
A Multiple Ant Colony System for a Vehicle
Routing Problem with Time Windows and

Uncertain Travel Times

Nihat Engin Toklu, Luca Maria Gambardella, and Roberto Montemanni
Dalle Molle Institute for Artificial Intelligence (IDSIA - USI/SUPSI), Galleria 2, 6928 Manno, Switzerland

Email: {engin, luca, roberto}@idsia.ch


Abstract—In this paper, we study the capacitated vehicle
routing problem with time window constraints, under travel
time uncertainty. The uncertainty here represents the
perturbation on the data caused by the effects of the
unpredictable events in the reality, like traffic jams, road
constructions, etc. To be able to near-optimally solve the
large-instances of this problem without encountering
memory errors or without taking too much time, we propose
a heuristic approach based on ant colony optimization,
which generates multiple solutions at the end of its execution,
each solution with a different protection against the
uncertainty. The trade-off between robustness and
cheapness shown by these generated multiple solutions are
then discussed.

Index Terms—vehicle routing problem, time window
constraints, robust optimization, metaheuristics

I. INTRODUCTION

In the vehicle routing problem (VRP; see the related
reading material [1]-[6]) the goal is to transport the goods
stored in a depot to the customers waiting at various
locations, where the routes of the available are decided in
such a way that the total cost of the travels is as low as
possible. An extension to VRP is the capacitated VRP
(CVRP), where each vehicle has a carrying capacity. In
CVRP, one must schedule the vehicles such that, the
capacity of each vehicle will be enough to serve all the
customers on its route without intermediate visits to the
depot. A further extension on CVRP is CVRP with time
window constraints (CVRPTW). In CVRPTW, each
customer must be served within a time window. If a
vehicle arrives earlier than the beginning of a time
window, it must wait at that location until the beginning
of that time window. If, according to a CVRPTW
solution, a vehicle arrives later than the ending of a time
window, that solution is declared infeasible.

A classical approach in the field of optimization is to
assume that the data is known exactly. With this
assumption, the problem data are expressed as fixed
numbers. An argument against this kind of assumption is
that, in the reality the problem data is subject to

Manuscript received January 5, 2014; revised March 25, 2014.

uncertainty because of the unpredictable factors in the
environment (which are, in the case of VRP, traffic jams,
road constructions, etc.). Ignoring this uncertainty might
cause undesirable situations: a solution which is optimal
according to the optimization model might turn out to be
far from optimality, or even infeasible, when applied in
the reality. To prevent this undesired situation, alternative
schools of thoughts have been gaining popularity in the
last decade. One such such school of thought is robust
optimization [7]-[10]. In robust optimization, the
existence of uncertainty is accepted, and the uncertain
data is expressed as discrete collections or continuous
intervals of possible value outcomes. Given that a
scenario is a set of assumptions on which values will be
encountered out of these discrete collections or intervals,
the goal of robust optimization is to find a solution which
does not go too bad and/or become infeasible on most or
all scenarios.

In modern robust optimization, an important concept is
the degree of conservativeness, which means the level of
pessimistic thinking of the decision maker, during the
optimization process. A non-conservative approach
would be to assume that there is no uncertainty-caused
data perturbation at all. On the other hand, A fully
conservative approach would be to assume that all of the
problem data is perturbed by the uncertainty, towards
their worst possible values. Finally, a partially
conservative approach would be to assume that some of
the problem data is perturbed towards their worst possible
values, and the rest will be at their better (or best)
possible values. As the conservativeness degree increases,
solutions that are better protected against the uncertainty
can be found. However, in a too conservative solution,
the opportunity of being close to optimality is given up in
more optimistic scenarios, as the focus is on the
pessimistic scenarios. Therefore, it is a trade-off.

In this paper, we follow the school of robust
optimization, and we study a CVRPTW with uncertain
travel times (CVRPTWU). In CVRPTWU, we express
the uncertain travel times as intervals. The challenge in
CVRPTWU is to handle the time window constraints, as
the feasibility of a solution depends on the uncertain
travel times.

Here, we propose an ant colony optimization (ACO;
see [11] and [12]) algorithm. ACO can be defined as a

Journal of Traffic and Logistics Engineering Vol. 2, No. 1, March 2014

©2014 Engineering and Technology Publishing 52
doi: 10.12720/jtle.2.1.52-58

class of metaheuristic algorithms. The purpose of using a
metaheuristic is to make sure that larger problem
instances can be solved to near-optimality without
demanding too much memory and/or too much execution
time. An ACO algorithm simulates the behavior of the
ants in the nature on a solution space. The inspiration of
ACO is as follows. In the nature, the ants get out of their
nests to reach a food source. In the beginning, various
ants reach to the food source by using various paths and
they mark the path they choose by leaving their
pheromones. The ants that choose shorter paths can go
back and forth more frequently to the food source,
increasing their pheromones on their paths. The other ants
that are influenced by the pheromones also get attracted
to these shorter paths, leaving their own pheromones,
thus increasing the total pheromones on shorter paths
even more. Therefore, as the better solutions (shorter
paths) get more pheromones, in the end, most of the ants
gather around the best solution known so far.

For analyzing the effects of the uncertainty on the
problem at hand, a useful thing to have for the decision
maker, is a solution pool, in which each solution has its
own conservativeness degree. By comparing the solutions
in a solution pool to each other, and by evaluating the
trade-off shown by these solutions, a decision maker can
pick the most practical solution. A popular study in this
field is [13], there the authors consider the problems with
random variables behaving according to known
probability distributions, and they propose a
multiobjective, non-dominated sorting genetic algorithm
(NSGA-II) based approach generating a population of
solutions with various reliabilities (i.e. probabilities of
staying feasible). In [14], a robust multiple ant colony
system (RMACS) was proposed for generating solution
pools for CVRP with uncertain travel costs. In RMACS,
ant colony systems (ACS, an elitist ACO variation; see
[15]) work concurrently, each colony focusing on a
different conservativeness degree. As they work
concurrently, these colonies share their best solutions
periodically with each other, so that a colony becomes
aware if it is stuck on a dominated solution and gets
unstuck by importing a better solution from another
colony. In the end, the best solutions of these multiple
ACSs are collected in a solution pool. In this study, we
use RMACS for solving CVRPTWU.

Previous studies on VRP with robust optimization
considerations are available in the literature. In [16], a
mathematical programming approach is taken to solve a
VRP where there is uncertainty in the customer demands.
In [17], a robust mathematical model for VRP with
deadlines is proposed, and, in [18], robust mathematical
models for CVRPTWU are proposed. The methods listed
above are exact methods, as they are designed to find the
optimal values, given enough time. However, for larger
instances, exact methods might end up taking too much
time and memory (for example, in [18], instances only up
to 50 customers were reported, possibly a limitation
brought by the time and memory requirements). In the
situations where the decision maker wants a near-optimal
solution, within a limited amount of time, without

demanding for too much memory, metaheuristic
approaches can be used. Within the category of
metaheuristics, a previous study is [19], where a VRP
with uncertain demands is solved by a particle swarm
approach. Our approach that we propose here belongs to
the category of metaheuristics. Differently from the study
presented in [19], we consider that the uncertainty is in
the time windows, not in the demands.

The structure of this paper is as follows. In section II, a
more formal problem definition is given. In section III,
our proposed metaheuristic is explained. In section IV,
we present our experimental results. Finally, in section V,
the conclusions are drawn.

II. PROBLEM DEFINITION

Let us now make more formal definitions of CVRPTW
and CVRPTWU. We can express these problems in terms
of G = (L, E), where L is the set of locations and E is the
set of edges representing the paths between locations. The
set of locations is defined as L = {0, 1, 2, ..., |L|-1}, 0
representing the depot, and the other contained integers
representing the index numbers of the customer locations.
The set of edges is defined as E = {(i, j) | i, j L, i j}.
For each edge (i, j) E, the associated data are which
represents the cost of traveling from location i to location
j; and which represents the time requirement for
traveling from location i to location j. Each customer at
location i (L \ {0}) has a demand . At the depot, the
demand is 0, therefore, = 0. A customer at location
i (L\{0}) must be served within the time window

[;]. If a vehicle arrives at the customer location i
before , it has to wait until . If a vehicle arrives at

the customer location i after , the solution is declared

infeasible. Also, serving a customer at location i takes

amount of time. We call the service time at location i.

At the depot, the service time is 0, therefore, = 0; also,
the time window of the depot is [0;]. The set of
vehicles is V, and the number of vehicles is |V|. The
capacity of a vehicle is denoted by Q.

Let us denote a solution for CVRPTW and
CVRPTWU by x. According to x, the route of the vehicle
v V is denoted by x[v]. The number of visits by the
vehicle v is denoted by |x[v]|. The k-th visited location of
the vehicle v within the solution x is denoted by x[v, k]. In
terms of a solution x, let us now define the constraints. A
vehicle v must start and end its route at the depot:

 x[v, 1] = x[v, |x[v]|] = 0 (1)

The non-depot locations visited by the vehicle v must
be valid customer locations:

x[v, k] (L\{0}) v V; k {2,3,...,|x[v]|-1} (2)

A vehicle v must not visit a customer more than once:
 x[v, k] x[v, k']

 v V; k, k' {2,3,...,|x[v]|-1}; k k' (3)

Two vehicles v, v' must not visit the same customer:

Journal of Traffic and Logistics Engineering Vol. 2, No. 1, March 2014

©2014 Engineering and Technology Publishing 53

 x[v, k] x[v', k']
 v, v' V; v v';

 k {2,3,...,|x[v]|-1}; k' {2,3,...,|x[v']|-1} (4)

The total demand of the customers which will be
visited by a vehicle v V must not exceed Q, the
capacity of a vehicle:

 (5)

In addition to the constraints (1), (2), (3), (4), and (5),
there are time window constraints which need to be
satisfied. To understand the basic idea, let us first
describe the time windows in deterministic (i.e. without
the consideration of uncertainty) CVRPTW. Let us
express the appearance time of a vehicle v V at its k-th

visited location, as . For the depot, we define the
appearance time of a vehicle as 0:

 = 0 v V (6)

The appearance time of vehicle v to its k-th location
(x[v, k]) is the sum of its appearance time on the location
x[v, k-1], service time of the location x[v, k-1], and the
travel time from x[v, k-1] to x[v, k]; or the beginning of
the time window of the location x[v, k], whichever one is
the higher one. So, the appearance times for the next
locations of a vehicle v are formulated like this:

 v V; k {2,3,...,|x[v]|} (7)

A vehicle must not appear after the time window
ending of a location:

 v V; k {1,2,...,|x[v]|} (8)

The cost of a solution x is defined as follows:

We are finally ready to make a complete definition of

the deterministic CVRPTW:

In CVRPTWU, however, the constraints (7) and (8)

can not be directly expressed, as they depend on the
travel times , which are under uncertainty. In
CVRPTWU, the uncertain travel times are expressed as

 [;] (i, j) E.
For handling the time window constraints under

uncertainty, let us first define the appearance time of a
vehicle v V at its k-th visited location, in the best-case
scenario (in which all the edge costs are assumed to be at

their minimum values), as . For the depot, we define
the best-case appearance time of a vehicle as 0:

 = 0 v V (9)

The best-case appearance times for the next locations of a
vehicle v are formulated like this (which is equivalent to
(7) with A replaced by A):

 v V; k {2,3,...,|x[v]|} (10)

At least in the best-case scenario, a vehicle must
satisfy all the deadlines imposed by the time windows:

 v V; k {1,2,...,|x[v]|} (11)

While the constraints (11) secure the solution
feasibility in the best-case scenario, there might be other
scenarios in which some deadlines are violated. Since we
would like to minimize the deadline violation
possibilities, we also need a function
TIMEWINDOWVIOLATIONPENALTY, which returns a
penalty value when a scenario in which a deadline is
violated.

The existence of a time window violating scenario can
be checked by calculating the maximum possible latency
of a vehicle to a destination. In more details, considering
a solution x, with maximum possible latency, if a vehicle

v arrives to its k-th destination later than , then it
becomes apparent that there is indeed at least one
scenario in which there is time window violation. For the
purpose of calculating the maximum latency of a vehicle
to a destination, let us use a function originally proposed
in [18], that we call ML in this study. The function ML is
configurable in terms of conservativeness: it depends on
an argument , which tells the function to assume that
number of the edges on the route will be perturbed
towards their worst case values in terms of their travel
time requirements, and the rest of the edges will stay at
their best case values. The function ML can be
formulated as follows:

Apart from the special cases, it can be seen that ML is

a recursive function: it depends on the results ML on the
previous destinations of the route, to find the maximum
latency for the k-th destination.

Now, let us define another function called ISLATE,
which checks, by using the function ML, if there is a
scenario in which the vehicle v of solution x is late for its
k-th destination. For the function ISLATE, we define a

Journal of Traffic and Logistics Engineering Vol. 2, No. 1, March 2014

©2014 Engineering and Technology Publishing 54

conservativeness degree relative to the length of the route
leading to the k-th destination, controlled by the
parameter . When = 0 there is no conservativeness at
all and all the edges on the path to x[v, k] are considered
at their best case values in terms of travel time
requirements. On the other hand, when = 1 there is full
conservativeness and all the edges on the path to x[v; k]
are considered at their worst case values. When = 0.5,
half of the edges on the path are considered at their worst
case values, and the other half are considered at their best
case values. The function ISLATE can be formulated as
follows:

Now, we are ready to make a definition of the function

TIME WINDOW VIOLATION PENALTY as:

where is a penalty factor, to be decided by the
decision maker, according to the importance of the
location i L.

We can now sum up the definition of CVRPTWU as
follows:

III. THE APPROACH

In this section, we first explain the ACS, and then the
RMACS approach, in which multiple ACSs are executed
concurrently.

A. The Ant Colony System

Let us start by making a general definition of an ACO
algorithm. On a combinatorial optimization problem like
the traveling salesman problem or the VRP, an ACO
algorithm generates its solutions by using artificial ants.
Artificial ants “walk” on the solution space, adding a new
decision to the solution at each step. When an ant
completes its walk, its solution is evaluated. After the
evaluation, artificial pheromones are left on the path that
was chosen by the ant. The amount of these artificial
pheromones depends on the result of the evaluation: more
pheromones are put for the better solutions. In the case of
a transportation problem like the VRP, the pheromones
are put on the edges that were chosen by the artificial ant,
and more pheromones are put on the edges of a solution
with lesser total travel cost. The function of the
pheromones is as follows: the artificial ants of the next

iterations, while making their decisions, are attracted
towards the choices that are marked by the pheromones.
More pheromones mean more attraction. This attraction
causes the ants to do local searches around successful
solutions known so far. After enough number of iterations,
artificial ants converge to a successful near-optimal
solution.

The ACS is an elitist ACO algorithm, based on the one
discussed in [15]. The term elitism means that only the
ants that have improved the best-known solutions during
the execution of the algorithm, are allowed to put
pheromones. The effect of this elitism is that, the ants are
encouraged to do their local searches only around the best
solutions.

We now give the technical details of the ACS. At first,
an initial solution x

init is generated according to the
nearest neighbourhood heuristic (NNH; see [20]). At the
beginning, this solution x

init is also the best-known
solution so far. Therefore, the variable that stores the best
solution, x

best, is equivalent to x
init at the beginning. The

ACS then iteratively activates generations of ants. At
each generation, ants are activated. If an ant finds a
solution x

better that is better than x
best, then that better

solution is assigned s the new best solution (i.e. x
best

x
better). New generations are activated iteratively, until the

execution time limit is reached.
An artificial ant constructs a solution by picking

customer locations one by one, by also adding the depot
location occasionally. The depot location must also be
picked for the very beginning and ending of the solution.
The resulting solution vector specifies which vehicle
visits which customers. A visit to the depot in the middle
of the solution signifies that the current vehicle is
returning to the depot and another vehicle is now to be
considered. For example, assuming that L = {0, 1, 2, 3}
and |V| = 2 if an artificial ant constructs a solution x = [0,
1, 2, 0, 3, 0], this means that the ant is suggesting that the
first vehicle should visit the customer 1 and then the
customer 2, and the second vehicle should visit the
customer 3. At each step, an artificial ant chooses its next
location from the visitable locations, where a visitable
location means a location that can be added without
violating the capacity constraint of the current vehicle,
and which has not been added to the solution vector yet if
it is a customer location. Considering an artificial ant that
has added location i most recently to the solution vector,
and now has to decide its next location j, we now make
the following definitions:

Journal of Traffic and Logistics Engineering Vol. 2, No. 1, March 2014

©2014 Engineering and Technology Publishing 55

: The set of visitable locations for the ant w;

: Euclidean distance between the locations i and j;
= 1 / : heuristic distance-wise attractiveness

factor (smaller distances give higher attractiveness
values);
: The amount of pheromone left on the edge (i, j);

: A parameter to configure the importance of distance-
wise attractiveness factor while an ant chooses its
location;

: A parameter to configure the balance of importance
between exploration and exploitation. With
probability , an ant chooses to do exploitation and

picks the location j by following the edge (i, j) that

gives the maximum value for . On the
other hand, with probability 1- , the ant chooses to
do exploration. In the case of exploration, the
probability for an ant w to pick location j is
formulated as follows:

At the beginning of the ACS execution, each edge (i, j)

is given the same amount of pheromone

, where

During the execution of the ACS, the pheromones

become updated in two ways: local update and global
update. The local update is a decrease of pheromones
over the edges that are walked by an ant, so that the other
ants in the same generation will be discouraged to make
very similar decisions. This update is done according to

the formulation , where is a
parameter which configures the amount of pheromone
decrease imposed by the local update. The global update
is an increase of pheromones over the edges used by xbest
at the end of each iteration, to attract the ants of the next
generations towards the choices of x

best. The global
update is done according to the formulation:

.
When the construction of a solution is complete, a

popular local-search algorithm called 3-opt is executed on
the solution. The details of 3-opt can be found in [21],
[22], [20].

B. The Robust Multiple Ant Colony System Approach

The RMACS approach depends on a set of parameters

 = { 1, 2, ..., | |}, which represents the collection
of the conservativeness degrees that are interesting to the
decision maker. In the RMACS approach, | | number
of ACSs are activated, each ACS focusing on a
conservativeness degree within the set . Until
seconds have passed, each ACS works by itself. After
seconds, ACSs start communicating with each other by
using a shared memory. This communication is done as
follows. At each seconds, each ant colony ColonyX
exports its best solution to the shared memory, and also
scans the best solutions exported by the other ant colonies,
to see if another colony ColonyY has a better solution
than the best solution of ColonyX according to the
conservativeness degree of ColonyX. If the best solution
of ColonyY is indeed better, ColonyX imports the solution
of ColonyY by making one of its artificial ants repeat the
decisions of written in the solution of ColonyY. With the
help of this solution sharing mechanism, an ant colony
can realize that it is stuck on a dominated solution and
can get unstuck by importing a better solution and by
improving that solution according to its own
conservativeness degree.

IV. EXPERIMENTAL RESULTS

In this section, we present our experiments. In these
experiments, we generate solution pools over various
CVRPTWU instances and analyze the effects of the
travel time uncertainty.

For the experiments, the Homberger instances
(available online at [23]) with 200 customers and with
vehicle capacity of 200 were used. These instances were
originally created for the deterministic CVRPTW in
which travel time uncertainty is not considered. To
convert these instances to CVRPTWU instances, the
following procedure was used: for each edge (i, j), the
interval for becomes [;

.
 RND(1, 1.1)], where

RND(a, b) means a random real number between a and b.
For each location i, the time window violation penalty
factor is given according to: .

The RMACS approach was implemented in C, and was
tested on the considered instances on a computer with
Intel Core 2 Duo P9600 @ 2.66GHz with 4GB of RAM,
with an execution time limit of 900 seconds. The settings

are: =0.99, =1, =0.1, =700, =5. The considered
conservativeness degrees are = {0, 0.25, 0.5, 1}.

The results are given in Table I. In the table, for each
instance, a solution pool is presented, where each row
represents a solution, represents the conservativeness
degree configuration of the ant colony that gave the
solution. To see how a solution would behave in different
situations, different conservativeness degree assumptions,
denoted by , were made, and the solution was evaluated
according to those assumptions. The results of the
evaluations (i.e. the total travel cost plus the time window
violation penalties, (x) for each solution x) are reported.
In the table, from the results, we can detect some patterns.
In some instances like c1_210, rc1_210, r1_2_2, rc1_2_6,
solution pools with solutions varying according to the
conservativeness degree are found. The interesting
behaviour here is that, for = 0, the cheapest solution is
found, but the objective value of this cheap solution is
quickly burdened by the time window violation penalties
as the value increases. On the other hand, with =1,
more expensive but completely robust solutions are found.
Intermediate solutions can be seen with =0.25 and/or

=0.5, Therefore, the trade-off between the cheapness
and robustness is visible. This trade-off is also visible in
instances like r1_2_1 and rc1_2_2, but the pattern in
these examples is not exactly the same: with =1, the
time window violation penalty is minimized, but not
completely gone. In some cases, there is a single solution
dominating the entire solution pool, as can be seen in, for
example, r1_2_3 and rc1_2_9. Finally, it can be noted
that, there might be some inconsistencies in the generated
solution pools. For example, in rc1_2_5, the solution with

=0.25 is better than the solution with =0 under the
assumption =0. The explanation for this behaviour
might be that the ant colony working on =0.25 found a
solution which dominates the solution of the ant colony
working on =0, but the global execution time was
reached before these colonies exchanged information.
However, even with inconsistencies, a tradeoff can be

Journal of Traffic and Logistics Engineering Vol. 2, No. 1, March 2014

©2014 Engineering and Technology Publishing 56

seen in the solution pool of rc1_2_5 between the solution
=0.25 (which dominates the solution =0), and the

solution =0.5 (which dominates the solution =1).

TABLE I: SOLUTION POOLS OBTAINED OVER INSTANCES WITH 200 CUSTOMERS

V. CONCLUSIONS

An implementation of RMACS was proposed for
solving the CVRPTWU. The RMACS approach
generates solution pools in which each solution has a
different robustness against the uncertainty. By analyzing
these solution pools, a decision maker can see the
tradeoff between cheapness and robustness, and this can
help her/him in making a practical decision.

ACKNOWLEDGMENT

N. E. Toklu was supported by Hasler Stiftung through
project 13002: “Matheuristic approaches for robust
optimization”.

REFERENCES

[1] G. B. Dantzig and J. H. Ramser. “The truck dispatching problem,”
Management Science, vol. 6, no. 1, pp. 80–91, 1959.

[2] G. Laporte, “The vehicle routing problem: An overview of exact
and approximate algorithms,” European Journal of Operational

Research, vol. 59, no. 3, pp. 345–358, 1992.
[3] P. Toth and D. Vigo, The Vehicle Routing Problem, P. Toth and D.

Vigo, Eds., Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, 2001.

[4] R. Baldacci, N. Christofides, and A. Mingozzi, “An exact
algorithm for the vehicle routing problem based on the set

Journal of Traffic and Logistics Engineering Vol. 2, No. 1, March 2014

©2014 Engineering and Technology Publishing 57

partitioning formulation with additional cuts,” Mathematical

Programming, vol. 115, no. 2, pp. 351–385, 2008.
[5] B. L. Golden, S. Raghavan, and E. A. Wasil, The Vehicle Routing

Problem: Latest Advances and New Challenges, vol. 43, Springer,
2008.

[6] R. Baldacci, P. Toth, and D. Vigo, “Exact algorithms for routing
problems under vehicle capacity constraints,” Annals of

Operations Research, vol. 175, no. 1, pp. 213–245, 2010.
[7] A. L. Soyster, “Convex programming with set-inclusive

constraints and applications to inexact linear programming,”
Operations Research, vol. 21, no. 5, pp. 1154–1157, 1973.

[8] P. Kouvelis and G. Yu, Robust Discrete Optimization and Its

Applications, Kluwer Academic Publishers, 1997.
[9] A. Ben-Tal and A. Nemirovski, “Robust solutions of linear

programming problems contaminated with uncertain data,”
Mathematical Programming, vol. 88, no. 3, pp. 411–424, 2000.

[10] D. Bertsimas and M. Sim, “Robust discrete optimization and
network flows,” Mathematical Programming, vol. 98, no. 1, pp.
49–71, 2003.

[11] M. Dorigo, V. Maniezzo, and A. Colorni, “Positive feedback as a
search strategy,” Technical Report, Dipartimento di Elettronica,
Politecnico di Milano, 1991.

[12] M. Dorigo, “Learning and natural algorithms,” PhD dissertation,
Politecnico di Milano, 1992.

[13] K. Deb, S. Gupta, D. Daum, J. Branke, A. K. Mall, and D.
Padmanabhan, “Reliability-based optimization using evolutionary
algorithms,” IEEE Transactions on Evalutionary Computations,
vol. 13, no. 5, 2009.

[14] N. E. Toklu, R. Montemanni, and L. M. Gambardella, “A robust
multiple ant colony system for the capacitated vehicle routing
problem,” in Proc. IEEE International Conf. on Systems, Man,

and Cybernetics, 2013.
[15] L. M. Gambardella, É. Taillard, and G. Agazzi, “MACS-VRPTW:

A multiple ant colony system for vehicle routing problems with
time windows,” in New Ideas in Optimization, McGraw- Hill,
1999, pp. 63–76.

[16] I. Sungur, F. Ordóñez, and M. Dessouky, “A robust optimization
approach for the capacitated vehicle routing problem with demand
uncertainty,” IIE Transactions, vol. 40, no. 5, pp. 509–523, 2008.

[17] C. Lee, K. Lee, and S. Park, “Robust vehicle routing problem with
deadlines and travel time/demand uncertainty,” Journal of the

Operational Research Society, vol. 63, no. 9, pp. 1294–1306, 2011.
[18] A. Agra, M. Christiansen, R. Figueiredo, Lars M. Hvattum, M.

Poss, and C. Requejo, “The robust vehicle routing problem with
time windows,” Computers and Operations Research, vol. 40, no.
3, pp. 856–866, 2013.

[19] B. F. Moghaddam, R. Ruiz, and S. J. Sadjadi, “Vehicle routing
problem with uncertain demands: An advanced particle swarm
algorithm,” Computers & Industrial Engineering, vol. 62, no. 1,
pp. 306–317, 2012.

[20] D. S. Johnson and L. A. McGeoch, “The traveling salesman
problem: A case study in local optimization,” Local Search in

Combinatorial Optimization, pp. 215–310, 1997.

[21] G.A. Croes. “A method for solving traveling-salesman problems,”
Operations Research, vol. 6, nol. 6, pp. 791–812, 1958.

[22] S. Lin. “Computer solutions of the traveling salesman problem,”
Bell System Technical Journal, vol. 44, no. 10, pp. 2245–2269,
1965.

Nihat Engin Toklu received his Bachelor’s
degree in Computer Engineering from Eastern
Mediterranean University in Famagusta,
Northern Cyprus in 2007, and his Master’s
degree in Mechatronics Engineering from
Dokuz Eylül University in Izmir, Turkey in
2009. His research interests are metaheuristics,
matheuristics and robust optimization.
Affiliated with IDSIA and the Informatics
department of University of Lugano in

Switzerland, he is currently pursuing a Ph.D. degree.

Luca Maria Gambardella received a
Scientific License at Scientific Liceum G.B.
Grassi, Saronno, Italy, in 1980, and a Laurea
in Information Science in Università degli
Studi di Pisa in 1985. His research on bio-
inspired distributed optimization algorithms
has led to the publication of several state-of-
the-art methodologies for solving popular
combinatorial optimization problems like the
traveling salesman problem and the vehicle
routing problem with time windows, the

quadratic assignment problem, the sequential ordering problems, and
the flexible job shop problem.
Since 1995, he is the co-director of IDSIA, and is also responsible for
the Intelligence Systems masters program at the Informatics department
of the University of Lugano.

Roberto Montemanni obtained a Laurea
degree in Computer Science from the
University of Bologna, Italy in 1999 and a
Ph.D. in Applied Mathematics from the
University of Glamorgan, UK in 2002. His
research interests are mathematical
programming modeling and development of
heuristic algorithms for solving optimization
problems.
He is Professor of Advanced Algorithms at

the University of Applied Sciences of Southern Switzerland, and
Lecturer at the University of Lugano, Switzerland. He also holds a
Senior Researcher position at IDSIA.

Journal of Traffic and Logistics Engineering Vol. 2, No. 1, March 2014

©2014 Engineering and Technology Publishing 58

[23] NEO Networking and Emerging Optimization. (2012).
Capacitated vrp with time windows instances. [Online]. Available:
http://neo.lcc.uma.es/vrp/vrp-instances/ capacitated-vrp-with-time-
windows-instances/

