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
Abstract—In this paper, we study the capacitated vehicle 
routing problem with time window constraints, under travel 
time uncertainty. The uncertainty here represents the 
perturbation on the data caused by the effects of the 
unpredictable events in the reality, like traffic jams, road 
constructions, etc. To be able to near-optimally solve the 
large-instances of this problem without encountering 
memory errors or without taking too much time, we propose 
a heuristic approach based on ant colony optimization, 
which generates multiple solutions at the end of its execution, 
each solution with a different protection against the 
uncertainty. The trade-off between robustness and 
cheapness shown by these generated multiple solutions are 
then discussed. 
 

Index Terms—vehicle routing problem, time window 
constraints, robust optimization, metaheuristics 
 

I. INTRODUCTION 

In the vehicle routing problem (VRP; see the related 
reading material [1]-[6]) the goal is to transport the goods 
stored in a depot to the customers waiting at various 
locations, where the routes of the available are decided in 
such a way that the total cost of the travels is as low as 
possible. An extension to VRP is the capacitated VRP 
(CVRP), where each vehicle has a carrying capacity. In 
CVRP, one must schedule the vehicles such that, the 
capacity of each vehicle will be enough to serve all the 
customers on its route without intermediate visits to the 
depot. A further extension on CVRP is CVRP with time 
window constraints (CVRPTW). In CVRPTW, each 
customer must be served within a time window. If a 
vehicle arrives earlier than the beginning of a time 
window, it must wait at that location until the beginning 
of that time window. If, according to a CVRPTW 
solution, a vehicle arrives later than the ending of a time 
window, that solution is declared infeasible. 

A classical approach in the field of optimization is to 
assume that the data is known exactly. With this 
assumption, the problem data are expressed as fixed 
numbers. An argument against this kind of assumption is 
that, in the reality the problem data is subject to 

                                                           
Manuscript received January 5, 2014; revised March 25, 2014. 

 

uncertainty because of the unpredictable factors in the 
environment (which are, in the case of VRP, traffic jams, 
road constructions, etc.). Ignoring this uncertainty might 
cause undesirable situations: a solution which is optimal 
according to the optimization model might turn out to be 
far from optimality, or even infeasible, when applied in 
the reality. To prevent this undesired situation, alternative 
schools of thoughts have been gaining popularity in the 
last decade. One such such school of thought is robust 
optimization [7]-[10]. In robust optimization, the 
existence of uncertainty is accepted, and the uncertain 
data is expressed as discrete collections or continuous 
intervals of possible value outcomes. Given that a 
scenario is a set of assumptions on which values will be 
encountered out of these discrete collections or intervals, 
the goal of robust optimization is to find a solution which 
does not go too bad and/or become infeasible on most or 
all scenarios. 

In modern robust optimization, an important concept is 
the degree of conservativeness, which means the level of 
pessimistic thinking of the decision maker, during the 
optimization process. A non-conservative approach 
would be to assume that there is no uncertainty-caused 
data perturbation at all. On the other hand, A fully 
conservative approach would be to assume that all of the 
problem data is perturbed by the uncertainty, towards 
their worst possible values. Finally, a partially 
conservative approach would be to assume that some of 
the problem data is perturbed towards their worst possible 
values, and the rest will be at their better (or best) 
possible values. As the conservativeness degree increases, 
solutions that are better protected against the uncertainty 
can be found. However, in a too conservative solution, 
the opportunity of being close to optimality is given up in 
more optimistic scenarios, as the focus is on the 
pessimistic scenarios. Therefore, it is a trade-off. 

In this paper, we follow the school of robust 
optimization, and we study a CVRPTW with uncertain 
travel times (CVRPTWU). In CVRPTWU, we express 
the uncertain travel times as intervals. The challenge in 
CVRPTWU is to handle the time window constraints, as 
the feasibility of a solution depends on the uncertain 
travel times. 

Here, we propose an ant colony optimization (ACO; 
see [11] and [12]) algorithm. ACO can be defined as a 
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class of metaheuristic algorithms. The purpose of using a 
metaheuristic is to make sure that larger problem 
instances can be solved to near-optimality without 
demanding too much memory and/or too much execution 
time. An ACO algorithm simulates the behavior of the 
ants in the nature on a solution space. The inspiration of 
ACO is as follows. In the nature, the ants get out of their 
nests to reach a food source. In the beginning, various 
ants reach to the food source by using various paths and 
they mark the path they choose by leaving their 
pheromones. The ants that choose shorter paths can go 
back and forth more frequently to the food source, 
increasing their pheromones on their paths. The other ants 
that are influenced by the pheromones also get attracted 
to these shorter paths, leaving their own pheromones, 
thus increasing the total pheromones on shorter paths 
even more. Therefore, as the better solutions (shorter 
paths) get more pheromones, in the end, most of the ants 
gather around the best solution known so far. 

For analyzing the effects of the uncertainty on the 
problem at hand, a useful thing to have for the decision 
maker, is a solution pool, in which each solution has its 
own conservativeness degree. By comparing the solutions 
in a solution pool to each other, and by evaluating the 
trade-off shown by these solutions, a decision maker can 
pick the most practical solution. A popular study in this 
field is [13], there the authors consider the problems with 
random variables behaving according to known 
probability distributions, and they propose a 
multiobjective, non-dominated sorting genetic algorithm 
(NSGA-II) based approach generating a population of 
solutions with various reliabilities (i.e. probabilities of 
staying feasible). In [14], a robust multiple ant colony 
system (RMACS) was proposed for generating solution 
pools for CVRP with uncertain travel costs. In RMACS, 
ant colony systems (ACS, an elitist ACO variation; see 
[15]) work concurrently, each colony focusing on a 
different conservativeness degree. As they work 
concurrently, these colonies share their best solutions 
periodically with each other, so that a colony becomes 
aware if it is stuck on a dominated solution and gets 
unstuck by importing a better solution from another 
colony. In the end, the best solutions of these multiple 
ACSs are collected in a solution pool. In this study, we 
use RMACS for solving CVRPTWU. 

Previous studies on VRP with robust optimization 
considerations are available in the literature. In [16], a 
mathematical programming approach is taken to solve a 
VRP where there is uncertainty in the customer demands. 
In [17], a robust mathematical model for VRP with 
deadlines is proposed, and, in [18], robust mathematical 
models for CVRPTWU are proposed. The methods listed 
above are exact methods, as they are designed to find the 
optimal values, given enough time. However, for larger 
instances, exact methods might end up taking too much 
time and memory (for example, in [18], instances only up 
to 50 customers were reported, possibly a limitation 
brought by the time and memory requirements). In the 
situations where the decision maker wants a near-optimal 
solution, within a limited amount of time, without 

demanding for too much memory, metaheuristic 
approaches can be used. Within the category of 
metaheuristics, a previous study is [19], where a VRP 
with uncertain demands is solved by a particle swarm 
approach. Our approach that we propose here belongs to 
the category of metaheuristics. Differently from the study 
presented in [19], we consider that the uncertainty is in 
the time windows, not in the demands. 

The structure of this paper is as follows. In section II, a 
more formal problem definition is given. In section III, 
our proposed metaheuristic is explained. In section IV, 
we present our experimental results. Finally, in section V, 
the conclusions are drawn. 

II. PROBLEM DEFINITION 

Let us now make more formal definitions of CVRPTW 
and CVRPTWU. We can express these problems in terms 
of G = (L, E), where L is the set of locations and E is the 
set of edges representing the paths between locations. The 
set of locations is defined as L = {0, 1, 2, ..., |L|-1}, 0 
representing the depot, and the other contained integers 
representing the index numbers of the customer locations. 
The set of edges is defined as  E = {(i, j) | i, j  L, i  j}. 
For each edge (i, j)  E, the associated data are  which 
represents the cost of traveling from location i to location 
j; and  which represents the time requirement for 
traveling from location i to location j. Each customer at 
location i  (L \ {0}) has a demand . At the depot, the 
demand is 0, therefore,  = 0. A customer at location 
i (L\{0}) must be served within the time window 

[ ; ]. If a vehicle arrives at the customer location i 
before , it has to wait until . If a vehicle arrives at 

the customer location i after , the solution is declared 

infeasible. Also, serving a customer at location i takes  

amount of time. We call  the service time at location i. 

At the depot, the service time is 0, therefore,  = 0; also, 
the time window of the depot is [0; ]. The set of 
vehicles is V, and the number of vehicles is |V|. The 
capacity of a vehicle is denoted by Q. 

Let us denote a solution for CVRPTW and 
CVRPTWU by x. According to x, the route of the vehicle 
v  V is denoted by x[v]. The number of visits by the 
vehicle v is denoted by |x[v]|. The k-th visited location of 
the vehicle v within the solution x is denoted by x[v, k]. In 
terms of a solution x, let us now define the constraints. A 
vehicle v must start and end its route at the depot: 

 x[v, 1] = x[v, |x[v]| ] = 0 (1) 

The non-depot locations visited by the vehicle v must 
be valid customer locations: 

x[v, k]  (L\{0})  v V; k {2,3,...,|x[v]|-1}       (2) 

A vehicle v must not visit a customer more than once: 
 x[v, k]  x[v, k' ] 

  v  V; k, k' {2,3,...,|x[v]|-1}; k  k'        (3) 

Two vehicles v, v' must not visit the same customer: 
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 x[v, k]  x[v', k' ] 
   v, v'  V; v  v'; 

    k {2,3,...,|x[v]|-1}; k' {2,3,...,|x[v' ]|-1}        (4) 

The total demand of the customers which will be 
visited by a vehicle v  V must not exceed Q, the 
capacity of a vehicle: 

      (5) 

In addition to the constraints (1), (2), (3), (4), and (5), 
there are time window constraints which need to be 
satisfied. To understand the basic idea, let us first 
describe the time windows in deterministic (i.e. without 
the consideration of uncertainty) CVRPTW. Let us 
express the appearance time of a vehicle v  V at its k-th 

visited location, as . For the depot, we define the 
appearance time of a vehicle as 0: 

 = 0    v  V                        (6) 

The appearance time of vehicle v to its k-th location   
(x[v, k]) is the sum of its appearance time on the location 
x[v, k-1], service time of the location x[v, k-1], and the 
travel time from x[v, k-1] to x[v, k]; or the beginning of 
the time window of the location x[v, k], whichever one is 
the higher one. So, the appearance times for the next 
locations of a vehicle v are formulated like this: 

 

                     v  V; k {2,3,...,|x[v]|}                (7) 

A vehicle must not appear after the time window 
ending of a location: 

    v  V; k {1,2,...,|x[v]|}           (8) 

The cost of a solution x is defined as follows: 

 
We are finally ready to make a complete definition of 

the deterministic CVRPTW: 

 
In CVRPTWU, however, the constraints (7) and (8) 

can not be directly expressed, as they depend on the 
travel times , which are under uncertainty. In 
CVRPTWU, the uncertain travel times are expressed as 

  [  ; ] (i, j)  E. 
For handling the time window constraints under 

uncertainty, let us first define the appearance time of a 
vehicle v  V at its k-th visited location, in the best-case 
scenario (in which all the edge costs are assumed to be at 

their minimum values), as . For the depot, we define 
the best-case appearance time of a vehicle as 0: 

 = 0    v  V                                 (9) 

The best-case appearance times for the next locations of a 
vehicle v are formulated like this (which is equivalent to 
(7) with A replaced by A): 

 

            v  V; k {2,3,...,|x[v]|}                     (10) 

At least in the best-case scenario, a vehicle must 
satisfy all the deadlines imposed by the time windows: 

   v  V; k {1,2,...,|x[v]|}           (11) 

While the constraints (11) secure the solution 
feasibility in the best-case scenario, there might be other 
scenarios in which some deadlines are violated. Since we 
would like to minimize the deadline violation 
possibilities, we also need a function 
TIMEWINDOWVIOLATIONPENALTY, which returns a 
penalty value when a scenario in which a deadline is 
violated. 

The existence of a time window violating scenario can 
be checked by calculating the maximum possible latency 
of a vehicle to a destination. In more details, considering 
a solution x, with maximum possible latency, if a vehicle 

v arrives to its k-th destination later than , then it 
becomes apparent that there is indeed at least one 
scenario in which there is time window violation. For the 
purpose of calculating the maximum latency of a vehicle 
to a destination, let us use a function originally proposed 
in [18], that we call ML in this study. The function ML is 
configurable in terms of conservativeness: it depends on 
an argument , which tells the function to assume that  
number of the edges on the route will be perturbed 
towards their worst case values in terms of their travel 
time requirements, and the rest of the edges will stay at 
their best case values. The function ML can be 
formulated as follows: 

 
Apart from the special cases, it can be seen that ML is 

a recursive function: it depends on the results ML on the 
previous destinations of the route, to find the maximum 
latency for the k-th destination. 

Now, let us define another function called ISLATE, 
which checks, by using the function ML, if there is a 
scenario in which the vehicle v of solution x is late for its 
k-th destination. For the function ISLATE, we define a 
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conservativeness degree relative to the length of the route 
leading to the k-th destination, controlled by the 
parameter . When  = 0 there is no conservativeness at 
all and all the edges on the path to x[v, k] are considered 
at their best case values in terms of travel time 
requirements. On the other hand, when  = 1 there is full 
conservativeness and all the edges on the path to x[v; k] 
are considered at their worst case values. When  = 0.5, 
half of the edges on the path are considered at their worst 
case values, and the other half are considered at their best 
case values. The function ISLATE can be formulated as 
follows: 

 
Now, we are ready to make a definition of the function 

TIME WINDOW VIOLATION PENALTY as: 

 

where  is a penalty factor, to be decided by the 
decision maker, according to the importance of the 
location i  L. 

We can now sum up the definition of CVRPTWU as 
follows: 

 

III. THE APPROACH 

In this section, we first explain the ACS, and then the 
RMACS approach, in which multiple ACSs are executed 
concurrently. 

A. The Ant Colony System 

Let us start by making a general definition of an ACO 
algorithm. On a combinatorial optimization problem like 
the traveling salesman problem or the VRP, an ACO 
algorithm generates its solutions by using artificial ants. 
Artificial ants “walk” on the solution space, adding a new 
decision to the solution at each step. When an ant 
completes its walk, its solution is evaluated. After the 
evaluation, artificial pheromones are left on the path that 
was chosen by the ant. The amount of these artificial 
pheromones depends on the result of the evaluation: more 
pheromones are put for the better solutions. In the case of 
a transportation problem like the VRP, the pheromones 
are put on the edges that were chosen by the artificial ant, 
and more pheromones are put on the edges of a solution 
with lesser total travel cost. The function of the 
pheromones is as follows: the artificial ants of the next 

iterations, while making their decisions, are attracted 
towards the choices that are marked by the pheromones. 
More pheromones mean more attraction. This attraction 
causes the ants to do local searches around successful 
solutions known so far. After enough number of iterations, 
artificial ants converge to a successful near-optimal 
solution. 

The ACS is an elitist ACO algorithm, based on the one 
discussed in [15]. The term elitism means that only the 
ants that have improved the best-known solutions during 
the execution of the algorithm, are allowed to put 
pheromones. The effect of this elitism is that, the ants are 
encouraged to do their local searches only around the best 
solutions. 

We now give the technical details of the ACS. At first, 
an initial solution x

init is generated according to the 
nearest neighbourhood heuristic (NNH; see [20]). At the 
beginning, this solution x

init is also the best-known 
solution so far. Therefore, the variable that stores the best 
solution, x

best, is equivalent to x
init at the beginning. The 

ACS then iteratively activates generations of ants. At 
each generation,  ants are activated. If an ant finds a 
solution x

better that is better than x
best, then that better 

solution is assigned s the new best solution (i.e. x
best  

x
better). New generations are activated iteratively, until the 

execution time limit is reached. 
An artificial ant constructs a solution by picking 

customer locations one by one, by also adding the depot 
location occasionally. The depot location must also be 
picked for the very beginning and ending of the solution. 
The resulting solution vector specifies which vehicle 
visits which customers. A visit to the depot in the middle 
of the solution signifies that the current vehicle is 
returning to the depot and another vehicle is now to be 
considered. For example, assuming that L = {0, 1, 2, 3} 
and |V| = 2 if an artificial ant constructs a solution x = [0, 
1, 2, 0, 3, 0], this means that the ant is suggesting that the 
first vehicle should visit the customer 1 and then the 
customer 2, and the second vehicle should visit the 
customer 3. At each step, an artificial ant chooses its next 
location from the visitable locations, where a visitable 
location means a location that can be added without 
violating the capacity constraint of the current vehicle, 
and which has not been added to the solution vector yet if 
it is a customer location. Considering an artificial ant that 
has added location i most recently to the solution vector, 
and now has to decide its next location j, we now make 
the following definitions: 
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: The set of visitable locations for the ant w;

: Euclidean distance between the locations i and j;
= 1 / : heuristic distance-wise attractiveness 

factor (smaller distances give higher attractiveness 
values);
: The amount of pheromone left on the edge (i, j);

: A parameter to configure the importance of distance-
wise attractiveness factor while an ant chooses its 
location;

: A parameter to configure the balance of importance 
between exploration and exploitation. With 
probability , an ant chooses to do exploitation and 



picks the location j by following the edge (i, j) that 

gives the maximum value for . On the 
other hand, with probability 1- , the ant chooses to 
do exploration. In the case of exploration, the 
probability for an ant w to pick location j is 
formulated as follows: 

 
At the beginning of the ACS execution, each edge (i, j) 

is given the same amount of pheromone   

, where  

 
During the execution of the ACS, the pheromones 

become updated in two ways: local update and global 
update. The local update is a decrease of pheromones 
over the edges that are walked by an ant, so that the other 
ants in the same generation will be discouraged to make 
very similar decisions. This update is done according to 

the formulation  , where  is a 
parameter which configures the amount of pheromone 
decrease imposed by the local update. The global update 
is an increase of pheromones over the edges used by xbest 
at the end of each iteration, to attract the ants of the next 
generations towards the choices of x

best. The global 
update is done according to the formulation: 

. 
When the construction of a solution is complete, a 

popular local-search algorithm called 3-opt is executed on 
the solution. The details of 3-opt can be found in [21], 
[22], [20]. 

B. The Robust Multiple Ant Colony System Approach 

The RMACS approach depends on a set of parameters 

 = { 1, 2, ..., | |}, which represents the collection 
of the conservativeness degrees that are interesting to the 
decision maker. In the RMACS approach, | | number 
of ACSs are activated, each ACS focusing on a 
conservativeness degree within the set . Until  
seconds have passed, each ACS works by itself. After  
seconds, ACSs start communicating with each other by 
using a shared memory. This communication is done as 
follows. At each  seconds, each ant colony ColonyX 
exports its best solution to the shared memory, and also 
scans the best solutions exported by the other ant colonies, 
to see if another colony ColonyY has a better solution 
than the best solution of ColonyX according to the 
conservativeness degree of ColonyX. If the best solution 
of ColonyY is indeed better, ColonyX imports the solution 
of ColonyY by making one of its artificial ants repeat the 
decisions of written in the solution of ColonyY. With the 
help of this solution sharing mechanism, an ant colony 
can realize that it is stuck on a dominated solution and 
can get unstuck by importing a better solution and by 
improving that solution according to its own 
conservativeness degree. 

IV. EXPERIMENTAL RESULTS 

In this section, we present our experiments. In these 
experiments, we generate solution pools over various 
CVRPTWU instances and analyze the effects of the 
travel time uncertainty. 

For the experiments, the Homberger instances 
(available online at [23]) with 200 customers and with 
vehicle capacity of 200 were used. These instances were 
originally created for the deterministic CVRPTW in 
which travel time uncertainty is not considered. To 
convert these instances to CVRPTWU instances, the 
following procedure was used: for each edge (i, j), the 
interval for  becomes [ ;  

.
 RND(1, 1.1) ], where 

RND(a, b) means a random real number between a and b. 
For each location i, the time window violation penalty 
factor is given according to: . 

The RMACS approach was implemented in C, and was 
tested on the considered instances on a computer with 
Intel Core 2 Duo P9600 @ 2.66GHz with 4GB of RAM, 
with an execution time limit of 900 seconds. The settings 

are: =0.99, =1, =0.1, =700, =5. The considered 
conservativeness degrees are = {0, 0.25, 0.5, 1}. 

The results are given in Table I. In the table, for each 
instance, a solution pool is presented, where each row 
represents a solution,  represents the conservativeness 
degree configuration of the ant colony that gave the 
solution. To see how a solution would behave in different 
situations, different conservativeness degree assumptions, 
denoted by , were made, and the solution was evaluated 
according to those assumptions. The results of the 
evaluations (i.e. the total travel cost plus the time window 
violation penalties, (x) for each solution x) are reported. 
In the table, from the results, we can detect some patterns. 
In some instances like c1_210, rc1_210, r1_2_2, rc1_2_6, 
solution pools with solutions varying according to the 
conservativeness degree are found. The interesting 
behaviour here is that, for   = 0, the cheapest solution is 
found, but the objective value of this cheap solution is 
quickly burdened by the time window violation penalties 
as the  value increases. On the other hand, with =1, 
more expensive but completely robust solutions are found. 
Intermediate solutions can be seen with =0.25 and/or 

=0.5, Therefore, the trade-off between the cheapness 
and robustness is visible. This trade-off is also visible in 
instances like r1_2_1 and rc1_2_2, but the pattern in 
these examples is not exactly the same: with =1, the 
time window violation penalty is minimized, but not 
completely gone. In some cases, there is a single solution 
dominating the entire solution pool, as can be seen in, for 
example, r1_2_3 and rc1_2_9. Finally, it can be noted 
that, there might be some inconsistencies in the generated 
solution pools. For example, in rc1_2_5, the solution with 

=0.25 is better than the solution with =0 under the 
assumption =0. The explanation for this behaviour 
might be that the ant colony working on =0.25 found a 
solution which dominates the solution of the ant colony 
working on =0, but the global execution time was 
reached before these colonies exchanged information. 
However, even with inconsistencies, a tradeoff can be 
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seen in the solution pool of rc1_2_5 between the solution 
=0.25 (which dominates the solution =0), and the 

solution =0.5 (which dominates the solution =1). 

TABLE I:   SOLUTION POOLS OBTAINED OVER INSTANCES WITH 200 CUSTOMERS 

 
 

V. CONCLUSIONS 

An implementation of RMACS was proposed for 
solving the CVRPTWU. The RMACS approach 
generates solution pools in which each solution has a 
different robustness against the uncertainty. By analyzing 
these solution pools, a decision maker can see the 
tradeoff between cheapness and robustness, and this can 
help her/him in making a practical decision. 
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