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Abstract— This paper presents a novel feature descriptor-
based calibration pattern and a Matlab toolbox which uses tle
specially designed pattern to easily calibrate both the imtn-
sics and extrinsics of a multiple-camera system. In contrds
to existing calibration patterns, in particular, the ubiquitous
chessboard, the proposed pattern contains many more featas
of varying scales; such features can be easily and automadilty
detected. The proposed toolbox supports the calibration of
a camera system which can comprise either normal pinhole
cameras or catadioptric cameras. The calibration only reqires
that neighboring cameras observe parts of the calibration
pattern at the same time; the observed parts may not overlap
at all. No overlapping fields of view are assumed for the
camera system. We show that the toolbox can easily be used to
automatically calibrate camera systems.

I. INTRODUCTION

Multiple-camera systems have become increasingly preva-
lent in robotics and computer vision research. These sygstem
1. Top: The proposed calibration pattern. Bottom: Isnagmponents
include stereo cameras, Point Grey’s Ladybug multi- came{;@m noise at different frequencies.
systems, and a large variety of customized camera systems.
Multiple-camera systems usually comprise normal pinhole

cameras, fish-eye cameras and catadioptric cameras. To mak@ cameras, these toolboxes [6], [7] can be used. These
such systems usable, both the intrinsics and extrinsicseof tcalibration toolboxes make use of the overlapping fields of
cameras have to be calibrated accurately. view of the cameras; hence, these toolboxes can calibrate
both a stereo camera and a circular camera rig with all
A. Related work cameras pointing inwards. However, these toolboxes are not
Recently, many efficient methods have been developeditable for calibrating a system of cameras with either no
for intrinsic calibration of many types of cameras. Theser minimal overlapping fields of view. Camera rigs with
methods can be divided into two categories: calibratiom witcameras pointing outwards are increasingly popular in both
a special calibration object, and self-calibration. Irsthaper, academia and industry; it is not easy to calibrate this ayste
we focus on the former category which is usually much morasing existing calibration toolboxes due to the minimal
accurate than self-calibration. Many toolboxes are alla overlapping fields of view. Hand-eye calibration algorigfhm
for this category of methods. Seminal work on calibrating 8], [9] can be used to calibrate this system but requires
pinhole camera can be found in [1]. Some popular calibratioreconstructing visual odometry for each camera, and the
toolboxes [2], [3] are inspired by this method. For genericalibration is often not accurate due to visual odometrit.dri
cameras, [4] proposes a toolbox to use a polynomial to In addition to camera models, research has also focused
approximate rays corresponding to each image point. Thism development of easy-to-use calibration patterns. Early
method generically applies to most camera models but doessearch made use of cubes with either a chessboard pattern
not provide a closed-form solution for undistorting rawor circular dots on their surfaces [2]. This pattern is not
images. In the toolbox proposed in [5], an unified projectioconvenient to use as a perfect cube is not trivial to build.
model is proposed for calibrating a catadioptric systerh; fis Current state-of-art calibration systems mainly make uUse o
eye camera and camera-spherical mirror system. This modgellibration boards which are often planes with a chessboard
is similar to [4] but parameterizes rays instead of usingr circular dots printed on them. An automatic detector
an arbitrary polynomial, which makes undistortion mucHor such patterns is readily available [10]. A comparison
simpler. of calibration accuracy between a chessboard and circular
Some toolboxes are also available to calibrate simpldots can be found in [11]. [7] uses a similar but even
multiple-camera systems. [2] enables one to calibrate rmore simplified calibration object, a single point lighty fo
stereo camera. For calibration with a system of more thatalibrating multiple-camera systems. One disadvantage of



these patterns is that the entire pattern has to be visible in [1. CALIBRATION PATTERN
each calibration image; this requirement excludes camergs
with minimal overlapping fields of view. In addition to =~ o o _
the chesshoard and circular dots, other patterns have beefoint-feature detection is a computer vision technique
proposed. [12] uses a temporal coded pattern to calibratddely and _successful!y applied to many areas such as sparse
cameras. This method uses the Gray code to match wofgconstruction and object detection. A point feature tg(hyc
points to image points, thus not requiring the entire patter CONtains two components: a keypoint and a descriptor. We
be in the image. The drawback of this method is the limite}P0k at the widely-used SIFT implementation [13] as a

flexibility; the calibration requires both a display projec €xample. A Difference of Gaussian filter (DoG) is used
and a tripod for mounting a camera. to detect keypoints. This detection is executed on both the

dot patterns Lgginal image and downsampled images; in short, keypoint

In summary, the chessboard and circular- T . ;
widely recognized as the state-of-art for calibrating king _detectlon is done on different scales. For each keypoist, th

and stereo cameras, for their ease-of-use and high cadibrat'Mage gradient in the keypoint's neighborhood is converted

accuracy. However, for a system with multiple cameras poinf® @ histogram which is then used as the descriptor for
ing in different directions, it is difficult to use these tbokes "€ corresponding feature point. SURF, a variant of SIFT,

to calibrate the extrinsics of the camera system. This § @IS0 @ widely-used technique for feature detection and

because current automatic and semi-automatic chessboSRFCriPtor extraction [14]. SURF replaces SIFT in many
detectors require the chessboard to be entirely within trfgPPlications due to the its computational efficiency. In the
field of view of the cameras. Therefore, if two camera@rOPosed toolbox, we use SURF features.

have minimal overlapping fields of view, it is difficult to B
use the chesshoard for extrinsic calibration in contrast to’
stereo camera calibration. To the best of our knowledgeethe The basic idea behind the proposed calibration pattern is
are no published calibration toolboxes for easily calingt t0 find and design a pattern that yields a high number of

multiple-camera systems with minimal overlapping fields oflétectable features. At the same time, the feature desrsipt
view. should be highly discriminative so that we can easily obtain

unigue feature point matches.
To facilitate feature detection, we use several noise image
to compose a calibration pattern in accordance with the

In this paper, we solve the calibration problem for gnechanism of SIFT/SURF. The DoG filter applied to a
multiple-camera system without assuming overlappingdield0iS€ image can yield points with high response. However,
of view. The basic motivation is to relax the requirement tha? Problem with high-frequency image noise is the blurring
the calibration pattern be seen in its entirety by each came€ffect. For a grayscale image, if the camera is located far
ideally, the calibration board is automatically detectedre away, the noise image is perceived as a purely gray image.
when the cameras observe different parts of the board. Fbpe solution to this problem is to compose images with noise
most multiple-camera systems, it is fairly common for a camfom multiple scales. In our implementation, we generate
era pair to see different parts of a suitably-sized caliorat Noise images of different sizes, and resize them such that
board at the same time. Based on this motivation, we desid#y have the same size. These images with noise on different
a feature descriptor-based calibration pattern whichsy ea Scales are then added up together. This procedure can be

detect even when seen partially by a camera, and an extrindierpreted as a reverse engineering of the scaling proeedu
calibration framework using this pattern. in SIFT/SURF detection. Thus, the resulting image contains

a high number of detectable features on different scale$; su

features can be detected by a camera at varying distances.

1) A new calibration pattern that encodes feature pointfne Matlab code in figure 2 generateétd x 800 calibration
using feature extraction techniques. Our pattern Cofyattern. Figure 1 shows a calibration pattern at the top, and

tains many detectable features on multiple scales &g components with noise on different scales at the bottom.
illustrated in section Il. The pattern can be recognized

and localized even if the pattern is partially seen in aC. Feature Matching

Image. L Feature detection and feature matching between two im-
2) A FOOIbOX based on the praposed cghb_rat!on patte”};(ges are two standard steps in a modern 3D vision pipeline.
This toolbox can be used for both intrinsic and exy," ¢ calibration approach, we employ a similar step to
ansm cah_bra‘uon_ of a muIUpIe-qamera syste_m., 3%atch features between each image and the known cal-
illustrated in sections Il and IV. Similarly t0 existing i ation pattern image. First, features detected from each
_call_bra_\tlon t_oolb_oxes, our_toolbox can also be used fq[fnage and the pattern image are matched according to the
intrinsic calibration of a single camera. descriptor similarity. We use the well-known distance aati
We note that our approach is similar to standard structureheck proposed in [13]. For a set of at least 2 candidate
from-motion approaches; the main difference is that we useatches for each query feature, the best match is accepted
points with known 3D coordinates. only if its descriptor distance is smaller than 0.6 times the

Feature Detection Revisited

Reverse Engineering

B. Contributions

This paper makes two novel contributions:



N = 600; M = 800;
pattern = 0; count = O;
m = 4;
while m< M
n =round(N/ Mx*x m;
noi se = rand(n, m;
noi se = inresize(noise, [N M);
pattern = pattern + noi se;
count = count + 1;

IIl. SINGLE-CAMERA CALIBRATION

A single-camera calibration estimates the camera intinsi
and the poses of the calibration pattern with respect to
the camera’s coordinate system. This data from the single-
camera calibration is used by the multiple-camera extrinsi
calibration.

A. Camera Model

m=mx* 2,
end _ _ Consider a pointu,v,v)" on an image plane with focal
Sg: : gm _ E?tst ga?pé{ t g?ﬂ)m length equal toy and principal point{0,0)". It corresponds
i mshow( pat t ern) ' to a ray with direction(u, v, f(u,v))" which goes through

the origin of the camera’s coordinate system. This ray
definition unifies the various projection models via differe
definitions of f(u,v). For the pinhole projection model,

fu,v) =7 (5)

Fig. 2. Matlab code for pattern generation.

descriptor distance between the query feature and its decon

best match. ] ) ) o . For the unified projection model with its lens distortion
Next, afundamental matrix for radial distortioris esti- parametet — 1,

mated by RANSAC between the image points and pattern '

points to find inlier point correspondences. Note that this flu,v) = J_ ip2 (6)

fundamental matrix is not the same matrix used in tradifiona 2 2y

epipolar geometry. The traditional matrix requires thahpo where p = Vu2 + v2. Details about equation 6 can be
correspondences have image coordinates correspondingfd@nd in [5]. For the Taylor projection model;(u,v) is

be found in [15]. We provide some simple explanation aboys proposed in [4]:

the fundamental matrix here. Dengté as a distorted image
point, p* as its corresponding undistorted point aicas the flu,v) = a0+ +anp )
corresponding point on the calibration pattern. If the imageqation 7 does not have a closed-form inverse transform.
only has radial distortion and is the distortion center, we |, ihe proposed toolbox, we use the unified projection
can write: model in [5] to model a varying range of cameras which
pl=e+A\p" —e) (1) include but are not limited to normal, wide-angle, fish-eye
) ) ) o ) and catadioptric types. This model uses the same intrinsic
where ) is a distortion coefficient corresponding 8. In  harameters that the pinhole projection model uses: the foca
addition, sincep” can be obtained by a perspective transfornnength (71,72), aspect ratics, principal point(uo,vo), and
from p¢, there exists a homography such thap" = Hp®.  (adial and tangent lens distortion paramet@ss ks, k3, k).
Substituting this into the above equation, we obtain: The model uses one additional parametero model the

omnidirectional camera effect.
p?=e+ A(Hp® —e) 2

B. Initialization
The unified projection model of [5] assumes the catadiop-
©) tric coefficient¢ = 1 for initialization, and then, refines the
estimated intrinsics and extrinsics. The initializatisnvery
simple and can generate a good initial guess for all param-
eters. The limitation of the initialization is that it reqes

Left-multiplying the equation bye],, we get:
[e]xpd = Ae]« Hp®

Left-multiplying the equation again bzydT, we get:

0 :pdT[e]XHpc (4) a known projection of a straight line on the pattern. Such
a projection is easy to obtain for a chessboard but difficult
F = [e]xH is the fundamental matrix for radial distor- for our proposed pattern. Fortunately, the initializaticem

tion, ande can be interpreted as the principal point. Thide solved by substituting the unified projection model into
fundamental matrix is well-suited to both the pinhole andhe initialization of the Taylor projection model of [4].

unified projection models, and is used to remove false In the initialization, we assume the two focal lengths
feature matches in our proposed calibration approach. [A1,72) to be the same, the principal point to have the same
the case that the images perfectly agree with the pinhot®ordinates as the image center, and zero lens distortan. F
camera model (zero lens distortion), it suffices to estinmateeach detected feature point, we compute the corresponding
homography. This case could be detected by automatic modeland v by subtracting the image center coordinates from
selection methods like the GRIC criterion[16]. Howeverthe feature point's coordinates.

since this is a very special case, for the current version, we For a feature point with homogeneous image coordinates
leave it to the user to specify this mode. p¢ = [z,y,1]T, denote its corresponding 3D point as



[z,4,0,1]T. The projection equation relating this 3D point
to its corresponding camera ray, v, f(u,v)]" is:

f(u,v)
= [Tl T t] p° (9)

Left-multiplying the equation byu, v, f(u,v)]), we have:

x
p| v | =[r o2 ors g (8)
1

0= [u,v, f(u,v)] [r1 72 t]p° (10)

Denote the rotatiom; = [ry;,72;,73;] | and the translation Fig. 3. A example of a pose graph for the calibration scenefiour
t = [tl,tg,tg]T. The third row of equation 10is independemcameras. Big dots denote camera vertices and small dotsedésamture
of f(u,v) and is a linear equation with respect to the’® Vertices:

UnknOWnSTll, 721,712,722, tl, to:

W(ror @ + rasy + ta) — v(rmz + oy + ) =0 (11) IV. EXTRINSIC CALIBRATION

) ) ) ) In this section, we assume that the cameras are rigidly
For each image pair, we can substitute the feature point€orinounted to a rigid body. During the image capture process,

spondences into this equation and stack them as a linear syg move the calibration pattern around the camera system.
tem. Solving this system, we obtain,, 721,712,722, t1,t2  The single-camera calibration provides estimates of tsepo

up to a unknown scales:, 132 and the scale can be deter-of the calibration pattern. If the cameras are synchronized
mined by exploiting the unit and perpendicularity consti®i g,ch that they capture images of the pattern at the same time,
of r1 and r,. Note that multiple solutions exist at this ihe relative poses of the pattern with respect to each camera
stage; we reject the incorrect solutions after estimatitg t are known. Thus, the initial camera poses can be extracted
remaining unknowns, and;. from these relative poses. The toolbox optimizes the initia

Solvingy andis requires using the first and second rowcamera poses using a bundle-adjustment-like method.
in equation 10:

A. Initialization

v(ra1® + a2y +t3) — fu, v)(rai + rooy +t2) =0 (12) We create a pose graph to denote the calibration scenario.
Ju,v)(riz +ri2y +t1) —u(rsiz + 732y +t3) =0 (13)  Each camera is denoted by a camera verex,; in the
graph. Meanwhile, each pose of the pattern is also denoted
by a pattern vertexat;. If cam; takes a photo of the pattern

at posepat;, thencam; andpat; are connected by an image
edge denoted bymg; ;. Each edge uniquely maps to one
are then solved by forming a linear system using detectg gge. Note thayt tgiéj graph is g bipag[ite érapﬁ and each

multiple corr_e_sponde_nce_s. ) _ ... edge links one camera vertex and one pattern vertex. Figure
For the unified projection model, equation 6 is subst|tute§ provides a simple illustration of such a graph

i 1
into f(u,v). We regardy, 7 andt; as three unknowns and Vertices in the pose graph can be used to store the poses

solve them by forming a linear system similar to the abov%f the cameras and the pattern in a global coordinate system.

: . . : 1
Since we ignore a constraint by treatingand 5 as two Edges can be used to store the relative pose transform

unknovv_n_sf the es tlma_\tes are Iess_accur_ate. Thisis ”9“‘*“ 'Shetween the camera pose vertex and pattern pose vertex. For
for the initialization since the estimate is further refined each image of the pattern at pose’; taken bycam,, we

The initialization returns multiple solutions for the imr have the relative pose pfit; with respject taam. comzp’uted
sics and extrinsics; the correct solution can be selected Ry, ., ihe single-camera célibration. ’

checking the reprojection error. o _ Assuming that the global coordinate system is aligned
The toolbox initializesy and the extrinsics for each input ;i cam, the poses of all vertices connectedcton; can

image, and selects the median of all valuesifas the initial  po gptained by following the image edges frammn,. In

estimate fory. practice, if two cameras see the pattern at the same time in
their images, then the two cameras are connected via two
image edges to one pattern vertex.

Based on the initial estimate, the toolbox then refines Our toolbox implementation first builds a pose graph based
all intrinsic and extrinsic parameters using the Levenbergn the results of single-camera calibration performed for a
Marquardt algorithm to minimize the sum of all reprojectioncameras. Next, a spanning tree withm, as its root is
errors. Further details about the optimization can be founektracted using breadth-first search. Vertex poses are then
in [4] and [5]. computed by traversing the spanning tree fromn,; and

For the pinhole projection modelf(u,v) is replaced
by ~. Substitutingry1,r21, 712,722, t1, t2, We obtain linear
equations with respect tey and ¢3. The two unknowns

C. Refinement



following the image edges. In the end, we have initial pose
estimates for all vertices in the global coordinate system.

B. Refinement

Denote the pose in the global frame of vertefeither a
camera vertex or a pattern vertex) in the graplasOn an
edgeimyg; ; connecting-am,; andpat;, the relative transform
from pat; to cam; can be denoted aH, ; = H; ' H;. For
a calibration pattern point, its reprojection error in each
image that the point is seen in is:

ereprof(p Hi . i) = ||w(p°, Hi 5, Ci) — || (14)

where 7 is the image projection function corresponding

to either th? p_mh_ole or unlggd prOJ(_ECtIOI’l mOdel aﬂﬁ_' Fig. 4. Sample images used to calibrate the stereo cameeatophrow
denotes the intrinsics efim,;. p* is the distorted image point shows a chessboard used by the chessboard calibration thbilbottom
corresponding withp°. row shows our calibration pattern used by our calibratiopitiox.

The initial calibration estimate is refined to minimize
the sum of all reprojection errors. The refinement can be
over either all vertex poses or over both vertex poses and
intrinsics. The optimization problem with only vertex psse

is defined as:
argmin Y Y ereproi(pf, H; 1Hj,Ci) (15)
H;,i>1 imgs,; k 400 —
7 200
while the optimization problem with both vertex poses and 0
intrinsics is: 200
argmin Z Zereproj(piaHi_lHjaci) (16) 2000
H;,C1,Ci,i>1 imgi; k
T 1000
The optimization is ovefd; with i > 1, since H; = Iy«4 iS 0 so0 10
0 ~1000 %0

the reference frame. The toolbox executes the optimization
using the Levenberg-Marquardt algorithm.

Fig. 5. 3D plot of stereo camera and calibration pattern pagnerated
V. EXPERIMENTS by our toolbox.

We carry out two experiments with our proposed calibra-
tion pattern and toolbox. In the first experiment, we use
a stereo camera and compare the calibration results from
our toolbox and those from the OpenCV-based chessboard TABLE |
calibration. In the second experiment, we use our toolbox to

. .COMPARISON OF RESULTS FROM OUR METHOD ANKDPENCV-BASED
calibrate a four-camera system. The latter camera system is

CHESSBOARD CALIBRATION FOR A STEREO CAMERA

a challenging case, especially for existing multiple-ceane

calibration methods. Object Descriptor-based patteri 5 x 8 chesshoard
) ) Image size 480 x 752 480 x 752
A. Calibration of a stereo camera # images 10 x 2 30 X 2
For the case of a stereo camera, a chessboard is typically * {ﬁ?él;res 3073 / 2942 1200 / 1200
used for extrinsic calibration. The two cameras tend to have—Fgcar
(720, 718) (720, 722)

a large overlapping field of view, and the entire chessboard length (L)
has to be in both cameras’ fields of view. We test our toolbgx _Foc@ (709, 706) (709, 710)

. . .. length (R)
with a custom-built stereo camera comprising two mvBlue= S
: o - Principal (383, 249) (392, 250)
FOX cameras with hardware synchronization. Figure 4 shows _point (L) ’ ’
a sample stereo image pair used for each calibration. Nate Pg'i?]f'?s; (387, 242) (389, 249)
that in contrast to the chessboard calibration, our prapos %Otation
thpati ; e 0.001, —0.010,0.011] | [0.004, —0.009,0.011]
calibration pattern does not have to be entirely within the  vector [
field of view. The calibration results are shown in tablelf ~ Translation 1, 5" 15 0005 | [~1.00,—0.011,0.012]
The descriptor-based pattern provides many more featu.'es\éeecmr. (unit
. . . projection 04 0.2
with significantly fewer images compared to the chessboard error 4 pX & PX

pattern. We observe that the two calibration results arg ver
similar. The reprojection error for our proposed pattern is



Fig. 6. A four-camera system with an approximate® 9@lative rotation
between each pair of neighboring cameras.

higher than that for the chessboard; SURF feature detection

is slightly less accurate than sub-pixel chessboard corngf:- -

detection in terms of feature location. For features on a
coarser scale, the higher corresponding error of the etgtina
feature coordinates may increase the overall reprojection
error. We visualize the results of our toolbox calibration i
figure 5.

B. Calibration of a four-camera system

In the second experiment, we validate our toolbox on
a four-camera system; neighboring cameras have minimal
overlapping fields of view. One camera is a mvBlueFOX
camera while the rest are Point Grey Firefly MV cameras.
This system is shown in figure 6. Existing camera calibration
toolboxes are difficult to use when it comes to calibrating
such systems. 15 image pairs are taken for each pair of
neighboring cameras; two examples are shown in figure
7. Due to the non-overlapping field of view, neighboring
cameras only see a small part of the board close to the
board’s border. Thus, some images do not have sufficient
features for matching, and are automatically discardedhby t
toolbox. In addition, to ensure accurate intrinsic calitom
we take 5 images for each camera with the pattern occupying
a large part of each image. Figure 8 plots the 3D poses of
both cameras and patterns. The average reprojection error
over all images and corresponding to the estimated inti$nsi
and extrinsics i9).7 pixels.

VI. CONCLUSIONS

We have proposed a calibration technique using a feature
descriptor-based calibration pattern. This technique lman
used for calibrating multiple-camera systems. We show our
calibration to work successfully with two multiple-camera
systems: a normal stereo camera with a large overlapping
field of view, and a four-camera system with minimal over-
lapping fields of view. A toolbox based on our proposed
method is available online atttps://sites. google.
conisite/prclibo/tool box.

One limitation of our calibration technique is that largefi9- 8-

calibration patterns are required for certain multipleresa
systems. One example is a two-camera system in which one
camera looks forward, and another camera looks to the right,

Sample images used to calibrate the four-cameraEagh row
corresponds to an image pair from a different pair of neiginigocameras.

px

Two viewpoints of a 3D plot of camera and calibratioattern
poses generated by our toolbox for the 4-camera system.
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and the baseline between the two cameras is a few meters.
In this case, we require the width of the calibration pattern
to be at least a few meters. This limitation is inherent in the
fact that neighboring cameras must be able to observe some
part of the calibration pattern.
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