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Abstract— This paper presents a novel feature descriptor-
based calibration pattern and a Matlab toolbox which uses the
specially designed pattern to easily calibrate both the intrin-
sics and extrinsics of a multiple-camera system. In contrast
to existing calibration patterns, in particular, the ubiqu itous
chessboard, the proposed pattern contains many more features
of varying scales; such features can be easily and automatically
detected. The proposed toolbox supports the calibration of
a camera system which can comprise either normal pinhole
cameras or catadioptric cameras. The calibration only requires
that neighboring cameras observe parts of the calibration
pattern at the same time; the observed parts may not overlap
at all. No overlapping fields of view are assumed for the
camera system. We show that the toolbox can easily be used to
automatically calibrate camera systems.

I. I NTRODUCTION

Multiple-camera systems have become increasingly preva-
lent in robotics and computer vision research. These systems
include stereo cameras, Point Grey’s Ladybug multi-camera
systems, and a large variety of customized camera systems.
Multiple-camera systems usually comprise normal pinhole
cameras, fish-eye cameras and catadioptric cameras. To make
such systems usable, both the intrinsics and extrinsics of the
cameras have to be calibrated accurately.

A. Related work

Recently, many efficient methods have been developed
for intrinsic calibration of many types of cameras. These
methods can be divided into two categories: calibration with
a special calibration object, and self-calibration. In this paper,
we focus on the former category which is usually much more
accurate than self-calibration. Many toolboxes are available
for this category of methods. Seminal work on calibrating a
pinhole camera can be found in [1]. Some popular calibration
toolboxes [2], [3] are inspired by this method. For generic
cameras, [4] proposes a toolbox to use a polynomial to
approximate rays corresponding to each image point. This
method generically applies to most camera models but does
not provide a closed-form solution for undistorting raw
images. In the toolbox proposed in [5], an unified projection
model is proposed for calibrating a catadioptric system, fish-
eye camera and camera-spherical mirror system. This model
is similar to [4] but parameterizes rays instead of using
an arbitrary polynomial, which makes undistortion much
simpler.

Some toolboxes are also available to calibrate simple
multiple-camera systems. [2] enables one to calibrate a
stereo camera. For calibration with a system of more than

Fig. 1. Top: The proposed calibration pattern. Bottom: Image components
with noise at different frequencies.

two cameras, these toolboxes [6], [7] can be used. These
calibration toolboxes make use of the overlapping fields of
view of the cameras; hence, these toolboxes can calibrate
both a stereo camera and a circular camera rig with all
cameras pointing inwards. However, these toolboxes are not
suitable for calibrating a system of cameras with either no
or minimal overlapping fields of view. Camera rigs with
cameras pointing outwards are increasingly popular in both
academia and industry; it is not easy to calibrate this system
using existing calibration toolboxes due to the minimal
overlapping fields of view. Hand-eye calibration algorithms
[8], [9] can be used to calibrate this system but requires
reconstructing visual odometry for each camera, and the
calibration is often not accurate due to visual odometry drift.

In addition to camera models, research has also focused
on development of easy-to-use calibration patterns. Early
research made use of cubes with either a chessboard pattern
or circular dots on their surfaces [2]. This pattern is not
convenient to use as a perfect cube is not trivial to build.
Current state-of-art calibration systems mainly make use of
calibration boards which are often planes with a chessboard
or circular dots printed on them. An automatic detector
for such patterns is readily available [10]. A comparison
of calibration accuracy between a chessboard and circular
dots can be found in [11]. [7] uses a similar but even
more simplified calibration object, a single point light, for
calibrating multiple-camera systems. One disadvantage of



these patterns is that the entire pattern has to be visible in
each calibration image; this requirement excludes cameras
with minimal overlapping fields of view. In addition to
the chessboard and circular dots, other patterns have been
proposed. [12] uses a temporal coded pattern to calibrate
cameras. This method uses the Gray code to match world
points to image points, thus not requiring the entire pattern to
be in the image. The drawback of this method is the limited
flexibility; the calibration requires both a display projector
and a tripod for mounting a camera.

In summary, the chessboard and circular-dot patterns are
widely recognized as the state-of-art for calibrating single
and stereo cameras, for their ease-of-use and high calibration
accuracy. However, for a system with multiple cameras point-
ing in different directions, it is difficult to use these toolboxes
to calibrate the extrinsics of the camera system. This is
because current automatic and semi-automatic chessboard
detectors require the chessboard to be entirely within the
field of view of the cameras. Therefore, if two cameras
have minimal overlapping fields of view, it is difficult to
use the chessboard for extrinsic calibration in contrast to
stereo camera calibration. To the best of our knowledge, there
are no published calibration toolboxes for easily calibrating
multiple-camera systems with minimal overlapping fields of
view.

B. Contributions

In this paper, we solve the calibration problem for a
multiple-camera system without assuming overlapping fields
of view. The basic motivation is to relax the requirement that
the calibration pattern be seen in its entirety by each camera;
ideally, the calibration board is automatically detected even
when the cameras observe different parts of the board. For
most multiple-camera systems, it is fairly common for a cam-
era pair to see different parts of a suitably-sized calibration
board at the same time. Based on this motivation, we design
a feature descriptor-based calibration pattern which is easy to
detect even when seen partially by a camera, and an extrinsic
calibration framework using this pattern.

This paper makes two novel contributions:

1) A new calibration pattern that encodes feature points
using feature extraction techniques. Our pattern con-
tains many detectable features on multiple scales as
illustrated in section II. The pattern can be recognized
and localized even if the pattern is partially seen in an
image.

2) A toolbox based on the proposed calibration pattern.
This toolbox can be used for both intrinsic and ex-
trinsic calibration of a multiple-camera system, as
illustrated in sections III and IV. Similarly to existing
calibration toolboxes, our toolbox can also be used for
intrinsic calibration of a single camera.

We note that our approach is similar to standard structure-
from-motion approaches; the main difference is that we use
points with known 3D coordinates.

II. CALIBRATION PATTERN

A. Feature Detection Revisited

Point-feature detection is a computer vision technique
widely and successfully applied to many areas such as sparse
reconstruction and object detection. A point feature typically
contains two components: a keypoint and a descriptor. We
look at the widely-used SIFT implementation [13] as a
example. A Difference of Gaussian filter (DoG) is used
to detect keypoints. This detection is executed on both the
original image and downsampled images; in short, keypoint
detection is done on different scales. For each keypoint, the
image gradient in the keypoint’s neighborhood is converted
to a histogram which is then used as the descriptor for
the corresponding feature point. SURF, a variant of SIFT,
is also a widely-used technique for feature detection and
descriptor extraction [14]. SURF replaces SIFT in many
applications due to the its computational efficiency. In the
proposed toolbox, we use SURF features.

B. Reverse Engineering

The basic idea behind the proposed calibration pattern is
to find and design a pattern that yields a high number of
detectable features. At the same time, the feature descriptors
should be highly discriminative so that we can easily obtain
unique feature point matches.

To facilitate feature detection, we use several noise images
to compose a calibration pattern in accordance with the
mechanism of SIFT/SURF. The DoG filter applied to a
noise image can yield points with high response. However,
a problem with high-frequency image noise is the blurring
effect. For a grayscale image, if the camera is located far
away, the noise image is perceived as a purely gray image.
The solution to this problem is to compose images with noise
from multiple scales. In our implementation, we generate
noise images of different sizes, and resize them such that
they have the same size. These images with noise on different
scales are then added up together. This procedure can be
interpreted as a reverse engineering of the scaling procedure
in SIFT/SURF detection. Thus, the resulting image contains
a high number of detectable features on different scales; such
features can be detected by a camera at varying distances.
The Matlab code in figure 2 generates a600×800 calibration
pattern. Figure 1 shows a calibration pattern at the top, and
its components with noise on different scales at the bottom.

C. Feature Matching

Feature detection and feature matching between two im-
ages are two standard steps in a modern 3D vision pipeline.
In our calibration approach, we employ a similar step to
match features between each image and the known cal-
ibration pattern image. First, features detected from each
image and the pattern image are matched according to the
descriptor similarity. We use the well-known distance ratio
check proposed in [13]. For a set of at least 2 candidate
matches for each query feature, the best match is accepted
only if its descriptor distance is smaller than 0.6 times the



N = 600; M = 800;
pattern = 0; count = 0;
m = 4;
while m < M

n = round(N / M * m);
noise = rand(n, m);
noise = imresize(noise, [N, M]);
pattern = pattern + noise;
count = count + 1;
m = m * 2;

end
pattern = pattern ./ count;
pattern = histeq(pattern);
imshow(pattern);

Fig. 2. Matlab code for pattern generation.

descriptor distance between the query feature and its second
best match.

Next, a fundamental matrix for radial distortionis esti-
mated by RANSAC between the image points and pattern
points to find inlier point correspondences. Note that this
fundamental matrix is not the same matrix used in traditional
epipolar geometry. The traditional matrix requires that point
correspondences have image coordinates corresponding to
rectified images. Details about this fundamental matrix can
be found in [15]. We provide some simple explanation about
the fundamental matrix here. Denotepd as a distorted image
point,pu as its corresponding undistorted point andpc as the
corresponding point on the calibration pattern. If the image
only has radial distortion ande is the distortion center, we
can write:

pd = e+ λ(pu − e) (1)

whereλ is a distortion coefficient corresponding topu. In
addition, sincepu can be obtained by a perspective transform
from pc, there exists a homographyH such thatpu = Hpc.
Substituting this into the above equation, we obtain:

pd = e+ λ(Hpc − e) (2)

Left-multiplying the equation by[e]×, we get:

[e]×p
d = λ[e]×Hpc (3)

Left-multiplying the equation again bypd
⊤

, we get:

0 = pd
⊤

[e]×Hpc (4)

F ≡ [e]×H is the fundamental matrix for radial distor-
tion, and e can be interpreted as the principal point. This
fundamental matrix is well-suited to both the pinhole and
unified projection models, and is used to remove false
feature matches in our proposed calibration approach. In
the case that the images perfectly agree with the pinhole
camera model (zero lens distortion), it suffices to estimatea
homography. This case could be detected by automatic model
selection methods like the GRIC criterion[16]. However,
since this is a very special case, for the current version, we
leave it to the user to specify this mode.

III. S INGLE-CAMERA CALIBRATION

A single-camera calibration estimates the camera intrinsics
and the poses of the calibration pattern with respect to
the camera’s coordinate system. This data from the single-
camera calibration is used by the multiple-camera extrinsic
calibration.

A. Camera Model

Consider a point(u, v, γ)⊤ on an image plane with focal
length equal toγ and principal point(0, 0)⊤. It corresponds
to a ray with direction(u, v, f(u, v))⊤ which goes through
the origin of the camera’s coordinate system. This ray
definition unifies the various projection models via different
definitions off(u, v). For the pinhole projection model,

f(u, v) ≡ γ (5)

For the unified projection model with its lens distortion
parameterξ = 1,

f(u, v) =
γ

2
− 1

2γ
ρ2 (6)

where ρ =
√
u2 + v2. Details about equation 6 can be

found in [5]. For the Taylor projection model,f(u, v) is
parameterized as a general polynomial with one variableρ,
as proposed in [4]:

f(u, v) = a0 + · · ·+ anρ
n (7)

Equation 7 does not have a closed-form inverse transform.
In the proposed toolbox, we use the unified projection
model in [5] to model a varying range of cameras which
include but are not limited to normal, wide-angle, fish-eye
and catadioptric types. This model uses the same intrinsic
parameters that the pinhole projection model uses: the focal
length (γ1, γ2), aspect ratios, principal point(u0, v0), and
radial and tangent lens distortion parameters(k1, k2, k3, k4).
The model uses one additional parameterξ to model the
omnidirectional camera effect.

B. Initialization

The unified projection model of [5] assumes the catadiop-
tric coefficientξ = 1 for initialization, and then, refines the
estimated intrinsics and extrinsics. The initialization is very
simple and can generate a good initial guess for all param-
eters. The limitation of the initialization is that it requires
a known projection of a straight line on the pattern. Such
a projection is easy to obtain for a chessboard but difficult
for our proposed pattern. Fortunately, the initializationcan
be solved by substituting the unified projection model into
the initialization of the Taylor projection model of [4].

In the initialization, we assume the two focal lengths
(γ1, γ2) to be the same, the principal point to have the same
coordinates as the image center, and zero lens distortion. For
each detected feature point, we compute the corresponding
u and v by subtracting the image center coordinates from
the feature point’s coordinates.

For a feature point with homogeneous image coordinates
pc = [x, y, 1]⊤, denote its corresponding 3D point as



[x, y, 0, 1]⊤. The projection equation relating this 3D point
to its corresponding camera ray[u, v, f(u, v)]⊤ is:
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Left-multiplying the equation by[u, v, f(u, v)]⊤×, we have:

0 = [u, v, f(u, v)]⊤×
[

r1 r2 t
]

pc (10)

Denote the rotationri = [r1i, r2i, r3i]
⊤ and the translation

t = [t1, t2, t3]
⊤. The third row of equation 10 is independent

of f(u, v) and is a linear equation with respect to the
unknownsr11, r21, r12, r22, t1, t2:

u(r21x+ r22y + t2)− v(r11x+ r12y + t1) = 0 (11)

For each image pair, we can substitute the feature point corre-
spondences into this equation and stack them as a linear sys-
tem. Solving this system, we obtainr11, r21, r12, r22, t1, t2
up to a unknown scale.r31, r32 and the scale can be deter-
mined by exploiting the unit and perpendicularity constraints
of r1 and r2. Note that multiple solutions exist at this
stage; we reject the incorrect solutions after estimating the
remaining unknownsγ and t3.

Solving γ and t3 requires using the first and second row
in equation 10:

v(r31x+ r32y + t3)− f(u, v)(r21x+ r22y + t2) = 0 (12)

f(u, v)(r11x+ r12y + t1)− u(r31x+ r32y + t3) = 0 (13)

For the pinhole projection model,f(u, v) is replaced
by γ. Substitutingr11, r21, r12, r22, t1, t2, we obtain linear
equations with respect toγ and t3. The two unknowns
are then solved by forming a linear system using detected
multiple correspondences.

For the unified projection model, equation 6 is substituted
into f(u, v). We regardγ, 1

γ
and t3 as three unknowns and

solve them by forming a linear system similar to the above.
Since we ignore a constraint by treatingγ and 1

γ
as two

unknowns, the estimates are less accurate. This is not an issue
for the initialization since the estimate is further refined.

The initialization returns multiple solutions for the intrin-
sics and extrinsics; the correct solution can be selected by
checking the reprojection error.

The toolbox initializesγ and the extrinsics for each input
image, and selects the median of all values forγ as the initial
estimate forγ.

C. Refinement

Based on the initial estimate, the toolbox then refines
all intrinsic and extrinsic parameters using the Levenberg-
Marquardt algorithm to minimize the sum of all reprojection
errors. Further details about the optimization can be found
in [4] and [5].

Fig. 3. A example of a pose graph for the calibration scenarioof four
cameras. Big dots denote camera vertices and small dots denote feature
point vertices.

IV. EXTRINSIC CALIBRATION

In this section, we assume that the cameras are rigidly
mounted to a rigid body. During the image capture process,
we move the calibration pattern around the camera system.
The single-camera calibration provides estimates of the poses
of the calibration pattern. If the cameras are synchronized
such that they capture images of the pattern at the same time,
the relative poses of the pattern with respect to each camera
are known. Thus, the initial camera poses can be extracted
from these relative poses. The toolbox optimizes the initial
camera poses using a bundle-adjustment-like method.

A. Initialization

We create a pose graph to denote the calibration scenario.
Each camera is denoted by a camera vertexcami in the
graph. Meanwhile, each pose of the pattern is also denoted
by a pattern vertexpati. If cami takes a photo of the pattern
at posepatj , thencami andpatj are connected by an image
edge denoted byimgi,j. Each edge uniquely maps to one
image. Note that this graph is a bipartite graph and each
edge links one camera vertex and one pattern vertex. Figure
3 provides a simple illustration of such a graph.

Vertices in the pose graph can be used to store the poses
of the cameras and the pattern in a global coordinate system.
Edges can be used to store the relative pose transform
between the camera pose vertex and pattern pose vertex. For
each image of the pattern at posepatj taken bycami, we
have the relative pose ofpatj with respect tocami computed
from the single-camera calibration.

Assuming that the global coordinate system is aligned
with cam1, the poses of all vertices connected tocam1 can
be obtained by following the image edges fromcam1. In
practice, if two cameras see the pattern at the same time in
their images, then the two cameras are connected via two
image edges to one pattern vertex.

Our toolbox implementation first builds a pose graph based
on the results of single-camera calibration performed for all
cameras. Next, a spanning tree withcam1 as its root is
extracted using breadth-first search. Vertex poses are then
computed by traversing the spanning tree fromcam1 and



following the image edges. In the end, we have initial pose
estimates for all vertices in the global coordinate system.

B. Refinement

Denote the pose in the global frame of vertexi (either a
camera vertex or a pattern vertex) in the graph asHi. On an
edgeimgi,j connectingcami andpatj , the relative transform
from patj to cami can be denoted asHi,j = H−1

i Hj . For
a calibration pattern pointpc, its reprojection error in each
image that the point is seen in is:

ereproj(p
c, Hi,j , Ii) = ‖π(pc, Hi,j , Ci)− pd‖2 (14)

where π is the image projection function corresponding
to either the pinhole or unified projection model andCi
denotes the intrinsics ofcami. pd is the distorted image point
corresponding withpc.

The initial calibration estimate is refined to minimize
the sum of all reprojection errors. The refinement can be
over either all vertex poses or over both vertex poses and
intrinsics. The optimization problem with only vertex poses
is defined as:

argmin
Hi,i>1

∑

imgi,j

∑

k

ereproj(p
c
k, H

−1

i Hj , Ci) (15)

while the optimization problem with both vertex poses and
intrinsics is:

argmin
Hi,C1,Ci,i>1

∑

imgi,j

∑

k

ereproj(p
c
k, H

−1

i Hj , Ci) (16)

The optimization is overHi with i > 1, sinceH1 ≡ I4×4 is
the reference frame. The toolbox executes the optimization
using the Levenberg-Marquardt algorithm.

V. EXPERIMENTS

We carry out two experiments with our proposed calibra-
tion pattern and toolbox. In the first experiment, we use
a stereo camera and compare the calibration results from
our toolbox and those from the OpenCV-based chessboard
calibration. In the second experiment, we use our toolbox to
calibrate a four-camera system. The latter camera system is
a challenging case, especially for existing multiple-camera
calibration methods.

A. Calibration of a stereo camera

For the case of a stereo camera, a chessboard is typically
used for extrinsic calibration. The two cameras tend to have
a large overlapping field of view, and the entire chessboard
has to be in both cameras’ fields of view. We test our toolbox
with a custom-built stereo camera comprising two mvBlue-
FOX cameras with hardware synchronization. Figure 4 shows
a sample stereo image pair used for each calibration. Note
that in contrast to the chessboard calibration, our proposed
calibration pattern does not have to be entirely within the
field of view. The calibration results are shown in tableI.
The descriptor-based pattern provides many more features
with significantly fewer images compared to the chessboard
pattern. We observe that the two calibration results are very
similar. The reprojection error for our proposed pattern is

Fig. 4. Sample images used to calibrate the stereo camera. The top row
shows a chessboard used by the chessboard calibration whilethe bottom
row shows our calibration pattern used by our calibration toolbox.
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Fig. 5. 3D plot of stereo camera and calibration pattern poses generated
by our toolbox.

TABLE I

COMPARISON OF RESULTS FROM OUR METHOD ANDOPENCV-BASED

CHESSBOARD CALIBRATION FOR A STEREO CAMERA.

Object Descriptor-based pattern 5× 8 chessboard
Image size 480 × 752 480 × 752
# images 10× 2 30× 2
# features

(L/R) 3073 / 2942 1200 / 1200

Focal
length (L) (720, 718) (720, 722)

Focal
length (R) (709, 706) (709, 710)

Principal
point (L) (383, 249) (392, 250)

Principal
point (R) (387, 242) (389, 249)

Rotation
vector [0.001,−0.010, 0.011] [0.004,−0.009, 0.011]

Translation
vector (unit) [−1.00,−0.012, 0.005] [−1.00,−0.011, 0.012]

Reprojection
error 0.4 px 0.2 px



Fig. 6. A four-camera system with an approximate 90◦ relative rotation
between each pair of neighboring cameras.

higher than that for the chessboard; SURF feature detection
is slightly less accurate than sub-pixel chessboard corner
detection in terms of feature location. For features on a
coarser scale, the higher corresponding error of the estimated
feature coordinates may increase the overall reprojection
error. We visualize the results of our toolbox calibration in
figure 5.

B. Calibration of a four-camera system

In the second experiment, we validate our toolbox on
a four-camera system; neighboring cameras have minimal
overlapping fields of view. One camera is a mvBlueFOX
camera while the rest are Point Grey Firefly MV cameras.
This system is shown in figure 6. Existing camera calibration
toolboxes are difficult to use when it comes to calibrating
such systems. 15 image pairs are taken for each pair of
neighboring cameras; two examples are shown in figure
7. Due to the non-overlapping field of view, neighboring
cameras only see a small part of the board close to the
board’s border. Thus, some images do not have sufficient
features for matching, and are automatically discarded by the
toolbox. In addition, to ensure accurate intrinsic calibration,
we take 5 images for each camera with the pattern occupying
a large part of each image. Figure 8 plots the 3D poses of
both cameras and patterns. The average reprojection error
over all images and corresponding to the estimated intrinsics
and extrinsics is0.7 pixels.

VI. CONCLUSIONS

We have proposed a calibration technique using a feature
descriptor-based calibration pattern. This technique canbe
used for calibrating multiple-camera systems. We show our
calibration to work successfully with two multiple-camera
systems: a normal stereo camera with a large overlapping
field of view, and a four-camera system with minimal over-
lapping fields of view. A toolbox based on our proposed
method is available online athttps://sites.google.
com/site/prclibo/toolbox.

One limitation of our calibration technique is that large
calibration patterns are required for certain multiple-camera
systems. One example is a two-camera system in which one
camera looks forward, and another camera looks to the right,

Fig. 7. Sample images used to calibrate the four-camera rig.Each row
corresponds to an image pair from a different pair of neighboring cameras.
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Fig. 8. Two viewpoints of a 3D plot of camera and calibration pattern
poses generated by our toolbox for the 4-camera system.



and the baseline between the two cameras is a few meters.
In this case, we require the width of the calibration pattern
to be at least a few meters. This limitation is inherent in the
fact that neighboring cameras must be able to observe some
part of the calibration pattern.
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