
A Multiple Case Study on the Impact of Pair
Programming on Product Quality

Hanna Hulkko
Elektrobit Ltd.
Tutkijantie 8

FIN-90570 Oulu, Finland
+358 40 344 3440

hanna.hulkko@elektrobit.com

Pekka Abrahamsson
VTT Technical Research Centre of Finland

P.O. Box 1100
FIN-90571 Oulu, Finland

+358 40 541 5929
pekka.abrahamsson@vtt.fi

ABSTRACT

Pair programming is a programming technique in which two
programmers use one computer to work together on the same task.
There is an ongoing debate over the value of pair programming in
software development. The current body of knowledge in this area
is scattered and unorganized. Review shows that most of the
results have been obtained from experimental studies in university
settings. Few, if any, empirical studies exist, where pair
programming has been systematically under scrutiny in real
software development projects. Thus, its proposed benefits remain
currently without solid empirical evidence. This paper reports
results from four software development projects where the impact
of pair programming on software product quality was studied. Our
empirical findings appear to offer contrasting results regarding
some of the claimed benefits of pair programming. They indicate
that pair programming may not necessarily provide as extensive
quality benefits as suggested in literature, and on the other hand,
does not result in consistently superior productivity when
compared to solo programming.

Categories and Subject Descriptors
D.1.0. [Programming Techniques]: General.

D.2.8. [Software Engineering]: Metrics – Process metrics,
Product metrics.

General Terms
Measurement, Design, Human Factors.

Keywords
Agile Software Development, Extreme Programming, Empirical
Software Engineering, Software Quality, Productivity.

1. INTRODUCTION
Pair programming, by definition, is a programming technique in
which two programmers work together at one computer on the
same task [1]. The person typing is called a driver, and the other
partner is called a navigator. Both partners have their own
responsibilities: the driver is in charge of producing the code

while the navigator’s tasks are more strategic, such as looking for
errors, thinking about the overall structure of the code, finding
information when necessary, and being an ever-ready
brainstorming partner to the driver.
Pair programming is one of the key practices in Extreme
Programming (XP) [2]. It was incorporated in XP, because it is
argued to increase project members’ productivity and satisfaction
while improving communication and software quality [2]. Since
then, pair programming has become one of the most researched
topics in the realm of agile software development techniques [3].
In literature, many benefits of pair programming have been
proposed, such as increased productivity, improved code quality,
enhanced job satisfaction and confidence, to name a few. On the
other hand, pair programming has also received criticism over
increasing effort expenditure and overall personnel costs, and
bringing out conflicts and personality clashes among developers.
However, the scientific empirical evidence behind these claims is
currently scattered and unorganized, and thus it is difficult to
draw conclusions in one way or the other. In fact, Hanks [4]
points out regarding the quality improvement claims that “There
does not appear to be any empirical evidence that the programs
[produced by pair programming] are better in terms of design,
readability, maintainability, or other internal quality attributes.”
As a consequence, the industry has been rightfully hesitant in
adopting the pair programming practice.
The purpose of this paper is twofold. First, it summarizes and
organizes the findings from existing pair programming studies in
order to systematically review the empirical body of evidence.
Second, it provides new scientific evidence by reporting results
from a multiple controlled case study [5] on pair programming
performed in close-to-industry settings. The focus of this
empirical study has been investigating, how pair programming is
adopted and used by developers in industrial settings, and
determining whether pair programming improves software
product quality as claimed by its proponents. The objective of this
paper is, therefore, to answer the following three research
questions:

1. What is the current state of knowledge on pair
programming?

2. How is pair programming used in practical settings?
3. How does pair programming affect software quality?

The remainder of the paper is organized as follows. In the next
section, the existing empirical body of evidence is reviewed.
Then, the context and findings of the four case studies are
presented, after which the results and their implications are
discussed. In the end, the paper is concluded with final remarks.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICSE’05, May 15–21, 2005, St. Louis, Missouri, USA.
Copyright 2005 ACM 1-58113-963-2/05/0005...$5.00.

495

2. REVIEW OF THE EMPIRICAL BODY
OF EVIDENCE
In this section, the existing empirical evidence on pair
programming is summarized and reviewed. First, background
information, such as research approaches and focuses, on the
studies is provided. Then, the main findings of the existing studies
are presented under three categories. Finally, the results of the
review are summarized.

2.1 Overview on the reviewed studies
Included in the review, are empirical studies focusing on pair
programming, such as case studies, experiments, surveys and
experiment reports, published in various scientific forums. Also,
studies focusing on XP and thus only partially addressing pair
programming, have been included. However, all studies, which
have been focused on educational aspects related to pair
programming, have not been included in the review because of the
industrial emphasis of our study.
The first reported empirical study on pair programming was
published in 1998 by Nosek [6], and the most recent studies have
been dated only a few months prior to writing this paper (June
2004). Figure 1 illustrates the annual distribution of different
types of empirical studies found in literature, which were included
in the review. The studies have been organized based on their
research approaches to the following categories: case studies
(CAS), experiments (EXP), surveys (SUR) and experience reports
(REP). A growing research interest towards pair programming can
clearly be seen from the figure. However, it should be noted, that
while Figure 1 illustrates the trends on the types and amounts of
empirical studies, it is not fully comprehensive, i.e. studies
focused on using pair programming for educational purposes in
university settings have not been thoroughly explored.

0

2

4

6

8

10

12

1998 1999 2000 2001 2002 2003 2004

of

 s
tu

di
es SUR

REP
EXP
CAS

Figure 1. Studies on pair programming.

Besides their research approaches, the studies can also be grouped
based on their research focuses. Figure 2 organizes the reviewed
studies based on the areas of their main contributions. It shows
that several research aspects have been addressed in the studies
with a slight focus on the effects that pair programming has on
software project and product, such as schedule and quality. In the
following subsections, the review of empirical body of evidence is
presented with an emphasis on the findings related to the research
questions of this paper.

2.2 Analysis of existing empirical results
Project related findings. A claimed benefit gained from pair
programming is shortened time to complete the given task due to
e.g. increased problem solving abilities of a pair compared to an

individual [7]. Also in larger scale projects, schedule advantages
have been credited to pair programming because of decreased
communication overhead, as an example. Williams et al. [8]
report that in their experiment, pairs completed their assignments
40 – 50% faster than solo developers. Lui and Chan [9] present
more moderate results of 5% time savings gained through pair
programming. Also, Müller [10] discovered that pair
programming halved the time spent on the quality assurance phase
of a project. However, Nawrocki and Wojciechowski [11] offer
contrasting results and report that in their experiment, there were
no significant differences between the development times of
groups who were employing XP in pairs, compared to ones
employing XP or Personal Software Process [12] individually.

PP's effects on
SW project &

product, 8

Psychological
effects of PP, 4Educational

aspects related
to PP, 5

Specialized PP
techniques, 4

PP vs. reviews,
3

PP as a part of
XP, 3

Figure 2. Distribution of empirical studies based on their

research focuses.
The effort expenditure and productivity of paired software
developers is one of the most studied aspects of pair
programming, since one could assume that when two people are
doing the same task, the spent effort is doubled. However,
Williams [13] found that pairs spent approximately only 15%
more effort on a task than solo developers. Other studies offer
support as well: in [14], a 10% increase and in [9], a 21% increase
in effort expenditure resulting from pair programming was
detected. In a recent study Williams et al. [15] explored the
impact of pair programming on productivity of new team
members who were added to a delayed project, and concluded that
pair programming reduces the assimilation and mentoring times
and thus improves the productivity of the whole team. All of these
results offer empirical evidence suggesting that pairs are more
productive than solo developers. The increased productivity is
supported also by Jensen [16], who has reported a 127%
productivity gain achieved by pair programming. On the other
hand, Nawrocki and Wojciechowski found pair programming less
productive than XP done by solo developers [11]. Based on the
existing evidence, it can be argued that pair programming requires
more effort than developing software individually, but that the
increase in the effort expenditure is definitely not linear with
regards to the number of developers. Furthermore, the effort
expenditure increases more after the initial transition to pair
programming, but gradually the productivity of the pair rises
above the productivity of solo developers. This phenomenon,
which is sometimes referred to as pair jelling [8], could be in part
used to explain the findings of Nawrocki and Wojciechowski [11]
towards inferior productivity of pairs, because the tasks in their
experiment were relatively small (i.e., 150 – 400 lines of code)
and thus short. Hence, it could be assumed that pair jelling took

496

place during the experiment and increased the effort expenditure
of the pairs.
Product related findings. The main argument for compensating
the increased overall project costs due to higher effort expenditure
of pair programming is improved quality of the resulting software
[1]. Proposed reasons for the quality improvements include the
continuous review performed by the navigator, which is claimed
to outperform traditional reviews in defect removal speed [1],
enhanced programmers’ defect prevention skills [13], and pair
pressure, which according to Beck [2], encourages better
adherence to process conventions like coding standards and use of
refactoring, i.e. increases process fidelity. Wood and Kleb [17]
offer empirical support for Beck’s suggestions. Gallis [18]
speculates even further that stricter adherence to coding standards
may improve the readability of the code and indicate increased
information and knowledge transfer between developers.
In addition to the anecdotal evidence, the quality effects of pair
programming have been explored in empirical studies using
various, even divergent metrics. Initial findings indicating that
pair programming produces shorter code (e.g. [17, 19]) and
results in better adherence to coding standards [19] have been
made. Shorter code, which conforms to standards can be
perceived to improve the maintainability of the software. In
addition, shorter code is claimed to indicate better underlying
design [14, 19]. Also, decreased defect rates (e.g. [13, 16, 20])
and increased number of test cases passed [8] resulting from pair
programming have been reported in empirical studies. In addition,
subjective indicators of increased quality, such as improved
readability [6, 17] and better grades obtained by the students in
educational settings (e.g. [21, 22]) have been reported. Also,
anecdotal evidence on the positive impact of pair programming on
code quality exists [23, 24].
While most of these findings point to a positive direction, the
generalizability and significance of these findings remains
questionable. One reason for this is the fact that often the metrics
used for describing quality have not been either defined in detail
in the studies, or lack the connection to the quality attribute they
should be presenting.
Some studies have also attempted to summarize the effects of pair
programming and calculate overall cost-benefit ratios for adopting
it. This task involves identifying and quantifying the effects of
pair programming on the multiple parameters discussed in
previous sections. While the results are initial at best, Müller [10]
reported an increase of 5% on the total project costs caused by
applying pair programming. According to Williams and Kessler
[1], pairs have a higher efficiency and overall productivity rate
compared to individual developers, and pair programming
increases the business value of a project.
Usefulness in different application scenarios. In addition to
evaluating, if pair programming is beneficial, it should be also
considered, when it is most useful [18]. For example, pair
programming may be most beneficial when applied to only certain
types of tasks [1]. In the existing empirical studies, some scattered
observations about the suitability of pair programming for
different types of tasks have been provided.
The complexity of a task is one of the factors affecting the
feasibility of using pair programming. Lui and Chan [9] report
that pair programming improved productivity most in demanding
design tasks. Similar findings have been made also in [8, 25]

where pairing was not found useful in simple, rote tasks.
Regarding different software development activities, there are
studies suggesting that pair programming is not very useful in
testing tasks [8], but more beneficial in performing design and
code reviews and tasks related to architecture and coding [26].

2.3 Summary
The main arguments put forth in the existing empirical studies are
summarized in Table 1. The right-hand column denotes if the
findings are addressed through a research question (RQ) in the
empirical study presented in the following section.

Table 1. Summary of main findings of existing studies
Existing empirical evidence suggest that … RQ

Pair programming (PP) shortens development time no

PP requires more effort (than solo programming) no

Pairs have higher productivity than solo developers yes

Pairs produce code with higher quality (e.g. better
readability)

yes

Pairs produce code with lower defect rates yes

Developers enjoy PP more than solo programming yes

PP is more useful in complex than simple, routine tasks yes

PP is useful for training a new person yes

Cost-benefit ratio of PP (quality vs. effort) is unknown yes

3. EMPIRICAL RESULTS FROM A
MULTIPLE CASE STUDY
The empirical evaluation of pair programming through four case
studies had two main goals: first, to provide qualitative and
quantitative information on how pair programming is used in
actual software projects, and second, to explore the impact of pair
programming on software quality, especially on the quality
characteristics, which literature has suggested being most affected
by it, i.e. maintainability [8, 17] and reliability [10]. This section
begins with the layout of the research design for the study. Then,
the empirical results are presented.

3.1 Research context
Research settings. The research method used in the four case
projects is the controlled case study approach [5]. The approach
combines aspects of experiments, case studies and action research,
and is especially designed for studying agile methodologies. In
brief, it involves conducting a project which has a business
priority of delivering a functioning end product to a customer, in
close-to-industry settings, where measurement data is constantly
collected for rapid feedback, process improvement and research
purposes. The software development work is performed in
controlled settings and involves both student and professional
developers.
Data collection and validation. Since all of the case projects had
equally important business and research goals, the data collection
was designed to be as effective and extensive as possible, but still
consume personnel resources minimally. The empirical evidence
has been collected from multiple data sources as suggested by Yin
[27] in order to obtain multiple measures of the same
phenomenon to improve the validity, reliability and credibility of

497

the research. Table 2 presents a summary of different sources of
data used in the case studies for investigating the pair
programming practice.

Table 2. Data sources in case projects

Case # Source Data type
2 3 4

Excel sheetsa

/ TaskMaster
toolb

Effort: task,
effort type,
hours

X a X a X b X b

Developers’
notes (diaries)

Effort, personal
remarks

X X X X

Pair
programming
sheets

PP: time, task,
pair name, role
changes

- X X X 1

Defect lists Defects:
originating task,
when found,
severity, etc.

X 2 X 2 X X

Source code
(baselines
after each
iteration and
final code)

Code-related
data, e.g.
solo/PP parts of
the code, LOC
counts

X 3 X X X

Final
interviews

Qualitative data,
experiences

X X X X

Observation Use of PP - - - X
1 Collection of pair programming sheets ended after the first 3 weeks

2 Only date when defect found and fixed is available
3 Solo and pair programmed parts of the code were not tagged

Case projects. Table 3 provides a summary of the four case
projects including their duration in calendar time, team size, total
development effort, product type and the developed concept,
product size in terms of logical lines of code [12] and the used
programming language.

Table 3. Summary of the case projects

 Case 1 Case 2 Case 3 Case 4
Duration 8 weeks 8 8 5
Team size 4 persons 5.5 4 4-6
Total dev.
effort

7.5 person
months

10 5.5 5.2

Iterations 6 6 6 61 (9)
Product
type

Intranet
application

Mobile
application

Mobile
application

Mobile
application

Product
concept

Research
data mgmt
system

Stock
market
browser

Production
control
system

Production
control
system

Product
size
(logical
LOC)

7700 7100 3800 3700

Language Java and
JSP

Mobile
Java

Mobile
Java

Symbian
C++

1Case 4 was relaunched after 4 weeks into the project. The first three
iterations are not included in this study.

The development teams of the case projects worked in a shared
co-located office space. The team members were different in each
case apart from the project manager who managed cases one, two
and four. Also, the developers did not have any prior experience

from pair programming (except the project manager, who had of
course pair programmed when he started in case projects two and
four). To familiarize the developers with pair programming, a
tutorial on pair programming practices and means of data
collection was held in the beginning of each project. Case one
involved 5-6th year Master’s students. Case two involved research
scientists as well, and finally cases three and four were a mix of
both practitioners and students as defined by the controlled case
study approach [5]. All team members were committed to a 6-
hour work days, which were adopted, because the goal was to
achieve a sustainable working pace emphasized in agile methods.
In addition, it was seen that 6 hours is a maximum amount of time
per day that a programmer can effectively focus on development
tasks.
The product in cases two, three and four was developed for
commercial markets, but in case one, for internal use. The
software development method used in all projects was the Mobile-
D approach [28], which is based on known agile methods, namely
Extreme Programming and Scrum. Note that for the purposes of
this study, the development method used is a secondary issue, and
only briefly described here to provide background information on
the study context. In Mobile-D, the projects are carried out in
short (usually 1 to 2 week) iterations. Pair programming is one of
Mobile-D’s nine principal elements, and thus coding, testing, and
refactoring were encouraged to be carried out in pairs in the case
projects.

3.2 Results
As discussed earlier, the data sources, collection procedures and
tools evolved during the case projects. This is why all metrics
have not been calculated for each project. Table 4 presents a
summary of which metrics have been calculated for each case
project. Each metric is defined in the subsequent section together
with the empirical results. The data sources for calculating the
metrics were presented previously in Table 2.

Table 4. Metrics derived from each case project

Case project Metrics used to evaluate pair
programming: 1 2 3 4

Usage metrics
Pair programming effort percent X X X X

Productivity between iterations: pair and
solo

- X X X

Rationale for pair programming X X X X

Quality metrics
Density of coding standards deviations:
pair and solo

- X X -

Comment ratio: pair and solo - X X X

Relative defect density: pair and solo - - X X

3.2.1 Practical use of pair programming
Pair programming effort percent The ratio between effort spent
on pair programming activities (i.e. pair coding, pair refactoring,
and pair testing) and respective solo activities is calculated for
each iteration of the case projects. This metric describes how the

498

use of pair programming evolves as the project progresses. Pair
programming effort percent is

T

P

E
EPP =% , (1)

where
EP is effort spent on pair programming activities during
the iteration, and

 ET is the total programming effort spent on the iteration.
Regarding the actual use of pair programming (Figure 3), all case
projects had quite similar ratios in their first three iterations,
although case three’s ratio is a little higher and case four’s a bit
lower. The differences between the case projects did not become
apparent until the fourth iteration, where the percentages scattered
more.

0

20

40

60

80

100

120

1 2 3 4 5 6

Iteration #

P
ai

r p
ro

gr
am

m
in

g
pe

rc
en

t

Case 1
Case 2
Case 3
Case 4

Figure 3. Pair programming percent between iterations in case

projects.
As it can be seen from the figure, the pair programming percents
of cases two and three decreased steadily after the first two
iterations. This decrease was especially evident in case three, in
whose 5th iteration over 80 percent of programming was done
individually. On the other hand, in cases one and four, the pair
programming percentages varied more between the iterations.
Interestingly, in both case one and case four, the pair
programming percentage increased in iterations four and six, and
strongly decreased between them in iteration five. The overall
trend in case one was quite steady, unlike in case four, where the
trend was ascending despite the fluctuations.
Productivity. The second metric describing the actual use of pair
programming in the case projects is productivity, which provides
information on how pair programmer’s productivity evolves as the
project progresses and also allows to compare the productivity of
the two different programming styles. In this study, productivity is
calculated for both pair and solo programming styles for each
iteration as a ratio of produced logical code lines and spent effort.
Thus, productivity of programming style N (N is pair or solo) is
defined as

N

L
N

N E
CP = , (2)

where

 L
NC is the number of logical code lines produced with

programming style N in the iteration, and
EN is effort spent with programming style N in the
iteration.

It is acknowledged that measuring productivity is not a straight-
forward task, and using lines of code (LOC) counts has its
challenges. However, it is the most commonly used means for
describing productivity, and thus used also here. The number of
code lines for each programming style were obtained by
calculating the amount of code lines in the iteration’s end baseline
made with each programming style (using code tags), and then
subtracting the number if previous iteration’s code lines produced
by the same programming style from it. The productivity metrics
are calculated only for the last three case projects, since no code
tags were used in the first case project to separate the code
produced by different coding styles.

18

15
14

21

13

6

0

5

10

15

20

25

Case 2 Case 3 Case 4

Lo
gi

ca
l L

O
C

 p
er

 p
er

so
n

ho
ur

Pair
Solo

Figure 4. Total productivity of pair and solo programming in

the case projects.
Figure 4 shows the total productivity of pair and solo
programming in the three case projects. There seems to be no
regularity between the productivity of different programming
styles: in case two, solo programming has a bit higher
productivity than pair programming, in case three the situation is
reversed, and in case four, pair programming has substantially
higher productivity than solo programming.
Rationale for pair programming. The results concerning with
the rationale for pair programming obtained through team
interviews are presented in the following. The focus of this
qualitative data (i.e., taped, transcribed) is on determining the
types of tasks and situations, which developers find especially
suitable or unsuitable for pair programming. In addition to the
data obtained from the final interviews, entries from TaskMaster
effort tracking tool describing reasons for solo programming a
specific task were studied.
The interviews aimed at collecting team members’ views about
the usefulness of pair programming in different application
situations and development phases. One developer found pair
programming to be suitable for many coding tasks, but not
necessarily to e.g. installation tasks. The team members of cases
one, three and four found pair programming to be especially
useful for novice team members and in the beginning of a project.

“In the beginning of a project, pair programming is useful for
virtually any task, because it helps everyone to get a clear
understanding on the system.” [Case three]

499

The effect of the complexity of the task on the usefulness of pair
programming was also brought up by the developers in the final
interviews. The developers felt that pair programming was more
useful for demanding and complex tasks than for rote tasks.

“If no one knows how a task should be done, it’s useful to do it
in pairs to think of different ideas.” [Case three]
On the other hand, the some developers felt that tasks, which

require a lot of logical thinking, were best when done solo:
“It’s difficult for two people to think together, so thinking
about a logical task should be done alone.” [Case four]

This can, at least partially, result from the noise in the collocated
project room, like a developer working in the case four expressed:

“If a task is difficult and complex, and I have to focus on it
and think a lot, the noise in the war room is disturbing, so I
put on headphones and do the task solo. I could do the task
with a pair, if there was a possibility to be undisturbed.”
[Case four]

Furthermore, the team in case four felt that pair programming was
beneficial when writing code, which had many dependencies with
other parts of the software. On the other hand, according to a team
member in case two, pair helped in simple tasks to find mistakes,
to which the coder himself had become “blind” to. This was also
supported by findings from case four interviews. Other situations
where having a pair was perceived useful was related to naming
conventions:

“Pair helped in naming issues, which I find to be the most
difficult when coding.” [Case four]

3.2.2 Quality
Density of coding standard deviations. The first metric used to
describe the quality effects of pair programming is related to
adherence to coding standards. In accordance to agile philosophy,
the project team was responsible for defining the coding standards
in the beginning of each project, and the code has been compared
against these same standards when deriving this metric. The
density of coding standard deviations is measured through the
number of found deviations from the coding standards with
respect to the amount of code made with each programming style
(all physical lines). Thus, density of coding standard deviations
for programming style N (N is either pair or solo) per hundred
lines of code is

100×= A
N

N
N C

F
S , (3)

where
FN is the number of failures to adhere to coding
standards (i.e. deviations) made with programming style
N, and

A
NC is the number of all physical code lines produced

with programming style N.
A smaller density indicates better adherence to coding standards,
which further indicates better readability and maintainability of
the code [29, 30]. Density of coding standard deviations metric
has been derived only from case project two and three. The reason
for this is that in case one, there were no explicitly defined coding

standards to compare the code against, and in case four, the code
was written in Symbian C++ and the available tool (i.e.
CheckStyle [31]) could only be used for analyzing Java programs.
In case two, a total number of 597 deviations from coding
standards were found from the final source code. 431 of these
were made using pair programming, and 166 with solo
programming. In case three, there were a total number of 354
deviations from coding standards, of which 302 were made using
pair programming and 52 solo programming. Results show that
the most common type of deviations was related to method
comments. Another common source of deviations was variable
naming. The distribution of deviations between different types is
quite similar with both pair and solo programming in both
projects. However, in solo programming, fewer deviations were
concerned with variable naming than in pair programming.

5.1

6.7

3.6 3.7

0

1

2

3

4

5

6

7

8

Case 2 Case 3

D
ev

ia
tio

ns
 /

10
0

ph
ys

ic
al

 li
ne

s
of

 c
od

e

Pair
Solo

Figure 5. Density of coding standards deviations in case
projects 2 and 3.
Figure 5 shows the density of deviations from coding standards in
cases two and per 100 physical lines of code. It can be seen, that
in both projects, the deviation density was much higher for pair
programming than for solo programming.
Comment ratio. Another quality metric used in this study is
comment ratio, which is calculated as the ratio of comment lines
and total (i.e. physical) lines of code [32]. Thus, comment ratio
for programming style N is

A
N

L
N

A
N

L
N

A
N

N C
C

C
CCR −=

−
= 1 , (4)

where

 L
NC is the number of logical code lines produced with

programming style N, and
A
NC is number of all physical code lines produced with

programming style N.
The higher the ratio is, the more readable and maintainable the
code can be perceived to be [32]. Figure 6 illustrates the comment
ratios for pair and solo programming in three of the case projects.
In every case, the comment ratio for pair programming is higher
than for solo programming. In case two, the comment ratios are
almost equal, but in both cases three and four, the comment ratio
for pair programming is approximately 60% higher than for solo
programming.

500

46%

40%

50%
45%

25%
31%

0%

10%

20%

30%

40%

50%

60%

Case 2 Case 3 Case 4

Co
m

m
en

t r
at

io

Pair
Solo

Figure 6. Comment ratios in case projects 2 to 4.

Relative defect density. Since the mode of work (i.e. solo or pair)
was not predetermined in the case projects, most of the defined
programming tasks have not been programmed with a single style,
but rather, a mixture of pair and solo programming has been used.
Thus, it has not been possible to trace the origins of the found
defects to a single programming style, but only to the originating
task, whose pair and solo programming effort ratios are known
based on the hour entries in the TaskMaster tool. This is why it is
not feasible to investigate traditional defect metrics such as defect
density, i.e. the amount of total defect divided by the total number
of logical code lines [12, p. 83], as such. Instead, an applied
metric which considers also the portion of pair or solo
programming done in the task where the defect has originated
from has to be used.
Relative defect density is a metric which can be applied when the
programming style of the defect is not known exactly, but only
estimated using the relative amount of effort spent with different
programming styles in the task where the found defect has been
made. It is calculated as suggested by [12, p. 83], but instead of
using the absolute number of defects made with each
programming style, every defect is multiplied with the effort
percent of the programming style in question of the originating
task. For example, if a defect is made in a task, of whose effort
70% has been spent on pair programming, the coefficient for the
defect is 0.70 when calculating relative defect density for pair
programming, and 0.3 (1−0.7) when calculating relative defect
density for solo programming. Also, instead of normalizing (i.e.
dividing) the number of found defects with the total finished
logical lines of code (LOC), total finished logical LOC made with
the programming style in question is used. The obtained number
is then multiplied with 1000 in order to obtain the relative number
of defects per thousand logical lines of code (KLOC). Thus,
relative defect density for programming style N is

1000
%

×=
∑

L
N

i
i

N C

NN
D , (5)

where
 i is the index variable denoting each found defect,
 NN%i is the relative amount of effort spent with

programming style N in the task where the defect i has
been made, and

L
NC is the number of logical code lines produced with

programming style N.
Relative defect density is calculated from the final source code for
both pair and solo programming. The smaller the relative defect
density for a programming style is, the more mature and reliable
code it can be perceived to produce. Relative defect density metric
is derived from the two last case projects, because the defect lists
from the first two case projects do not contain detailed enough
information to base the metric on (i.e. the originating task for the
found defects have not been defined).
Figure 7 shows the relative defect densities of pair and solo
programming in cases three and four. In case three, approximately
three times more defects were found than in case four, and thus
the overall defect density of case three’s source code is
significantly higher than case four, due to the fact that the
projects’ source codes are almost of the same size. In case three,
the relative defect densities of pair and solo programming are
almost equal, but in case four, the relative defect density of solo
programming is over six times higher than of pair programming.
Based on this, it seems that the main difference of the overall
defect densities of the two case projects results from the very low
relative defect density of pair programming in case four.

7.0

1.3

6.9

8.4

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

Case 3 Case 4

De
fe

ct
s

/ K
LO

C

Pair
Solo

Figure 7. Relative defect densities in

case projects 3 and 4.

4. DISCUSSION
Pair programming effort percent. In all case projects, the pair
programming effort percent was at a high level during the first
iteration, although case one was the only project, where the use of
pair programming was mandated in the beginning. The high initial
adoption of pair programming is in line with the project members’
comments, according to which they found pair programming to be
especially useful in the beginning of a project to gain
understanding on the whole system and to increase confidence.
This may also explain why case four had the lowest pair
programming percentage in the first iteration, because its first
iteration was actually the fourth iteration, since the project was
started over after the first three iterations. The fact that pair
programming was found more useful in the beginning of the
projects is also supported by the steady decreasing of the pair
programming percents towards the final iteration in cases one, two
and three, although the dramatic decrease of pair programming
percent in iteration five of case three can be affected by the
uneven number of team members present (one team member was
absent for the whole iteration). The increased pair programming

501

percent of the final (correction) iterations can be explained by the
fact that the team members perceived pair programming most
useful in non-rote tasks requiring problem solving, which is also
the case in correction iteration, where the defects found in the
system test phase are corrected. An exception to the other case
projects in terms of the development of the pair programming
percent is case four, where the pair programming percent trend
was continuously rising throughout the project except for the
temporary decreases in iterations three and five. This can be
explained by investigating the number of development tool
licenses available: in iterations one and two there were four
licenses, in iteration three there were three licenses, and in the rest
of the iterations (four, five and six), there were only two licenses
available. Thus, in iteration three there was an uneven number of
development tools available, and as a result, one team member
worked alone with one tool, and therefore the pair programming
percent temporarily decreased in that iteration. In the following
iterations, the number of licenses was reduced to two, and thus the
team had to work in pairs most of the time. As a summary, based
on the quantitative and qualitative data of the case projects, it can
be said that the relative amount of effort spent on pair
programming is at its highest in the beginning of the project and
in the defect correction (performed after system test) phase of the
project.
Productivity. The results of the empirical analysis revealed that
the productivity of pair programming compared to solo
programming varied a lot between the case projects. Thus, based
on the empirical data, no indications towards the superior
productivity of one of the programming styles could be detected.
This is in contrast with the findings of the existing empirical
studies. In addition, although the productivity rates varied in the
case projects, the differences between them seem to result mostly
from the productivity of solo programming rather than the
productivity of pair programming, which remained at constant
level in all projects. Interpretation of productivity figures is not a
straightforward task, however. Individual productivity rates of the
case projects can result from many different reasons which are not
related to pair programming, e.g. the high overall productivity in
case two results at least partially from reused code lines (i.e., 550
physical and 300 logical lines), which have been included in the
code line counts and thus affect the productivity calculations.
However, the productivity metrics do enable to analyze how the
productivity of pair and solo programming evolved in the
successive iterations of the case projects. According to the
existing empirical evidence [8], the productivity of pair
programmers is at its lowest in the beginning of a project due to
pair jelling, and increases as the project progresses. However,
based on the case studies conducted within this research endeavor,
no regularity in the development of the productivity rates could be
detected between the projects.
Rationale for pair programming. As a summary, the developers
found air programming most suitable for following application
scenarios: a) learning in the beginning of a project, b) solving
problems and thinking of ways to do complex tasks and c) finding
little mistakes from simple code. Similar findings have also been
reported in literature [1, 8, 26]. The a) scenario conforms to
claims that pair programming increases confidence and is an
effective means for learning and training. The two latter
application scenarios highlight the two levels of product related
benefits gained from pair programming: ones related to long-

range “strategic” issues, e.g. improved designs, and the ones
related to the short-range, immediate issues, e.g. code with less
minor defects such as syntax errors and typos. However, the
developers did not agree about the usefulness of pair
programming in scenarios b) and c); some considered thinking in
pairs to be difficult, and others preferred to do simple tasks on
their own. There are also existing studies indicating that pair
programming is inefficient for performing simple, routine-like
tasks (e.g. [25]). One common problem with adopting pair
programming identified in the literature is scheduling difficulties,
i.e. finding common time for the developers to work in pairs [24,
33, 34]. Some evidence, namely from case project four, pointed to
this direction as well.
Density of coding standard deviations. The distribution of
coding standard deviations of different types was very similar for
pair and solo programming in both case projects where the metric
was derived. The primary focus of the evaluation of the effect that
pair programming has on adherence to coding standards was to
determine, if pair programmers actually produce code which
adheres better to coding standards, as suggested in the literature
[1, 19]. Yet, the comparison of the calculated densities of coding
standard deviations for pair and solo programming demonstrated,
that in both case projects from which the metric was calculated,
pair programming resulted in distinctly higher deviation density
than solo programming (approx. 40 % higher in case two, and 80
% higher in case three). Thus, the claims towards higher coding
standard adherence presented in literature are not supported based
on the case studies. Clearly, more cases would be needed to obtain
more comprehensive data to validate the findings in this regard.
Nonetheless, the metrics of the two cases were convergent, and
thus initial conclusions can be drawn based on them.
Comment ratio. The comment ratios calculated from three case
projects are consistently higher for pair programming than for
solo programming. This is contrary to the findings of the study by
Ciolkowski et al. [14] in which pair programming resulted in
slightly lower comment ratio than solo programming. On the other
hand, the findings of our study support the arguments made in the
literature towards pair programmed code being more readable [6,
17], and of better overall quality [1, 23, 24]. However, it should
be noted, that the comment ratio measures only the quantity of the
comments, and not their quality.
Relative defect density. The examination of the relative defect
densities of pair and solo programmed code of the two case
projects revealed no pattern towards lower defect density achieved
with one of the programming styles.
In literature, pair programming has been reported to reduce the
amount of defects and thus lower the defect density [10, 11, 13,
20]. This is supported in one of the cases. Yet, the findings of
case project three do not indicate that the code produced by pair
programmers would have relatively less defects than solo
programmed code. Thus, our findings are conflicting in this
regard.
Table 5 summarizes the empirical findings of this study. The
findings are contrasted with the existing empirical body of
evidence reviewed in section 3.

502

Table 5. Summary of the empirical results

Metric Existing empirical
body of evidence

Findings of the
present study

PP effort
percent

No evidence New: Effort spent
on PP is highest in
the beginning of a
project and in the
final iteration

Productivity Pairs are more
productive than
solos;
PP productivity
gradually increases

Not supported:
neither
programming style
has consistently
higher productivity

Rationale for
PP

PP is most useful
for complex tasks
and training/
learning

Supported: PP is
most useful for
learning, and
complex tasks

Density of
coding
standard
deviations

PP produces code,
which has higher
adherence to coding
standards

Contradicted: PP
results in lower
adherence to
coding standards

Comment
ratio

Pairs produce more
readable code;
Pair code has lower
comment ratio (one
study)

Supported: Code
produced by pair
programming has
higher comment
ratio than solo
code

Relative
defect density

Pairs produce code
with fewer defects

Not supported:
Conflicting results

5. CONCLUSIONS
There are two main contributions in this research: the performed
summary and review of the existing empirical knowledge on pair
programming, and the presented new empirical results. The
empirical findings related to the practical use of pair programming
provide concrete information, which can be utilized in industry in,
for example, effort estimations and focusing pair programming
efforts to certain kinds of activities, tasks, or project phases.
Furthermore, the presented findings related to the quality effects
of pair programming provide actual, quantitative information on
the effects of pair programming to explicitly defined quality
metrics instead of anecdotal evidence or ambiguous metrics.
Equally importantly, the findings of the research can be utilized
by academia in cost-benefit analysis of pair programming as
empirically obtained and validated parameters for different
existing calculation models.
The study at hand suffers from not having calculated all metrics
from all of the four case studies, but has taken this into account in
the discussion section when interpreting the results. To our
surprise, some of the results obtained in this study offer
contrasting results to the existing empirical body of evidence: our
empirical data indicates, that pair programming does not provide
as extensive quality benefits as suggested in the literature, and on
the other hand, does not result in consistently superior
productivity when compared to solo programming. Yet, these
results are far from being conclusive in scientific sense, and
therefore, further studies on the subject are needed.
In future research efforts, analysis of the metrics proposed in this
study, could be extended to a more detailed level. For example, a

means of tracing defects back to either pair or solo programming
would be valuable, because without this, only relative defect
density can be studied instead of absolute defect density. Also,
analysis could be extended to consider not only the number of
found defects, but also their severity. Additionally, the analysis of
the comment ratio and adherence to coding standards could be
partially merged to consider not only the quantity, but also the
quality of the comments in the source code.

6. ACKNOWLEDGEMENTS
This work has been performed within AGILE-ITEA project
(http://www.agile-itea.org/). We would like to thank Professors
Juha Röning and Veikko Seppänen from University of Oulu for
their valuable comments. Also, the developers and customers of
the case projects should be acknowledged for their inputs. We
would also like to thank the three anonymous reviewers of this
paper for their valuable improvement suggestions.

7. REFERENCES
[1] L. Williams and R. Kessler, Pair Programming Illuminated:

Addison-Wesley, 2003.
[2] K. Beck, Extreme Programming Explained: Embrace

Change: Addison-Wesley, 1999.
[3] P. Abrahamsson, J. Warsta, M. T. Siponen, and J.

Ronkainen, “New Directions on Agile Methods: A
Comparative Analysis,” International Conference on
Software Engineering, 2003.

[4] B. F. Hanks, “Tool Support for Distributed Pair
Programming,” Workshop on Distributed Pair
Programming. Extreme Programming and Agile Methods -
XP/Agile Universe, 2002.

[5] O. Salo and P. Abrahamsson, “Empirical Evaluation of
Agile Software Development: A Controlled Case Study
Approach,” 5th International Conference on Product
Focused Software Process Improvement, Japan, 2004.

[6] J. T. Nosek, “The Case for Collaborative Programming,”
Communications of the ACM, vol. 41, pp. 105 - 108, 1998.

[7] L. A. Williams, The Collaborative Software Process. PhD
Dissertation, University of Utah, 2000.

[8] L. Williams, R. R. Kessler, W. Cunningham, and R. Jeffries,
“Strengthening the Case for Pair Programming,” IEEE
Software, vol. 17, pp. 19-25, 2000.

[9] K. M. Lui and K. C. C. Chan, “When Does a Pair
Outperform Two Individuals?” XP2003, Italy, 2003.

[10] M. M. Müller, “Are Reviews an Alternative to Pair
Programming?” 7th International Conference on Empirical
Assessment in Software Engineering, UK, 2003.

[11] J. Nawrocki and A. Wojciechowski, “Experimental
Evaluation of Pair Programming,” 12th European Software
Control and Metrics Conference, UK, 2001.

[12] W. S. Humphrey, A Discipline for Software Engineering:
Addison-Wesley, 1995.

[13] L. Williams, “Integrating Pair Programming into a Software
Development Process,” 14th Conference on Software
Engineering Education and Training, USA, 2001.

503

[14] M. Ciolkowski and M. Schlemmer, “Experiences with a
Case Study on Pair Programming,” First International
Workshop on Empirical Studies in Software Engineering,
Finland, 2002.

[15] L. Williams, A. Shukla, and A. I. Antón, “An Initial
Exploration of the Relationship Between Pair Programming
and Brooks' Law,” Agile Development Conference, 2004.

[16] R. W. Jensen, “A Pair Programming Experience,”
CrossTalk, The Journal of Defense Software Engineering,
vol. 16, pp. 22 - 24, 2003.

[17] W. A. Wood and W. L. Kleb, “Exploring XP for Scientific
Research,” IEEE Software, vol. 20, pp. 30 - 36, 2003.

[18] H. Gallis, E. Arisholm, and T. Dybå, “An Initial Framework
for Research on Pair Programming,” ISESE, Italy, 2003.

[19] A. Cockburn and L. Williams, “The Costs and Benefits of
Pair Programming,” 1st International Conference on
Extreme Programming and Flexible Processes in Software
Engineering, Italy, 2000.

[20] J. E. Tomayko, “A Comparison of Pair Programming to
Inspections for Software Defect Reduction,” Journal of
Computer Science Education, vol. 12, pp. 213 - 222, 2002.

[21] C. McDowell, L. Werner, H. E. Bullock, and F. J., “The
Impact of Pair Programming on Student Performance,
Perception and Persistence,” 25th International Conference
on Software Engineering, USA, 2003.

[22] L. Williams, C. McDowell, N. Nagappan, J. Fernald, and L.
Werner, “Building Pair Programming Knowledge through a
Family of Experiments,” International Symposium on
Empirical Software Engineering, Italy, 2003.

[23] K. Nilsson, “A Summary from a Pair Programming Survey -
Increasing Quality with Pair Programming,” 2003.

[24] T. H. DeClue, “Pair Programming and Pair Trading: Effect
on Learning and Motivation in a CS2 Course,” Journal of
Computing in Small Colleges, vol. 18, pp. 49 - 56, 2003.

[25] M. M. Müller and W. F. Tichy, “Case Study: Extreme
Programming in a University Environment,” International
Conference on Software Engineering, 2001.

[26] L. Williams and R. Kessler, “The Effects of “Pair-Pressure”
and “Pair-Learning” on Software Engineering Education,”
13th Conference on Software Engineering Education and
Training, USA, 2000.

[27] R. K. Yin, Case Study Research - Design and Methods. 3rd
ed., SAGE Publications, 2003.

[28] P. Abrahamsson, A. Hanhineva, H. Hulkko, T. Ihme, J.
Jäälinoja, M. Korkala, J. Koskela, P. Kyllönen, and O. Salo,
“Mobile-D: An Agile Approach for Mobile Application
Development,” OOPSLA'04, Canada, 2004.

[29] M. Elish and J. Offutt, “The Adherence of Open Source
Java Programmers to Standard Coding Practices,” The 6th
IASTED International Conference on Software Engineering
and Applications, USA, 2002.

[30] X. Fang, “Using a Coding Standard to Improve Program
Quality,” 2nd Asia-Pacific Conference on Quality Software,
Hong Kong, 2001.

[31] Checkstyle tool. URL: http://checkstyle.sourceforge.net/.
[32] K. K. Aggarwal, Y. Singh, and J. K. Chhabra, “An

Integrated Measure of Software Maintainability,” Annual
Reliability and Maintainability Symposium, 2002.

[33] J. Kivi, D. Haydon, J. Hayes, R. Schneider, and G. Succi,
“Extreme Programming: a University Team Design
Experience,” Canadian Conference on Electrical and
Computer Engineering, Canada, 2000.

[34] T. VanDeGrift, “Coupling Pair Programming and Writing:
Learning about Students' Perceptions and Processes,” ACM
SIGCSE, 2004.

504

