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Abstract. Physically based multilayer snowpack models suf-
fer from various modelling errors. To represent these er-
rors, we built the new multiphysical ensemble system ES-
CROC (Ensemble System Crocus) by implementing new
representations of different physical processes in the deter-
ministic coupled multilayer ground/snowpack model SUR-
FEX/ISBA/Crocus. This ensemble was driven and evaluated
at Col de Porte (1325 m a.s.l., French alps) over 18 years
with a high-quality meteorological and snow data set. A total
number of 7776 simulations were evaluated separately, ac-
counting for the uncertainties of evaluation data. The abil-
ity of the ensemble to capture the uncertainty associated
to modelling errors is assessed for snow depth, snow wa-
ter equivalent, bulk density, albedo and surface temperature.
Different sub-ensembles of the ESCROC system were stud-
ied with probabilistic tools to compare their performance.
Results show that optimal members of the ESCROC system
are able to explain more than half of the total simulation er-
rors. Integrating members with biases exceeding the range
corresponding to observational uncertainty is necessary to
obtain an optimal dispersion, but this issue can also be a con-
sequence of the fact that meteorological forcing uncertainties
were not accounted for. The ESCROC system promises the
integration of numerical snow-modelling errors in ensemble
forecasting and ensemble assimilation systems in support of
avalanche hazard forecasting and other snowpack-modelling
applications.

1 Introduction

Operational forecasting of avalanche hazard requires an anal-
ysis of current snowpack state and meteorological forecasts
for the upcoming days, in order to estimate future snow
conditions. Several organisations in different countries have
implemented snowpack-modelling approaches for this pur-

pose (Durand et al., 1999; Lehning et al., 1999; Vikhamar-
Schuler et al., 2011; Bellaire and Jamieson, 2013). The goal
is to provide a description of the space and time variabil-
ity of the current snowpack, which is out of reach using
observations only and to anticipate its evolution according
to the expected meteorological conditions a few hours to
days ahead. Meteo-France has been operating a determinis-
tic snowpack forecasting system for about 20 years. The cur-
rent version is based on a chain of three models: SAFRAN-
SURFEX/ISBA/Crocus-MEPRA (S2M, Durand et al., 1999;
Lafaysse et al., 2013). It simulates the snowpack evolution
over all the French massifs for a large range of elevations,
slope values and aspects. The meteorological analysis and
forecasting system, SAFRAN (Durand et al., 1993), provides
meteorological data at a 1000 km2 scale for a given elevation
from the beginning of the season with a 2-day forecast lead
time. These data are used to force the SURFEX/ISBA/Crocus
snowpack model (Vionnet et al., 2012) which simulates the
detailed snowpack stratigraphy for the different elevations
and slopes. The mechanical stability of each snow profile
is assessed by the MEPRA expert system (Giraud, 1992).
This system is supposed to help the forecasters in their de-
cision process. However, the large discrepancies between
this simulation system and the observed or perceived condi-
tions in the field limit its practical interest relative to empiri-
cal considerations based on snow stratigraphy, surface prop-
erties measurements and the outputs of numerical weather
prediction (NWP) models. Similar issues are found by the
other organisations operating systems based either on SUR-
FEX/ISBA/Crocus or on the SNOWPACK snow model of
similar complexity (Bartelt and Lehning, 2002).

Snowpack-modelling systems suffer from various types of
uncertainties. First, the estimated meteorological conditions
since the beginning of the season are uncertain because mete-
orological analysis systems such as SAFRAN only assimilate
scattered meteorological observations and suffer from the er-
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rors of their guess, usually analyses or forecasts of NWP
models. NWP models errors, due to both initial states ap-
proximations and simplifications in atmospheric modelling,
are also responsible for significant errors of the meteorolog-
ical forcing for the forecast period. In addition, uncertain-
ties are associated with the spatial resolution of the systems
which are much coarser than the spatial scale of the snow-
pack variability involved in avalanche release mechanisms.
Finally, snowpack modelling inherently contains simplifica-
tions and parameters uncertainties.

It is necessary to better quantify the uncertainties resulting
from these different errors for two main reasons. First, an ob-
jective quantification of uncertainties helps forecasters assess
the confidence they may have in a specific model forecast on
a specific date. Second, a better knowledge of uncertainties
is necessary to reduce model error by using data assimila-
tion techniques to correct the simulated snowpack state with
ground-based or remotely sensed snow observations. In other
disciplines, such as meteorology and hydrology, ensemble
approaches are now generalized (Swinbank et al., 2016), es-
pecially for the furthest prediction lead times when the un-
certainty is increasing. Ensemble simulations also increase
confidence in future climate simulations (IPCC, 2013). Sev-
eral data assimilation techniques are also based on building
ensembles to characterise guess errors. Therefore, ensemble
approaches are a natural candidate for quantifying uncertain-
ties in numerical snow modelling. Vernay et al. (2015) il-
lustrated that the uncertainty of the meteorological forecast
can be taken into account by forcing a snowpack model us-
ing ensemble NWP systems, and that it improves the ro-
bustness of the snowpack simulations compared to the de-
terministic approach. Charrois et al. (2016) implemented an
ensemble assimilation algorithm that is able to correct snow-
pack simulations using remotely sensed visible spectral re-
flectances of the surface if the ensemble captures all the pos-
sible states of the snowpack. To generalize these methods, all
the uncertainties involved in numerical snow modelling must
be accounted for in ensemble systems. Accounting for all
the main uncertainties (meteorological forecast, initial condi-
tions, model structure) has been shown to improve the overall
skill of ensemble simulations for hydrology (Thiboult et al.,
2016).

Concerning the uncertainty attached to the snowpack
model, Essery et al. (2013) proposed the first attempt to build
an ensemble of snow simulations based on 1701 different
combinations of physical options for various processes in a
common model structure called JIM (JULES Investigation
Model). A reduced version of 32 members (FSM, Factorial
Snowpack Model) was also published by Essery (2015). This
system was designed to investigate the relative contribution
of each main physical process in the spread usually obtained
in model intercomparison projects. Therefore, the JIM en-
semble spread describes the uncertainty resulting from cur-
rently available multilayer snow models of different com-
plexities. The authors identified minimal requirements for

a satisfactory snowpack model (e.g. prognostic representa-
tion of snow albedo and density), but they also conclude that
there is not a single best member for all criteria and seasons.
Their results also demonstrate that evaluations restricted to
snow depth measurements only and/or to a small number of
seasons can lead to misleading conclusions. Raleigh et al.
(2015) compared the spread of the JIM ensemble with en-
semble simulations resulting from disturbed meteorological
scenarios and found that the uncertainty in meteorological
data prevails in general applications of numerical snow mod-
elling except in very well-instrumented observatories where
snow model structure becomes the main source of uncer-
tainty. The JIM ensemble spread was not characterised from
a probabilistic point of view (adequate dispersion for ensem-
ble applications, i.e. representative of model errors) because
it was not designed for that. Note also that the JIM ensemble
is not appropriate for avalanche hazard forecasting because it
does not include a detailed description of snow stratigraphy
and snow metamorphism, and because some of the members
include options which neglect processes known to be critical
for mechanical stability such as compaction or liquid water
storage.

The goal of this paper is to investigate the uncertainty
involved in the different processes of a detailed multilayer
snowpack model (SURFEX/ISBA/Crocus) in order to ex-
plore the possibility of building an ensemble version of this
model suited for snowpack ensemble forecast and snowpack
ensemble assimilation applications. Our aim differs from that
of Essery et al. (2013) because we expect this ensemble to
consist of members with the same overall degree of com-
plexity and type of output, and to include a detailed stratigra-
phy of the snowpack allowing applications such as avalanche
hazard forecasting, among others. Ideally the skill of one
given member should not be significantly poorer than another
one in a general perspective (for various variables, sites, sea-
sons and periods of the year). The spread of this ensemble
should be of the same magnitude as that of typical model
errors (Fortin et al., 2014) on different evaluation variables.
This should allow for correct characterisation of the uncer-
tainty in real-time applications. Such a system would also
allow the snowpack model error to be accounted for in snow
hydrology and in future snowpack projections driven by fu-
ture climate scenarios.

The major difficulty in building such an ensemble is that it
requires isolating the uncertainty originating from the snow-
pack model itself from the other uncertainty sources. There-
fore, following the conclusions of Raleigh et al. (2015) and
similarly to Essery et al. (2013), our strategy is to build and
evaluate our ensemble on one specific well-instrumented site
where we assume that input meteorological errors are low
compared to model errors. It also allows us to follow Essery
et al. (2013) recommendations in terms of evaluation data
because numerous snow variables are available over a long
period. Section 2 summarises the data set used to force and
evaluate a new multiphysical version of the Crocus snow-
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pack model called ESCROC (Ensemble System Crocus) and
presented in Sect. 3. The evaluation methodology (Sect. 4)
includes both a classical deterministic evaluation member
by member and a probabilistic evaluation of the ensemble
skill. The results are presented in Sect. 5 for different sub-
ensembles. The limitations of the “perfect meteorological
forcing” assumption are discussed in Sect. 6, as well as the
impacts of the other limitations of our methodology on the
possible applications of ensemble numerical modelling of
snow.

2 Data set

2.1 Forcing data

The 18-year long snow and meteorological data set from the
Col de Porte observatory (CDP, 1325 m altitude, 45.3◦ N,
5.77◦ S) is used to force and evaluate ESCROC from 1993 to
2011. A complete description of the data set is provided by
Morin et al. (2012). The CDP site is a grassy meadow char-
acterised by its mid-altitude and located in the Chartreuse
massif in the French Alps. Snow is usually present from
December to April, but snowmelt and rainfall events can
occur any time in the snow season. Wind is usually low,
so drifting events are unusual. The quality and complete-
ness of this data set have made it possible to drive and
evaluate various snowpack models (e.g. Magnusson et al.,
2015; Decharme et al., 2016, a complete list is available at
http://www.umr-cnrm.fr/spip.php?article533). All the forc-
ing variables of the Crocus model are directly measured: inci-
dent shortwave and longwave radiations, 2 m air temperature
and specific humidity as well as 10 m wind speed and precip-
itation rates. Precipitation phase is manually assessed using
all possible ancillary information. The only modification ap-
plied to the original published data set is a bias correction of
the incident longwave correction. Indeed, a break was iden-
tified in the time series in December 2010, associated with a
replacement of the sensor. A −10 Wm−2 homogeneous cor-
rection is applied before December 2010 and a +10 Wm−2

homogeneous correction is applied from December 2010 on-
wards. These values were estimated from the concomitant
evolution of the monthly mean difference between these data
and the longwave incident radiation simulated by the Rit-
ter and Geleyn (1992) radiative transfer scheme included in
SAFRAN meteorological reanalyses (Durand et al., 2009).
Although this correction is lower than the manufacturer un-
certainty of 10 % (Morin et al., 2012), it has a significant im-
pact on snow simulations (not shown), consistent with the re-
sults of Raleigh et al. (2015) and Sauter and Obleitner (2015).
The other errors of the forcing data, described in Morin et al.
(2012), are neglected in this study as previously mentioned.

2.2 Evaluation data

Six variables were selected to evaluate ESCROC: snow depth
(SD), snow water equivalent (SWE), bulk density (BD), sur-
face broadband albedo (A), snow surface temperature (SST)
and ground temperature at 50 cm depth (GT50). To eliminate
the summer period without snow on the ground, the time se-
ries are limited to the period between 1 October and 30 June.
The 0 values of SD and SWE between these two dates are
kept for the evaluations to appropriately evaluate the forma-
tion and disappearance of the snowpack. BD, A and SST
are not defined when there is no snow on the ground. For
the six variables, Fig. 1 shows histograms of differences be-
tween distinct observations of the same variable in the ex-
perimental plot, which are used to quantify the uncertainty
of each observed variable. Data observed at CDP since 2011
were sometimes used for observation error analysis but not
for model forcing and evaluation.

2.2.1 Snow depth (SD)

Snow depth data from an ultrasound depth gauge span the
whole winter from 1993 to 2010 and were completed by laser
ranger data for the 2010–2011 winter. The instrumental error
of these sensors (about 1 cm) is low compared to the spa-
tial variability of snow depth in the meadow. The latter was
estimated by comparing ultrasound sensor data with weekly
snow pit measurements at three different locations (Fig. 1a).
The differences usually range between 0 and 20 cm.

2.2.2 Snow water equivalent (SWE)

Snow water equivalent is measured on a daily basis by cos-
mic rays sensors (NRC) that are linearly calibrated every
year to match weekly snow pit measurements (Gottardi et al.,
2013). This time series has been available since 2001. The
sensor accuracy (about 10 %) is of the same magnitude as the
spatial variability in the meadow, which can be derived from
snow pit data (Fig. 1b). A similar magnitude of uncertainty
was found by Smith et al. (2016).

2.2.3 Bulk density (BD)

Although both SD and SWE automatic measurements are
available daily since 2001, their spatial variability in the
meadow and therefore between the two sensor locations is
too high to compute a robust daily time series of snow den-
sity, especially with shallow snow cover and during the melt-
ing season. For this reason, bulk density was computed from
weekly snow pit measurements of SWE and SD. Figure 1c il-
lustrates the uncertainty in this data resulting from its spatial
variability (three snow pits on each date). The instrumental
error of the snow core sampling is not well known. Proksch
et al. (2016) give a magnitude of 1 to 5 % for average density
measurements errors with smaller cutters and a small num-
ber of data. Conger and McClung (2009) obtained an uncer-
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Figure 1. Distribution of differences between the reference observations and other sources of data: (a) snow depth (SD) automatic measure-
ments vs. the three snow pits (2001–2011), (b) snow water equivalent (SWE) automatic measurements vs. the snow pit SWE measurements
that are not used for sensor calibration (2001–2011), (c) bulk density (BD) from the reference snow pit vs. the other snow pits (2001–2011),
(d) daily reference albedo vs. data from Dumont et al. (2016) (winter 2013–2014), (e) reference snow surface temperature (SST) vs. SST
from the hemispheric pyrgeometer (1993–2010), (f) reference ground temperature (GT) at −20 cm vs. measurements of a new sensor at the
same depth (season 2013–2014).

tainty range of 2–11 % for individual layer density measure-
ments and emphasised that their accuracy depends on the cut-
ter size. In the present study, the instrumental error of large
cutters for bulk density is estimated to be roughly 10 kg m−3.

2.2.4 Snow albedo (A)

Daily broadband albedo was calculated from daily averaged
downwelling and upwelling broadband shortwave radiation
fluxes and is discarded during snowfall events, or when the
measured fluxes are too low (Morin et al., 2012). Albedo data
under 0.6 were also discarded in this work as they are evi-
dence of patchy snow cover. The resulting data are rather dis-
continuous; however they span the entire 1993–2011 period.
It is difficult to quantify the uncertainty of these data directly
from the pyranometer manufacturer values. The uncertainty
was estimated by comparing the data with broadband albedo
data obtained from spectral measurements during the winter
2013–2014 (Dumont et al., 2016). The differences (Fig. 1d)
originate from both the sensor errors and the spatial variabil-

ity in the plot. They are quite high relative to the range of
possible values for snow.

2.2.5 Snow surface temperature (SST)

Two values for the hourly mean snow surface temperature
were derived separately from the upcoming longwave ra-
diation and from an infrared sensor with a narrower angle
of view, both assuming an emissivity of 1 for snow as de-
scribed in Morin et al. (2012). An additional data treatment
was performed to discard artefacts due to patchy snow cov-
ers or to a heating of the metal mast: temperatures exceeding
the melting point of water, some outliers under 240 K and
times where A < 0.6 or SD < 0.3 m were removed from the
time series. As this variable exhibits a high diurnal cycle, we
decided to keep the 12:00 and 24:00 UTC temperature mea-
surements in order to balance daytime and night-time val-
ues. The availability of two distinct long time series allows
a quantification of the uncertainty in SST measurements re-
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sulting from both instrumental errors and spatial variability
in the meadow (Fig. 1e).

2.2.6 Ground temperature at 50 cm (GT50)

Ground temperature is recorded at three different depths
(−10, −20 and −50 cm). Without snow, the diurnal cycle is
very high close to the surface but it is not a key process in
later simulating the heat flux at the interface with the snow-
pack, which is more affected by long-term biases. Therefore,
we preferred to select the 50 cm depth for the evaluations.
Only the October–December period was used for this vari-
able as it is the key period for snowpack simulations. Spring
and summer errors are much less important and ground tem-
perature stays usually very close to 0 ◦C between January and
the end of the season. No other sensor provides temperature
measurement at this depth. New sensors were, however, in-
stalled in October 2012, a few metres away at 5, 10 and 20 cm
depths. We assume that the differences between the sensors
at 20 cm (Fig. 1f) provide an estimate of the magnitude of the
uncertainty resulting from spatial variability and instrumen-
tal accuracy. The distance between sensors is probably too
low but the spatial variability is expected to decrease with
depth.

3 The ESCROC multiphysical snow model

The SURFEX/ISBA/Crocus unidimensional multilayer
physical snowpack model is extensively described in Vion-
net et al. (2012). It computes all terms of the energy and
mass balance of the snowpack. In the standard version, the
prognostic variables of each snow layer are mass, density,
temperature, liquid water content, semi-empirical variables
describing the snow microstructure and the layer age (as
a proxy for the amount of impurities). The Lagrangian
discretization rules are designed to accurately reproduce
the snowpack stratigraphy evolution, a key component for
avalanche forecasting. The heat flux at the ground–snow
interface is simulated by a semi-implicit coupling with the
multilayer ground model ISBA-DIF (Decharme et al., 2011).

In NWP ensemble modelling, two options are usually em-
ployed to disturb the model physics: stochastic perturbations
of parameters (Palmer et al., 2009) or multiple combinations
of several physical options, commonly called multiphysics
(Charron et al., 2010; Descamps et al., 2014). In ESCROC,
the multiphysics approach has been chosen. The ESCROC
multiphysical ensemble is built implementing new physical
options inside the SURFEX/ISBA/Crocus source code for
the main physical processes, resulting in a “factorial” ensem-
ble as in Essery et al. (2013). Several options implemented in
the source code in previous studies (Carmagnola et al., 2014;
Charrois et al., 2016) but not used in the standard version are
incorporated in the ensemble. New options extracted from
the literature and existing snowpack models such as SNOW-

Snowfall density
V12 S14 A76

Metamorphism
C13 F06 S-F

Solar radiation
B60 B10 TAR TA+

 Turbulent surface fluxes
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 Thermal conductivity
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Surface heat capacity
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Figure 2. ESCROC physical options, blue cells correspond to the
default Crocus configuration.

PACK or JIM were also implemented for other physical pro-
cesses. Modifications of especially uncertain and sensitive
parameters are also introduced for processes which do not
have representations available in the literature that are able
to sufficiently cover the uncertainty. The selected options for
each process are summarised in Fig. 2 and detailed below.

3.1 Fresh snow properties

Crocus computes density and microstructural properties of
falling snow from air temperature and wind speed during
snowfall. Different laws are available in the literature for
fresh snow density. All of them are empirical, relying on si-
multaneous measurements of wind speed and air temperature
followed by manual measurements of freshly fallen snow
density. The Crocus default option called V12 (Vionnet et al.,
2012; Pahaut, 1975) computes density ρn from 2 m air tem-
perature Ta (in ◦C) and 10 m wind speed U (m s−1):

V12:ρn = max(ρmin,aρ + bρTa + cρU). (1)

The parameterisation of density from SNOWPACK
(Schmucki et al., 2014), called S14 here, was also imple-
mented. It also depends on wind speed and air temperature:

S14:





log10(ρn) = eρ + fρTa + gρ + hρsin−1(
√

iρ)

+jρ log10(max[U,2])

if T ≥ −14 ◦C

log10(ρn) = eρ + fρTa + hρsin−1(
√

iρ)

+jρ log10(max[U,2])

otherwise

(2)
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Table 1. Parameter values of fresh snow density options.

Option Parameters

V12 ρmin = 50 kg m−3 ; aρ = 109 kg m−3 ;
bρ = 6 kg m−3K−1 ; cρ = 26 kg m−7/2 s−1/2;
dρ = 8 kg m−3 K−1

S14 eρ = 3.28 ; fρ = 0.03 K−1; gρ = −0.36;
hρ = −0.75; iρ = 0.8; jρ = 0.3

A76 ρmin = 50 kg m−3 ; kρ = 1.7 K−1 ; lρ = 15 K

Finally, we implemented the law from Anderson (1976) in
which the density only depends on air temperature:

A76:ρn = ρmin + max(kρ(Ta + lρ)1.5,0). (3)

The parameters of the three laws are given in Table 1 and
their behaviour is summarised in Fig. 3.

The uncertainty associated with the initial microstructural
properties is not included in ESCROC because the sensitiv-
ity of albedo (and in turn of the energy balance) to the spe-
cific surface area (SSA) of snow is low for typical values
of fresh snow SSA usually above 40 m2 kg−1 (Gallet et al.,
2009).

3.2 Snow metamorphism

The default Crocus representation of snow metamorphism
(B92) describes the snow microstructure by a semi-
quantitative formalism with dendricity, sphericity and size
(Brun et al., 1992). The time evolution of these continuous
parameters follows empirical laws, the parameters of which
were adjusted through experimental investigations. In the
case of dry snow, these laws depend mostly on temperature
and temperature gradient. For wet snow metamorphism, evo-
lution laws only depend on liquid water content (Brun et al.,
1989). An alternative formalism was introduced by Carmag-
nola et al. (2014), who replaced dendricity and size by the
optical diameter, which is measurable in the field. However,
as the formalism is a translation of B92 laws with new prog-
nostic variables, using both formulations is almost equivalent
and not able to describe the uncertainty associated with this
process. Therefore, only the C13 option is included in ES-
CROC. We also included the time evolution law of the op-
tical diameter from Flanner and Zender (2006), which fits
the model outputs of a snow microstructure model repre-
senting the diffusive vapour fluxes among the grains (F06).
This law was also implemented by Carmagnola et al. (2014),
who found that its skill was similar to the C13 formula-
tion. Note that this option does not affect wet metamorphism,
which still follows the original formulation of Brun et al.
(1989).

We also implemented the formulation of Schleef et al.
(2014), who focused on the first 48 h after snowfall and
proposed the following law experimentally calibrated under
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Figure 3. Fresh snow density as a function of air temperature and
wind for the 3 options included in ESCROC.

isothermal conditions:

dSSA

dt
= (a + bT )SSAm, (4)

with a = 1.1 × 10−6, b = 3.1 × 10−8 and m = 3.1.
As this formulation only applies to the first 48 h, we chose

to associate this option with the F06 evolution law for older
snow (option S–F).

3.3 Blowing snow and associated sublimation

Wind-induced snow transport drift is a complex phenomenon
known to be a key factor for slab avalanches as it creates lo-
cal snow accumulation and has an effect on metamorphism
by reducing the grain size, compacting the top layers and in-
creasing their cohesion. Sublimation of snow particles in tur-
bulent suspension is frequent during blowing snow events.
A scheme to represent erosion and accumulation on the dif-
ferent aspects of idealised slopes can be activated in Crocus
(Durand et al., 2001). For more general applications in which
erosion and accumulation cannot be simulated by a unidi-
mensional model, Vionnet et al. (2012) introduced a param-
eterisation to modify the physical properties in near-surface
snow layers during blowing events and to optionally simulate
mass loss due to blowing snow drift. Although these options
can be very sensitive in windy environments (Libois et al.,
2015), we decided to deactivate them for the first version of
ESCROC because it is not possible to evaluate the uncer-
tainty of this process at CDP where blowing snow is almost
never observed.

3.4 Solar radiation absorption

The original formulation of radiative transfer in the snow-
pack (Brun et al., 1992) consists of computing solar radiation
absorption and reflection in three spectral bands (0.3–0.8;
0.8–1.5 and 1.5–2.8 µm) and is partly inspired from the work
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Table 2. Parameter values for solar radiation absorption options.

Option Parameters

B60 τa = 60 days
B10 τa = 10 days
TAR c0 = 5 ng g−1 ; τ0 = 4 ng g−1 day−1 ;

lf = 0.05 m
TA+ c0 = 50 ng g−1; τ0 = 200 ng g−1 day−1 ;

lf = 0.05 m

of Warren (1982). Only the grain characteristics of the two
uppermost numerical layers are used to compute the albedo
of each spectral band. A parameterisation reduces the albedo
in the visible band as a function of the age of the layer and
the altitude of the site to mimic the effect of light-absorbing
impurities. This parameterisation relies on a time constant
τa usually taken as 60 days at midlatitudes (option B60). At
CDP, this value is suspected of partially explaining a posi-
tive bias in Crocus-simulated albedo. Therefore, we define
the B10 option by using a 10-day value.

The radiative transfer scheme TARTES (Two-streAm Ra-
diative TransfEr in Snow, Libois, 2014) has recently been
implemented in Crocus (and used by Libois et al., 2015 and
Charrois et al., 2016). It simulates the absorption of solar ra-
diation within the stratified snowpack using the δ-Eddington
approximation and with a spectral resolution of 20 nm. This
scheme explicitly accounts for the spectral and angular char-
acteristics of the incident radiance (e.g. the solar zenith angle
and the presence of a cloud cover) and uses an explicit impu-
rity content for each layer (equivalent black carbon content).
The impurity content c is initialised to a constant concentra-
tion c0 during snowfall. A dry deposition term τdd is added
to the layer at depth D at each time step:

τdd = τ0e
−D/lf . (5)

This formulation and its parameters are rather uncertain
as they have not been specifically evaluated against obser-
vations. While the simulations are weakly sensitive to the e-
folding depth lf, the simulated albedo highly depends on the
velocity of impurities deposition. The typical magnitude of
the parameters for black carbon only would be c0 = 5 ng g−1

and τ0 = 4 ng g−1 according to Doherty et al. (2013) or Sterle
et al. (2013) (option TAR), but values 20 times as high were
sometimes observed. Furthermore, as other impurities such
as dust and vegetal debris are not explicitly accounted for,
higher values of the parameters are possible to indirectly
simulate the effect of these species with their black-carbon
equivalent concentrations. We included in ESCROC two dif-
ferent sets of parameters for this physical scheme (TAR and
TA+). The four resulting options for solar radiation absorp-
tion are summarised in Table 2.

Table 3. Parameter values for turbulent surface fluxes options.

Option Parameters

RIL Ril = 0.2; z0 = 10−3 m; z0h = 10−4 m
RI1 Ril = 0.1; z0 = 10−3 m; z0h = 10−4 m
RI2 Ril = 0.026; z0 = 10−3 m; z0h = 10−4 m
M98 Ril = 0.026; z0 = 10−3 m; z0h = 10−3 m

3.5 Turbulent fluxes

As detailed in Vionnet et al. (2012), Crocus surface turbulent
fluxes (latent heat flux LE and sensible heat flux H ) are pro-
portional to the turbulent exchange coefficient or drag coeffi-
cient CH . CH depends on the Richardson number Ri, which
quantifies the stability of the atmosphere directly above the
snow surface, and on the effective roughness length for mo-
mentum z0 and for heat z0h (Louis, 1979; Noilhan and Mah-
fouf, 1996). In particular, CH decreases when Ri increases
(Fig. 4), and the rougher the surface, the higher the fluxes.
The Louis parameterisation tends to minimise surface heat
fluxes under stable conditions (Ri > 0) but in mountainous
terrain with complex topography, mechanical or orographic-
induced turbulence is suspected of producing exchange rates
higher than in this theory. For this reason, in Crocus Mar-
tin and Lejeune (1998) proposed to apply a threshold Ril =

0.026 on the Richardson number to maintain a minimal level
of turbulence in stable conditions:

CH (Ri ≥ Ril) = CH (Ril). (6)

They also applied an effective roughness length for heat
supposed to be closer to the roughness length for momentum
than usual values for snow (option M98).

In the current default version of the model (RIL), Vion-
net et al. (2012) chose the formulation of the ISBA-ES snow
scheme (Boone and Etchevers, 2001), already included in
the SURFEX platform, where Ril is taken as 0.2 and z0h as
10−4 m. As preliminary studies showed that both configu-
rations simulate turbulent fluxes of different magnitude, we
address the uncertainty in ESCROC also using two interme-
diate configurations (RI1 and RI2) as summarised in Table 3
and Fig. 4.

3.6 Thermal conductivity

Snow thermal conductivity λ mostly depends on snow den-
sity ρs (kg m−3) (Calonne et al., 2011). Two different options
were already implemented in Crocus. The default option fol-
lows Yen (1981) (Y81):

Y81:λ = max

[
aλ(

ρs

ρw
)1.88 ; λmin

]
. (7)

ρw is the liquid water density (kg m−3). This formulation is
very close to the experimental law proposed by Calonne et al.
(2011) based on tomographic images of snow (Fig. 5).
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Figure 4. CH as a function of Ri for the four turbulent fluxes op-
tions included in ESCROC (RIL, RI1, RI2, M98) as summarised in
Table 3.

Table 4. Parameter values for thermal conductivity options.

Option Parameters

Y81 aλ = 2.22 W m−1 K−1;
λmin = 4 × 10−2 W m−1 K−1

I02 eλ = 2.0 × 10−2 W m−1 K−1;
fλ = 2.5 × 10−6 W m5 K−1 kg−2

gλ = −6.023 × 10−2 W m−1 K−1;
hλ = −2.5425 W m−1

iλ = −289.99 K; P 0 = 105 Pa

The other implemented option, I02, is the default formu-
lation of the ISBA-ES snow model (Boone, 2002; Sun et al.,
1999):

I02:λ = eλ + fλρ
2
s +

(
gλ +

hλ

T + iλ

)
P 0

P
. (8)

P is the atmospheric pressure (Pa) and parameter values are
given in Table 4. The I02 law depends not only on density but
also on snow temperature and it has a higher conductivity
than experimental values (Fig. 5) to indirectly compensate
for the fact that latent heat fluxes due to vapour fluxes are not
represented in Crocus. This is expected to increase vertical
heat transfer as temperature increases.

3.7 Liquid water content

Liquid water content is an important variable for its role
in metamorphism, thermal exchanges due to phase changes,
compaction and mechanical stability. However, it is espe-
cially challenging to both observe and simulate liquid water
percolation in the snowpack, particularly because its horizon-
tal variability is very high at macroscopic scale. Work is in
progress to include in Crocus a formulation solving Richards
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Figure 5. Snow thermal conductivity as a function of density for
the two options included in ESCROC (Y81, I02), and for the exper-
imental law proposed by Calonne et al. (2011) (C11).

equations in snow as in Wever et al. (2014) and D’Amboise
et al. (2017). However, the only formulation currently avail-
able for the liquid water percolation in the snowpack fol-
lows a simple and conceptual bucket approach in which the
layers are seen as superposed water reservoirs with a ho-
mogeneous volumetric liquid water content wliq in kg m−3.
When wliq exceeds the maximum liquid water-holding ca-
pacity wliq,max, the excess water drains to the underlying
layer.

In the default version of Crocus (B92 option), the volumet-
ric liquid water-holding capacity is defined by a fixed maxi-
mal percentage of the pores’ volumes (Pahaut, 1975):

B92:wliq,max = 0.05ρwφ, (9)

where φ = 1 −
ρ − wliq

ρi
is the snow porosity and ρi (10)

the pure ice density (kgm−3).

Equations (9) and 10) should replace the formulas with typos
given in Vionnet et al. (2012) and in Gascon et al. (2014). As
a result, the higher the density the lower the maximal volu-
metric liquid water content.

The experiments of Coléou and Lesaffre (1998) give
water-holding capacities about 40 % higher than B92 formu-
lation as shown in Fig. 6. There was also a typo in the equa-
tion of that paper, corrected in Eq. (11).

C98: wliq max = ρ ×

(
0.057

φ

1 − φ
+ 0.017

)
(11)

Based on this finding, a similar formulation was chosen for
the bucket version of the SNOWPACK model. Equation (12)
replaces Eq. (1) of Wever et al. (2014) where there is a typo
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in the conditions:

SPK :





wliq,max = ρw ×(0.08 − 0.1023(0.97 − φ))

if φ ≥ 0.77

wliq,max = ρw ×

(
0.0264 + 0.0099

φ

1 − φ

)

otherwise

.

(12)

This option was also included in ESCROC (SPK).
In several other models (Essery et al., 2013), the wa-

ter retention capacity is defined by a maximal liquid water
mass fraction. We included the ISBA-ES formulation (B02,
Boone, 2002) in ESCROC for which this threshold is set to
rmin = 0.03 for snow densities above ρr = 200 kg m−3 and
to higher values up to 0.05 for very low density, following

B02: wliq,max = (13)

ρ

ρw

(
rmin + (rmax − rmin)max

(
0,

ρr − ρ

ρr

))
,

where rmax = 0.1.
This formulation displays the opposite behaviour: the

higher the density, the higher the maximal volumetric liq-
uid water content (Fig. 6). The discrepancies between B02
and B92/SPK options increase for low densities. Although
such behaviour is not consistent with laboratory experiments
of Coléou and Lesaffre (1998), including this formulation in
ESCROC allows us to very indirectly account for the uncer-
tainty linked to the heterogeneous percolation of liquid water.
The latter result in the presence of wet layers below layers
which are not homogeneously saturated, increasing the per-
colation velocity. Note that liquid water percolation is also
affected by capillary effects and by a high dependence of
snow permeability on the structure of the pores as reported
by Jordan et al. (1999) or Calonne et al. (2012). As these
processes cannot be described by the bucket approach used
in Crocus, it is reasonable to include a wide uncertainty for
low densities in ESCROC through the use of these three dif-
ferent formulations.

3.8 Compaction

For a given layer of thickness D the settling under the over
burden σ is expressed as follows (Anderson, 1976; Navarre,
1975):

dD

D
=

−σ

η
dt. (14)

The viscosity η is expressed as a function of density ρ and
temperature T (◦C) by

B92: η = f1(wliq)f2(gs)η0
ρ

cη

eaη(−T )+bηρ, (15)
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Figure 6. Volumetric liquid water-holding capacity as a function of
the layer density for the three options included in ESCROC (B92,
SPK, B02) and for the experimental law proposed by Coléou and
Lesaffre (1998) (C98).

where η0 = 7.62237 × 106 kg s−1 m−1, aη = 0.1 K−1, bη =

0.023 m3 kg−1 and cη = 250 kg m−3. Two multiplicative
functions f1 and f2 represent the faster settlement of wet
snow as a function of the volumetric liquid water con-
tent wliq, and the reduced settlement of layers consisting of
faceted snow types, especially depth hoar as a function of
grain size gs (Vionnet et al., 2012).

However, the temperature and density dependence of snow
viscosity have various forms in the literature as reviewed by
Teufelsbauer (2011), who proposed a new law fitting the data
of separate experimental works. If this law is combined with
Crocus parameterisation for wet snow and depth hoar, we can
formulate a new option T11 as

T11: η = (16)

f1(wliq)f2(gs) × 0.05ρ−0.0371T +4.4(10−4e0.018ρ + 1).

The compaction velocity, however, has a complex de-
pendence to snow microstructure (Lehning et al., 2002)
which cannot be described by the representation of snow mi-
crostructure in Crocus. We account for this source of uncer-
tainty by implementing the S14 option, in which we apply a
non-linear relationship between settlement, the stress σ (Pa)
and the SSA decrease from Schleef et al. (2014) for the first
48 h after snowfall:

S14:
dρ

dt
= Bρ

dSSA

dt
σ k, (17)

with B = −6.6×10−3 and k = 0.18. The current Crocus pa-
rameterisation is applied when the snow layer age exceeds
2 days.
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3.9 Soil scheme

The conductive heat flux at the soil–snow interface depends
on the temperature gradient between the snow bottom and the
upper soil layer. It is explicitly modelled by a semi-implicit
soil–snow coupling with one of the ISBA soil scheme op-
tions. Although several options are available in the SURFEX
platform (Masson et al., 2013), the multilayer diffusive ap-
proach [ISBA-DIF] (Decharme et al., 2011, 2013) is pre-
ferred to force-restore options (Noilhan and Mahfouf, 1996),
which are not able to represent the seasonal heat storage in
the deep soil and therefore a realistic heat flux at the soil–
snow interface (Habets et al., 2003). Generally, the uncer-
tainties in soil modelling come from both the representation
of physical processes and the soil texture and vegetation pa-
rameters. Their comprehensive exploration would represent
a full extended new work beyond the scope of this paper.
Sensitivity tests suggested that one of the most sensitive pa-
rameters on snow simulations is the surface heat capacity cT

(J m−2 K−1) used in the soil surface temperature TS prognos-
tic equation:

∂TS

∂t
=

1

cT

G −
1

cG1

λ1

1z1
(TS − T2), (18)

where G is the sum of radiative and turbulent energy fluxes
at the surface (W m−2), λ1 the thermal conductivity of the
first soil layer (W m−1 K−1), 1z1 its thickness (0.01 m), cG1

its heat capacity (J m−2 K−1) depending on its water content,
and T2 the temperature of the second soil layer. Equation (18)
corresponds to the case without soil freezing or thawing
which are also represented in the model (Decharme et al.,
2016). For the CDP grassy meadow, the surface heat capacity
is equal to the vegetation heat capacity cV. The default value
of cV has been set to 5 × 104 J m−2 K−1 since the 1990s for
numerical stability reasons in the coupling with NWP mod-
els but this is unrealistic when compared with values from the
literature (Dupont et al., 2014). In the v8.0 SURFEX release
(http://www.umr-cnrm.fr/surfex//spip.php?rubrique148), the
current default value has been set to 104 J m−2 K−1 for low-
lying vegetation. Although more realistic, at Col de Porte this
value gives a significant cold bias in autumn, regardless of the
snow scheme used, as illustrated by Fig. 5 of Decharme et al.
(2016). In ESCROC, we account for the uncertainty in the
soil–snow heat flux by including three different values of the
vegetation heat capacity: 104, 3×104 and 5×104 J m−2 K−1.
However, we must keep in mind that this unrealistic range
probably compensates other model errors.

4 Evaluation methodology

4.1 Individual scores of all members

Although all ESCROC options are supposed to represent the
corresponding physical processes with an equivalent com-
plexity and reliability, it is necessary to check whether each

combination of options has a satisfactory overall skill or if
some of them should be eliminated. The skill of each sin-
gle member is evaluated by deterministic scores comparing
Ni simulated values mki

by member i to the corresponding
Ni observations ok . Note that Ni depends on the observa-
tions availability which is specific to each evaluation variable
(Sect. 2.2). Furthermore, for variables which are not defined
when there is no snow on the ground (BD, SST, A), Ni is
specific to each member i due to the variable duration of the
snow season between members. We compute the bias estima-
tor, B̂i , and the root mean square error estimator, R̂MSEi :

B̂i =
1

Ni

Ni∑

k=1

(mki
− ok) (19)

R̂MSEi =

√√√√ 1

Ni

Ni∑

k=1

(mki
− ok)

2. (20)

These scores are called estimators because they give an
uncertain description of the true model skill for several rea-
sons. First, the reference observations ok represent an uncer-
tain description of the site-scale snow conditions due to both
instrumental errors and spatial variability at the site. Then,
the skill of a member with respect to observations has a sig-
nificant variability from one season to another so that un-
certainty is associated with the limited available evaluation
period. To account for these uncertainties, we model a mem-
ber score Si as a random variable following a normal distri-
bution N (Ŝi, σ̂i), where the total variance is decomposed by

σ̂ 2
i = σ 2

o +σ 2
pi

. To quantify the σpi
component corresponding

to the evaluation period uncertainty, we applied bootstrap-
ping (Efron, 1979) over annual time series on each variable:
for each member, instead of computing only one score for
the available years (1993–1994, 1994–1995, 1995–1996, . . . ,
2010–2011), 1000 different score estimators were computed
from 1000 18-year-long bootstrap samples obtained by draw
with replacement of the available years such as 1998–1999,
1994–1995, 1994–1995, . . . , 2003–2004. σpi

is the standard
deviation of these estimators. Generally, the observation un-
certainty σo is difficult to quantify without a large range of
sensors measuring instrumental uncertainty and spatial un-
certainty and it is often necessary to choose a priori values.
In this study, for SD, SWE, albedo, SST and GT, the mean
and the standard deviation of the differences between the ref-
erence observation and other data from another instrument
located at another place in the plot (Sect. 2.2, Fig. 1) allow
an estimate of σo for the bias and the RMSE to be given.
For BD, the estimated instrumental error has to be added to
the spatial uncertainty shown in Fig. 1c. The values of σo are
summarised in Table 5.

With the assumption of a Gaussian distribution of the
score, it is possible to compute its 90 % confidence interval
and to test the significance of the difference between two dif-
ferent members by a Student test. Note that this Gaussian
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Table 5. Values of σo for the bias and the RMSE resulting from
Sect. 2.2.

Variable σo for bias σo for RMSE

SD (cm) 9.0 12.2
SWE (kg m−2) 16 38
BD (kg m−3) 10 26.5
Albedo 0.040 0.069
SST (K) 1.07 1.44
GT50 (K) 0.42 0.50

approximation is not realistic for RMSE but the high uncer-
tainty of σo estimates do not justify proposing a more sophis-
ticated error modelling.

This methodology is applied for each evaluated variable
listed in Sect. 2.2. For SD, it is also applied separately for
early snow depth (October–January) and late snow depth
(from the date of observed maximum SWE to the end of the
season) because the absence of bias in any part of the snow
season is also required for a member to be considered satis-
factory.

4.2 Ensemble scores

The skill of the ensemble of population n can be assessed
both by deterministic scores applied to the ensemble mean
E and by probabilistic scores describing the spread and the
ability of the ensemble to compute reliable probabilities. E

is defined for each date k as the mean of the pk ≤ n available
members (mki

)i∈[1,pk] (Eq. 21). This restriction is necessary
when computing scores on model variables that are not de-
fined when there is no snow on the ground (BD, SST, A).
For example, at the end of the snow season, when not all
members have melted yet, the BD ensemble mean will be
considered as the BD mean of the members that still have
snow.

Ek =
1

pk

pk∑

i=1

mki
(21)

The RMSE of an ensemble corresponds to the RMSE of
the ensemble mean E over the N dates where observations
are available and at least one member is defined.

RMSE(E) =

√√√√ 1

N

N∑

k=1

(Ek − ok)
2 (22)

The ensemble spread or dispersion σE is the standard de-
viation of members relative to the ensemble average:

σE =

√√√√ 1

N

N∑

k=1

1

pk

pk∑

i=1

(mki
− Ek)

2. (23)

The spread-skill (SS) of the ensemble E of mean E is then
defined as follows:

SS =
σE

RMSE(E)
. (24)

The ensemble dispersion is optimal if SS = 1 (Fortin et al.,
2014). In that case, the spread of the ensemble is represen-
tative of the error of the mean, and for an unbiased system,
observations will mostly be inside the ensemble envelope.

The continuous ranked probability score (CRPS) is one
of the most common probabilistic tools used to evaluate the
ensemble skill, both in terms of reliability (unbiased prob-
abilities) and resolution (ability to separate the probability
classes) (Candille and Talagrand, 2005):

CRPS =
1

N

N∑

k=1

∫

R

(Fk(x) − H(x − ok))
2dx, (25)

where Fk(x) is the cumulative distribution function of the en-
semble simulation at time k and H(y) is the Heaviside func-
tion (H(y) = 0 if y ≤ 0; H(y) = 1 if y > 0). CRPS value has
the same unit as the evaluated variable and tends towards 0
for a perfect system. It is mainly useful to compare the over-
all skill of several ensembles. A skill score (CRPSS) can be
defined to compare the CRPS of an ensemble E to a refer-
ence R:

CRPSS(E) = 1 −
CRPS(E)

CRPS(R)
. (26)

To compare the skill of a multiphysics ensemble simula-
tion to the more classical deterministic snow modelling, we
choose a single member for the reference R. In such a case,
the CRPS reduces to the mean absolute error of the determin-
istic simulation. As the standard Crocus configuration (blue
options in Fig. 2) is not optimal at Col de Porte, we choose
the member with CV30000 surface heat capacity option and
default other options as reference. This configuration has a
better overall skill.

We also used rank histograms (Hamill, 2001) which illus-
trate the occurrence frequency of the different possible ranks
of the observations ok among the sorted ensemble members.
The flatness of this histogram is a condition of the system
reliability (if the simulated probabilities are unbiased regard-
less of the probability level, the different ranks should have
a uniform occurrence frequency). It is also an indicator of
the spread-skill as underdispersion will result in a U-shaped
rank histogram and overdispersion in a bell-shaped rank his-
togram.

Note that SS, CRPS and rank histograms are also af-
fected by observations uncertainties similarly to determin-
istic scores. As a first step, this uncertainty is not modelled
here but this lack should be kept in mind in the comparison
of different ensembles.
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4.3 Members selection methods

As equiprobability of members is preferred in ensemble
forecasting and ensemble assimilation applications, we ex-
tracted a sub-ensemble of n equiprobable members, i.e. with-
out a significantly lower skill than other members on any
of the eight evaluation variables. We first selected this sub-
ensemble E1 based on the deterministic evaluation of all ES-
CROC members described in Sect. 4.1 and evaluated its en-
semble skill as described in Sect. 4.2 for five evaluation vari-
ables (SD, SWE, BD, A, SST). GT50 is not included for this
evaluation step because ESCROC does not include a com-
prehensive description of uncertainty in soil modelling.

Then, among these equiprobable members, it is useful to
limit the number of members n′ to keep reasonable comput-
ing times in larger scale applications, and it may be possi-
ble to improve the spread-skill by selecting only some mem-
bers since many configurations are highly correlated. We
consider here that the value of n′ is prescribed as a techni-
cal constraint. For illustration, we take n′ = 35 as in Vernay
et al. (2015). Many possible criteria can be defined to select
these n′ members. Here, we chose to present two selections
based on the optimisation of the spread-skill for snow depth
(ensemble E2) and of the CRPS for snow depth (ensemble
E3). Other criteria might be better suited for specific appli-
cations and it would also be possible to define a multivariate
criteria. In any case, the number of possible combinations
Cn′

n = n!
n′!(n−n′)!

can be huge when n ≫ n′ and testing all the
possible ensembles can become unrealistic. In such a case,
we propose to test the optimisation criteria (SS or CRPS
here) randomly among 10000 combinations, and to evalu-
ate the obtained sub-ensembles E2 and E3. The solution will
obviously be neither absolute nor unique. If the dispersion of
the E1 full ensemble of equiprobable members is not suffi-
cient to obtain a satisfactory sub-ensemble E2 in terms of dis-
persion, it is possible to include members with an individual
lower skill among the initial candidates, but in such a case all
members would not be equiprobable anymore. We define en-
semble E4 by applying the selection method based on snow
depth SS optimisation in the specific case where all the 7776
ESCROC members are candidates. The selection methods of
the four sub-ensembles are summarised in Table 6.

5 Results

5.1 Deterministic evaluation of the members and

definition of the sub-ensemble of equiprobable

members E1

Figure 7 shows the couple of scores (B̂i , R̂MSEi) of each ES-
CROC member and their confidence interval for the different
evaluation variables. For each evaluation variable, the mem-
bers cover a continuous range of bias and RMSE values. For
snow surface properties (albedo, SST), this range is lower

than the width of the confidence intervals of the scores of the
best members. Very few members can be excluded from the
ensemble on this criterion. However, for integrated variables
(early, late and full-season snow depth, snow water equiva-
lent, bulk density) and for the ground temperature, the range
of the scores is larger than the confidence intervals of the best
members. A significant number of members (30 to 80 % de-
pending on the variable) exhibit scores included in the confi-
dence interval (i.e. the skills of these members are not sig-
nificantly different from a statistical point of view). Only
575 members (about 7 %) exhibit, for all variables simultane-
ously, scores that are not significantly different from the best
member. These members constitute the sub-ensemble E1 as
defined in Sect. 4.3.

5.2 Probabilistic evaluation of the different

sub-ensembles

The sub-ensemble E1 of N1 = 575 optimal and equiproba-
ble members is evaluated in terms of spread-skill and CRPS
for the different evaluation variables. For all the variables,
the magnitude of the spread ranges between 40 and 60 %
of the RMSE of the ensemble mean (Table 7, first column).
This means that about half of the total uncertainty is unex-
plained by this sub-ensemble. As a result, the observation is
frequently not included in the ensemble as illustrated by the
overrepresentation of the extreme ranks in rank diagrams for
all variables (Fig. 8, first column), especially for albedo con-
sistently with the lower SS of this variable. This behaviour is
also illustrated in the temporal plots: in Fig. 9, first column,
the observed time series of snow depth is more than 10 % of
the time outside the 90 % interval confidence of the ensemble
(occurrences above the ensemble in 2003–2004 and 2010–
2011 and conversely below the ensemble in 2006–2007 and
2007–2008). Several occurrences outside the ensemble can
also be seen for bulk density and albedo during the season
2007–2008 (Fig. 10). Despite this underdispersion, the pos-
itive CRPSS (Table 8) demonstrate that sub-ensemble E1
exhibits a better skill than the deterministic approach from
a probabilistic point of view. The interest of the ensemble
framework is also illustrated in Figs. 9 and 10 where obser-
vations are usually not superposed with the ensemble me-
dian but are found inside the ensemble spread with varying
positions from one date to another. However, it is important
to consider that the uncertainty in the evaluation data is not
taken into account in this ensemble evaluation although it can
impact the results. Thus, the imbalance between the first and
last ranks frequencies in snow depth and SWE rank diagrams
might suggest a positive bias of snow depth in E1, but it is
inconsistent with the negative bias of SWE and the lack of
significant bias of BD. This behaviour can only be explained
by the uncertainty in the reference data.

Among these 575 optimal members, the sub-ensembles E2
and E3 of N2 = 35 members optimised in terms of spread-
skill or CRPS of snow depth are selected following the
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Table 6. Summary of the four sub-ensembles.

E1 E2 E3 E4

Restriction to the best members (deterministic scores) yes yes yes no
Restriction to n′ = 35 members no yes yes yes
Optimisation criteria SS on SD CRPS on SD SS on SD

Figure 7. Scores of each member of the ESCROC ensemble for the different evaluation variables, 1993–2011. Black points represent the
couple (B̂i , R̂MSEi ) for each member. Grey crosses represent the 90 % confidence interval of each score. The violet rectangle represents the
90 % confidence interval associated to the best member according to its RMSE.

methodology of Sect. 4.3. The members are listed in Ta-
bles A1 and A2. The improved spread-skill of E2, and even
of E3 (Table 7), illustrates that a much lower number of
members are sufficient to represent model uncertainty if they
are appropriately selected, and that including too many cor-
related members tends to reduce the dispersion. However,
despite the SS optimisation, the sub-ensemble E2 remains
underdispersive for all variables. This is also the case for en-
semble E3, a fortiori. The U-shape of rank diagrams is only
slightly smoothed (Fig. 8) and the simulated time series fea-
ture the same main issues between E1, E2 and E3 (Figs. 9
and 10). It can also be noticed that the optimisation of ei-
ther snow depth SS or snow depth CRPS degrades neither
SS nor the CRPS for the other evaluation variables (Tables 7
and 8). The only exception is the CRPS of bulk density which
is poorer for ensemble E3 than for ensemble E1.

To increase the dispersion, it is possible to relax the con-
straint of optimal skill in terms of bias and RMSE for some
(or all) evaluation variables for the candidate members. En-
semble E4 corresponds to the extreme case: we selected 35
members within all the 7776 ESCROC members by snow
depth SS optimisation (list of members in Table A3). We can
see that the spread-skill can be fully optimised for a chosen

variable (perfect SS of snow depth in Table 7, much more
flatter rank diagram in Fig. 8, and significant broadening of
the Q5–Q95 interpercentile interval in Fig. 9, allowing the
inclusion of the observed time series most of the time). How-
ever, it does not allow a simultaneous optimisation of the
dispersion of the other variables: albedo and SST are still
underdispersive, whereas SWE and BD become overdisper-
sive (see also the bell-shaped rank diagrams). It can be no-
ticed that although members with a lower individual skill
are included, the CRPS are still enhanced for all variables
compared to other sub-ensembles, even without any weight-
ing of the less probable members. However, the significance
of CRPS differences among the different sub-ensembles was
not tested here.

5.3 Model sensitivity to physical options

It is useful to know if some physical options exhibit a sig-
nificantly lower skill regardless of the options of the other
processes. This is only the case for the default option of
10 000 J m−2 K−1 for the soil surface heat capacity which
leads to a systematic cold bias of ground temperature in au-
tumn, as illustrated in Fig. 11, and in Decharme et al. (2016).
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Table 7. Spread-skill (dispersion/RMSE) of ESCROC sub-ensembles for the different evaluation variables, 1993–2011.

Variable E1 E2 E3 E4

SD (cm) 51 % (8.5/16.5) 65 % (10.0/15.3) 56 % (8.0/14.3) 100 % (14.8/14.8)
SWE (kg m−2) 51 % (38.6/75.2) 69 % (48.6/70.2) 57 % (38.1/66.9) 131 % (82.9/63.2)
BD (kg m−3) 60 % (21.5/35.8) 62 % (22.0/35.5) 62 % (22.3/36.0) 132 % (45.7/34.7)
Albedo 42 % (0.034/0.081) 46 % (0.035/0.076) 46 % (0.035/0.076) 52 % (0.039/0.075)
SST (K) 59 % (1.03/1.74) 61 % (1.08/1.78) 63 % (0.98/1.54) 70 % (1.05/1.50)

Table 8. CRPS (CRPSS in parenthesis) of ESCROC sub-ensembles for the different evaluation variables, 1993–2011.

Variable E1 E2 E3 E4

SD (cm) 7.2 (0.41) 6.6 (0.46) 6.3 (0.48) 6.1 (0.49)
SWE (kg m−2) 40.2 (0.30) 36.8 (0.36) 36.9 (0.36) 32.8 (0.43)
BD (kg m−3) 19.4 (0.26) 19.5 (0.25) 22.3 (0.15) 18.5 (0.29)
Albedo 0.056 (0.09) 0.052 (0.16) 0.052 (0.16) 0.050 (0.19)
SST (K) 0.89 (0.47) 0.92 (0.45) 0.78 (0.53) 0.76 (0.55)

As this option also exhibits a high sensitivity on integrated
variables such as SD, SWE and BD, further investigations are
necessary to better understand why this realistic value of sur-
face heat capacity leads to a systematic bias at Col de Porte
and if this issue also exists in other places in the Alps. For all
the other options, their ability to provide optimal simulations
depend on the choice of options for the other processes. Fig-
ure 12 represents the frequency of each physical option in the
sub-ensemble E1 of 575 optimal members. Regardless of the
process, there is no option which is highly prevailing in this
sub-ensemble population. Some options are less frequently
represented than others (for instance options TA+ for solar
radiation absorption, B02 for liquid water holding, T11 for
snow compaction) but, when combined with specific options
for the other processes, they are still able to exhibit realistic
simulations for all evaluation variables. Regarding the solar
radiation absorption representation, it must be noticed that
the TA+ and B10 do not exhibit any negative bias in albedo
or snow depth evaluations (Fig. 13). Their lower frequencies
in ensemble E1 are mainly explained by the scores of SWE
and late snow depth. The B60 option (blue points) could be
associated with a positive bias of snow depth in the default
Crocus version with a 10 000 J m−2 K−1 surface heat capac-
ity (down-facing triangle in Figs. 11 and 13), and the B10
or TA+ options could be preferred (left and right-facing tri-
angles in Fig. 13). However, the opposite conclusion is ob-
tained if the surface heat capacity option is changed: the
positive bias of B60 disappears (right and up-facing trian-
gles in Fig. 11) and a negative late snow depth bias appears
in spring for B10 and TA+ (not shown). Numerous similar
dependences of the skill of a given option on the choice of
other processes were found, with interactions between water-
holding capacity, compaction and snowfall density options

(not shown) or between turbulent surface fluxes and solar ra-
diation absorption options, among others.

To illustrate how the different options create dispersion in
the optimal sub-ensembles, in Fig. 14 we compare the en-
ergy fluxes of two different members of the E1 sub-ensemble
of optimal members for one particular season (2003–2004).
These two members were selected because they have dif-
ferent options for solar radiation absorption and turbulent
fluxes (B60/M98 and TA+/RIL) but the same options for all
other processes. The absorbed solar radiation is significantly
higher in the members with the TA+/RIL options than in the
member with the B60/M98 options, especially in February
and March, whereas the turbulent heat fluxes are significantly
lower in member with the TA+/RIL options than in member
with the B60/M98 options. As a result, the temporal varia-
tions of the energy balance differs between the two mem-
bers, with a higher positive balance for member B60/M98
during some windy and mild events in winter and conversely
a higher positive balance during some sunny spring days for
member TA+/RIL. Therefore, there is a slightly different
chronology of melting in these members, although the final
melt-out date difference is only 2 days. These differences are
lower than model errors and lower than the uncertainty range
of observations. This illustrates that very different contribu-
tions of energy fluxes to the energy equilibrium can result in
a similar and optimal skill for all evaluated variables (both
members are included in E1 sub-ensemble). This equifinal-
ity also exists between the other physical processes and op-
tions, with some more complex interactions involving more
than two processes. It explains (i) the difficulty of selecting a
single-model and (ii) the dispersion obtained at a given point
in time by several members seen as equivalent and optimal
from a deterministic statistical evaluation.
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Figure 8. Rank diagrams for the different sub-ensembles (E1, E2, E3, E4, by column) and evaluation variables (SD, SWE, BD, A, SST, by
line), 1993–2011.

6 Discussion

The ability of ESCROC to explain a significant part of mod-
elling errors at Col de Porte and its improved skill in terms of
CRPS relative to deterministic modelling is very promising
in that it contributes to the development of a full ensemble
numerical system including ensemble meteorological forc-
ing and ensemble data assimilation techniques in support of
avalanche hazard forecasting. However, this work also has
several limitations discussed in this section.

6.1 Implications of forcing data uncertainty

The assumption that meteorological input errors are low
compared to model errors is the main limitation of our study
because even at well-instrumented sites, recent studies illus-
trate that model outputs can be significantly affected by in-
put errors, especially long-term biases (Raleigh et al., 2015)
and by errors in longwave incident radiation and precipita-
tion amount (Sauter and Obleitner, 2015). The quantifica-
tion of the impact of meteorological uncertainties in snow
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Figure 9. Simulated snow depth time series (median, 5th and 95th percentiles) for the different sub-ensembles (E1, E2, E3, E4, by column),
2003-2011. Black line indicates observed snow depth.

modelling by Raleigh et al. (2015) is highly dependent on
the choice of the error types (bias vs. random errors), and
of the error distributions (form and parameters), whereas the
accuracy specified by the manufacturers is difficult to inter-
pret. Furthermore, additional errors can be encountered due

to environment-specific issues. As a consequence, it is diffi-
cult to quantify an absolute contribution of forcing errors in
the total uncertainty from manufacturers’ information, and
new investigations to document the meteorological uncer-
tainty in experimental sites must be supported, as recently
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done for precipitation amounts during the WMO Solid Pre-
cipitation Intercomparison Experiment (SPICE, e.g. Kochen-
dorfer et al., 2017) which included the Col de Porte site. Nev-
ertheless, Raleigh et al. (2015) calculated that the contribu-
tion of forcing errors specified from manufacturers may be

as high as 40 % of the total uncertainty for the most sensitive
variables. This suggests that the underdispersion of the sub-
ensembles E1, E2 and E3 of equiprobable members might be
partly or totally explained by forcing uncertainty and not by
an insufficient coverage of the uncertainty of physical pro-
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Figure 11. Same as Fig. 7 with different colours according to the option of surface heat capacity. The black triangles correspond to the
default options of snow processes (blue cells in Fig. 2) and the three options of surface heat capacity.
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Figure 12. Number of occurrences of each physical option in the
E1 ensemble of 575 equiprobable members. Blue cells correspond
to the default Crocus configuration.

cesses in ESCROC. This suggests that including lower skill
members to optimise the dispersion could be an artificial
compensation of not accounting for forcing errors in the sim-
ulations. Therefore, despite the slight enhancement of proba-
bilistic scores, we recommend considering this method with
caution. Furthermore, losing the equiprobability of members
can be a disadvantage in practical applications.

6.2 Implications of a single site application only

The second limitation of this study is that all evaluations and
selections of sub-ensembles were based on a single experi-
mental site. Applications on increasingly large scales of the
ESCROC system will be affected by much more significant
errors in the meteorological forcing, preventing a large-scale
calibration of multiphysics sub-ensembles. However, appli-
cations of the model in different environments, for instance
at higher elevations or higher latitudes, might be affected
by different error levels associated with the physical pro-
cesses than at Col de Porte, and the spread of the proposed
sub-ensembles might be insufficient to quantify this higher
uncertainty. This is especially the case over areas affected
by significant snowdrift. To reduce this issue, the next im-
portant step will be to evaluate ESCROC in contrasted en-
vironments using other well-instrumented sites around the
world often used for snow models evaluation, e.g. Sodankylä,
Finland (Essery et al., 2016) or Weissfluhjoch, Switzerland
(WSL, 2015). Forcing and evaluation data gathered by the
ESM-SnowMIP initiative (http://www.climate-cryosphere.
org/activities/targeted/esm-snowmip) will be used for this
purpose.

6.3 Limitations of scores and selection methods

Our results illustrate that a realistic number of members can
be sufficient to explain the uncertainty range. Nevertheless,
the selection of optimal members presented here is affected
by an uncertain characterisation of evaluation data errors
(Sect. 4). The selection is not unique as only a limited num-
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Figure 13. Same as Fig. 7 with different colours according to the option of solar radiation absorption. As in Fig. 11, the black triangles
correspond to the default options of snow processes (blue cells in Fig. 2) and the three options of solar radiation absorption.

ber of possible combinations were randomly tested and it
can be objective dependent. This paper presents a frame-
work which may be adapted for a specific application. For
instance, ensemble assimilation of remotely sensed spectral
visible reflectances as in Charrois et al. (2016) would prob-
ably require selecting a sub-ensemble by albedo spread-skill
optimisation. Because the uncertainty of albedo measure-
ments is high, it would probably benefit from a better mod-
elling of observations errors in both deterministic and prob-
abilistic scores. In a more general context of a full ensemble
system of snowpack modelling with various applications, the
selection of members might be improved by defining multi-
objective probabilistic criteria combining several evaluation
variables or even several evaluation sites. Recent investiga-
tions on that topic for the purpose of ensemble meteorologi-
cal forecasting proposed generalisations of the classical uni-
variate probabilistic tools (Gneiting et al., 2008; Scheuerer
and Hamill, 2015; Thorarinsdottir et al., 2016) which could
be tested in ensemble snow modelling. Special care should
be taken in the future to deal with the covariance of errors
among the different evaluation variables. Increasing the num-
ber of dimensions in the evaluation framework by incorporat-
ing new sites or new variables such as vertical profiles of tem-
perature, density or microstructure properties, is also likely to
result in an empty ensemble in the first selection of members
with an optimal deterministic skill over all these variables.
This would also require defining multivariate deterministic
evaluation criteria as in Essery et al. (2013).

6.4 Lessons for numerical snowpack modelling

Our results also illustrate the fact that all evaluations of nu-
merical snow modelling are highly impacted by the choice of
evaluation variables, the uncertainty of evaluation data and
the physical options chosen for all physical processes even if
they are beyond the scope of a particular study. As a result, a
sensitivity test to choose the best physical representation of
a given physical process can be misleading if the sensitivity
to other processes is not explored or if the chosen evaluated
variables do not constrain the model sufficiently. These con-
clusions are fully in accordance with Essery et al. (2013) and
should be considered for the evaluation of any parameteri-
sation of a physical-based snow model. It was unfortunately
rarely done in past evaluations of most snow models.

ESCROC could be seen as a potential tool to quantify the
relative contribution of each physical process to the overall
uncertainty in snowpack modelling, e.g. using variance anal-
ysis methods as in Sauter and Obleitner (2015). This would
provide a useful characterisation of the system itself but with-
out any guarantee that these contributions are fully represen-
tative of snowpack modelling in a general context. Indeed,
the results would be totally dependent on the choices made
to define the different options. The latter may not accurately
quantify the uncertainty process by process and it would be
especially challenging to objectively verify the dispersion for
each process.

Our results also illustrate the fact that looking for a per-
fect deterministic snowpack model might never be suffi-
cient and that finding ways to deal with model errors may
be as promising as improving the physics description. In
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the Crocus snowpack model, recent attempts to introduce
more sophisticated physics (e.g. metamorphism by Carmag-
nola et al., 2014, or implementation of the TARTES optical
scheme) did not necessary lead to a significant overall skill
improvement, as shown here. However, efforts to improve the
physics is also in some cases expected to improve the details
of the simulated snowpack vertical structure. For instance,
solving Richards equations for the liquid water percolation
would allow simulating the ponding of liquid water on cap-
illary barriers and crusts with expected positive impacts on
the detailed snow stratigraphy (Wever et al., 2015). Including
water vapour transfers in snow modelling might also correct
the unrealistic density profiles usually obtained in polar re-

gions where this process is significant (Domine et al., 2013).
Nevertheless, the modelling of these complex processes are
bound to introduce new uncertainties. Therefore, progress in
snow physics understanding and in ensemble modelling tech-
niques have to be complementary to generally improve the
reliability and the usefulness of snow simulations in various
applications (e.g. avalanche hazard forecasting, hydrology,
glaciers mass balance, climate change impact studies).
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7 Conclusions

Numerical snow modelling is affected by various sources of
errors which reduce its current reliability and utility in oper-
ational applications. Following the progress achieved in me-
teorology and hydrology, we suggest that three directions in
snowpack modelling should be explored at the same time:

– improving the quality of the meteorological forcing and
the modelling of the physical processes,

– predicting the uncertainties of the simulations using en-
semble frameworks covering all the errors sources,

– assimilating remotely sensed or conventional snowpack
observations to reduce the errors.

While the first point has been the central topic of investi-
gations in the last 30 years, the other two are only emergent.
They are also highly linked as the concept of data assimila-
tion relies on an accurate quantification of modelling errors.
In this paper, we contribute to both these innovative topics by
proposing a new multiphysics ensemble system of snowpack
modelling, ESCROC, based on the implementation in the
SURFEX/ISBA/Crocus snowpack model of various options
for eight key processes in the evolution of midlatitude snow-
packs. This system was evaluated with both deterministic and
probabilistic tools at the Col de Porte well-instrumented site
to reduce meteorological forcing errors as much as possible.

The deterministic skill of the ESCROC members cover a
wider range than the uncertainty range of evaluation data for
snow depth, snow water equivalent, bulk density and ground
temperature. It is not the case for albedo and snow surface
temperature which have measurements that feature higher
uncertainty. The results confirm several conclusions of Es-
sery et al. (2013), including the high equifinality between
various processes in snow modelling which cannot be elimi-
nated with standard evaluation methods and should therefore
be carefully considered in future work intending to improve
snow physics.

To define an ensemble of equiprobable members suited
to ensemble forecasting and ensemble assimilation applica-
tions, a sub-ensemble of best members for all evaluation
variables was selected and a methodological framework to
select a reduced number of members was presented. Thus,
sub-ensembles of only 35 members are able to explain be-
tween 50 and 70 % of the total simulation errors. They have
a significantly better predictive power than the classical de-
terministic approach. It is possible to optimise the ensemble
spread-skill by including members with a lower deterministic
skill, but we do not recommend it because it could be an arti-
ficial compensation of not accounting for forcing errors and
because it would make the practical use of the ensemble in
operational applications more complicated. Several perspec-
tives are listed for future works, including the extension of
evaluations to a multi-site and multivariate analysis. Another
important perspective will be to test the combination of this
multiphysics system with ensemble meteorological forecasts
suited to snowpack simulations (Vernay et al., 2015). The
development of ensemble meteorological analyses instead of
current deterministic systems (Durand et al., 1993) will also
be a challenge, especially in the context of the increased res-
olution of NWP models (Vionnet et al., 2016). The most ap-
propriate way to propagate and reduce both uncertainties will
also have to be investigated when this full ensemble system is
combined with an ensemble data assimilation algorithm. Last
but not least, the development of synthesis diagnostics of en-
semble simulations is essential to assist the avalanche hazard
forecasters in taking advantage of an increasing amount of
available data.

Code and data availability. ESCROC is developed inside the open
source SURFEX project (http://www.umr-cnrm.fr/surfex). While it
is not implemented in an official SURFEX release, the code can be
downloaded from the specific branch of the svn repository main-
tained by Centre d’Études de la Neige. The full procedure and doc-
umentation can be found at https://opensource.cnrm-game-meteo.
fr/projects/snowtools/wiki/Procedure_for_new_users. For repro-
ductibility of results, the version used in this work is tagged as
http://svn.cnrm-game-meteo.fr/projets/surfex/tags/ESCROC-1.0.

The CDP data set is placed on the PANGAEA repository
(doi:10.1594/PANGAEA.774249) as well as on the public ftp server
ftp://ftp-cnrm.meteo.fr/pub-cencdp.
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Appendix A: List of members of sub-ensembles E2, E3

and E4

Table A1. List of equiprobable members of sub-ensemble E2 (op-
timised in terms of snow depth dispersion).

SD M SR TSF TC LWH C SHC

1 V12 C13 B60 RI1 Y81 SPK B92 CV30000
2 V12 C13 B60 RI1 I02 B92 S14 CV30000
3 V12 C13 B60 RI2 Y81 B92 S14 CV30000
4 V12 C13 B10 RIL Y81 B92 B92 CV30000
5 V12 C13 TAR RI1 I02 SPK T11 CV50000
6 V12 C13 TAR RI2 I02 SPK S14 CV50000
7 V12 C13 TA+ RI1 I02 SPK B92 CV30000
8 V12 F06 B60 RIL Y81 B92 S14 CV30000
9 V12 F06 B60 RIL Y81 SPK S14 CV50000
10 V12 F06 TAR RIL I02 B92 T11 CV50000
11 V12 S-F B60 RI1 I02 B92 S14 CV30000
12 V12 S-F B10 RI2 I02 SPK B92 CV30000
13 V12 S-F TAR RIL Y81 SPK S14 CV50000
14 V12 S-F TAR RIL Y81 SPK S14 CV30000
15 V12 S-F TAR M98 Y81 SPK B92 CV30000
16 V12 S-F TA+ RIL I02 SPK B92 CV30000
17 S14 C13 B60 M98 Y81 B92 S14 CV30000
18 S14 C13 TA+ RI1 I02 B92 B92 CV30000
19 S14 F06 B60 RIL Y81 B92 S14 CV50000
20 S14 F06 B60 M98 I02 B92 B92 CV30000
21 S14 F06 B60 M98 I02 SPK B92 CV30000
22 S14 F06 TAR RI1 Y81 SPK B92 CV30000
23 S14 F06 TA+ RIL I02 SPK B92 CV30000
24 S14 F06 TA+ RI1 I02 SPK B92 CV30000
25 S14 S-F B60 RIL I02 B92 B92 CV50000
26 S14 S-F B60 RIL I02 SPK S14 CV50000
27 S14 S-F B60 RI1 I02 SPK B92 CV30000
28 S14 S-F TAR RIL I02 SPK S14 CV50000
29 A76 F06 B60 M98 I02 B02 S14 CV30000
30 A76 F06 TAR M98 I02 SPK B92 CV30000
31 A76 F06 TA+ RIL I02 B92 B92 CV30000
32 A76 S-F B10 RIL Y81 B92 B92 CV30000
33 A76 S-F B10 RI2 I02 B92 B92 CV30000
34 A76 S-F TAR RIL Y81 SPK S14 CV50000
35 A76 S-F TAR RI1 Y81 SPK B92 CV30000

Table A2. List of equiprobable members of sub-ensemble E3 (op-
timised in terms of snow depth CRPS).

SD M SR TSF TC LWH C SHC

1 V12 C13 B60 RIL I02 B92 T11 CV50000
2 V12 C13 B60 RI2 Y81 B92 B92 CV30000
3 V12 C13 B60 RI2 I02 SPK B92 CV30000
4 V12 C13 B60 M98 I02 SPK B92 CV30000
5 V12 C13 B10 RIL Y81 SPK B92 CV30000
6 V12 C13 B10 RI1 I02 B92 B92 CV30000
7 V12 C13 TAR RI2 Y81 B92 S14 CV30000
8 V12 F06 B60 RI2 Y81 SPK B92 CV30000
9 V12 F06 TAR RI1 I02 SPK T11 CV50000
10 V12 S-F B60 RI1 I02 SPK B92 CV50000
11 V12 S-F B10 RIL Y81 B92 B92 CV30000
12 V12 S-F TAR M98 Y81 SPK S14 CV30000
13 V12 S-F TA+ RI1 I02 SPK B92 CV30000
14 S14 C13 B60 RIL I02 SPK B92 CV50000
15 S14 C13 TAR RI2 I02 SPK S14 CV50000
16 S14 C13 TAR M98 Y81 B92 S14 CV30000
17 S14 F06 B60 M98 Y81 B92 S14 CV30000
18 S14 F06 TAR RIL Y81 SPK S14 CV50000
19 S14 F06 TA+ RI1 I02 SPK B92 CV30000
20 S14 S-F B60 RIL Y81 B92 S14 CV30000
21 S14 S-F B60 RI1 I02 B92 S14 CV50000
22 S14 S-F B60 M98 I02 B92 B92 CV30000
23 S14 S-F B60 M98 I02 B92 S14 CV30000
24 S14 S-F TAR RI2 I02 B92 B92 CV30000
25 S14 S-F TAR M98 I02 SPK B92 CV30000
26 S14 S-F TA+ RI1 I02 SPK B92 CV30000
27 A76 C13 B60 RI2 I02 B92 B92 CV30000
28 A76 C13 B60 M98 I02 B02 S14 CV30000
29 A76 C13 B10 RI2 I02 B92 B92 CV30000
30 A76 C13 TAR RI1 Y81 B92 S14 CV50000
31 A76 F06 B60 RI1 Y81 B92 B92 CV30000
32 A76 F06 B60 M98 Y81 B02 S14 CV30000
33 A76 F06 B10 RIL Y81 B92 B92 CV30000
34 A76 F06 TAR RI2 I02 B92 B92 CV30000
35 A76 S-F TA+ RI1 I02 B92 B92 CV30000
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Table A3. List of non-equiprobable members of sub-ensemble E4 (optimised in terms of snow depth dispersion).

SD M SR TSF TC LWH C SHC

1 V12 C13 B60 RI2 I02 SPK B92 CV50000
2 V12 C13 B10 M98 Y81 B02 B92 CV30000
3 V12 C13 TAR RIL Y81 B92 B92 CV50000
4 V12 C13 TA+ RI1 Y81 B92 B92 CV50000
5 V12 C13 TA+ RI2 I02 SPK T11 CV50000
6 V12 F06 B60 RIL I02 SPK T11 CV10000
7 V12 F06 B60 RI2 I02 B92 S14 CV50000
8 V12 F06 TAR RIL I02 SPK S14 CV50000
9 V12 S-F B60 RI2 Y81 B92 S14 CV50000
10 V12 S-F B60 RI2 I02 B02 S14 CV50000
11 V12 S-F B10 RI1 I02 SPK B92 CV30000
12 V12 S-F B10 M98 I02 B02 S14 CV10000
13 V12 S-F TAR M98 Y81 B92 B92 CV10000
14 S14 C13 B60 RIL I02 SPK S14 CV30000
15 S14 C13 B10 RIL Y81 B92 B92 CV10000
16 S14 C13 TAR RI1 I02 B92 B92 CV30000
17 S14 F06 B60 RI2 I02 SPK S14 CV50000
18 S14 F06 B10 RIL I02 B02 S14 CV30000
19 S14 F06 B10 RI1 I02 B92 B92 CV30000
20 S14 F06 TAR RI2 I02 SPK B92 CV30000
21 S14 S-F B60 RI2 Y81 B92 T11 CV30000
22 S14 S-F B60 RI2 I02 SPK S14 CV30000
23 S14 S-F B10 M98 Y81 B92 B92 CV10000
24 S14 S-F TAR RI2 I02 B02 B92 CV30000
25 S14 S-F TAR M98 Y81 B92 S14 CV50000
26 A76 C13 TAR RI2 Y81 SPK S14 CV10000
27 A76 C13 TAR RI2 Y81 B02 S14 CV50000
28 A76 C13 TA+ RIL I02 SPK T11 CV10000
29 A76 F06 B60 M98 Y81 B02 S14 CV10000
30 A76 F06 TAR RI2 I02 B92 S14 CV30000
31 A76 F06 TA+ M98 I02 B92 B92 CV30000
32 A76 S-F B60 RI1 Y81 SPK B92 CV10000
33 A76 S-F B10 RIL Y81 B92 B92 CV30000
34 A76 S-F B10 M98 I02 B02 B92 CV30000
35 A76 S-F TA+ RI2 I02 SPK B92 CV10000
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