the moving 
coordinate system fixed to the envelope surface, as il- 
lustrated in Figure A2. 

(a) (b) 

Fig. A 2 - - E q u i v a l e n t  sphere model for species diffusion in the extra- 

dendritic liquid: (a) geometry and (b) concentration profile. 
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The differential equation governing solute diffusion in 

the interdendritic liquid can now be written as 

Vr - -  -- r 2 
d r  r 2 d r  d r  / 

The liquid around the envelope moves relative to the 

moving coordinate system at a radial velocity whose dis- 

tribution is obtained from the continuity equation as 

2 

Equation [A10], together with the velocity profile given 

by Eq. [A 11 ], admits a general solution of the form of 

= ( w , e R e / D l r )  [A 12] Cl a + b exp - 2 

By introducing a Peclet number that is based on the final 

equivalent radius, R I, of the dendrite envelope 

vvneRf 
Pe - [A 13] 

Dl 

and a dimensionless radius 

r* = r / R , .  [A14I 

Equation [A12] is recast into 

] Cl = a + b exp (1 - et) 2/3 [A15] 

where use has been made of the fact that R e / R  f = 

(1 - El) ~/3. The constants a and b are determined by the 

following conditions 

Cl = Cta, at r* = r* = (1 - 8l) 1/3 [A16] 

( C i ) l = @ z f v  3 f  l C i d V  = - -  r * 2 C l d r  * [A17] 
l el 1 --8/) 1/3 

With the concentration profile found, substitution into 

the definition of the diffusion length yields 

l t J R  I = -  1 - - - e x p [ - P e ( 1  - El) 1/3] 
Pe e~ 

1 el) 1/3 x2 exp x dx  

[A18] 

where x is a dummy variable of  integration. The integral 

requires numerical evaluation. 

This derivation for the liquid diffusion length can also 

be performed for cylindrical and Cartesian coordinate 

systems. Due to length limitations, only the final results 

are presented here: 

1 ( 2  
l la/Rf  = - -  1 - - -  

Pe e~ 
e x p  [ - ~  ( 1 -  El)I/2 In (1 -- Et)] 

1 xexpr-Pe   ) �9 l - -  - -  El) 1/2 In x] d x  

k 1 --el) 1/2 

[A19] 

for a cylindrical envelope and 

l~d/Rj. = - -  1 - - -  [1 - exp (e/Pe)] 
Pe e~Pe 

[A20] 

for a platelike envelope. Equation [A18] is useful for 

equiaxed growth, while Eq. [A19] is applicable to the 

columnar case. 

Last, it is worth noting that the diffusion lengths given 

by Eqs. [A18], [A19], and [A20] all share the property 

that 

1 
l t J R f  <- - -  [A21 ] 

Pe 

or alternatively, 

Ol 
lld --< _ [A22] 

W ne 
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