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Abstract— In this paper we present a recognition scheme
which is both reliable and fast. The scheme comprises the
simultaneous harmonized use of three powerful detection
algorithms, the hyper permutation network (HPN), a hier-
archical contour matching (HCM) algorithm and a cascaded
classifier approach. Each algorithm is evaluated separately and
afterwards, based on the evaluation results, the fusion of the
detection results is performed by a particle filter approach.

I. I NTRODUCTION

A. Motivation

Driver assistance systems supporting the driver at night
are of increasing interest in the car market. The first
generation of non-warning night vision systems has been
already introduced. Current research focuses on the second
generation of night vision systems integrating a warning
function. An indispensable feature of the second generation
systems is the capability of reliably detecting vulnerable
road users (VRUs), like pedestrians up to distances of 100m
(330ft). Human and animal thermal radiation has its peak
within the far-infrared (FIR,λ = 6−15µm) wave band, thus
obstacles can act as radiation emitters and no illumination
is necessary. In this contribution we used a microbolometer
technology sensor, sensitive between 7 and 14 micrometers
with spatial, temporal and spectral resolution of 164x129px
@ 25Hz, 14bit. Automotive pedestrian detection from FIR

Fig. 1. preprocessed FIR-images

data is a challenge in many ways (Fig. 1). The segmentation
process has to cope with moving objects in front of an itself
moving background, eliminating any background subtracti-
on strategies. Additionally, no analytical representation of
pedestrian shape and/or texture can be found, as i.e. in case
of traffic sign detection, where the objects to be segmented
are of circular or triangular shape and are provided with a
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well known color distribution. Pedestrian movement causes
shape inconsistency over time, too. Texture inconsistency
comes from different clothing and is - especially in winter
time - strongly dependent on how long the human already
stayed outdoor.

B. Related work

A.Broggi and T.Graf et. al. solved the problem of pe-
destrian recognition in FIR images using multiresolution
texture symmetry, edge symmetry and edge density ROI
extraction, together with a texture and shape correlation
validation step, based on shaded 3-D pedestrian models
[1]. Liu and Fujimura’s strategy applies intensity thres-
holding, followed by a motion constraint computed from
stereo data and aspect ratio/size discrimination [2]. In [3],
F.Xu and K.Fujimura used intensity thresholds followed
by a combination of support-vector-machine classification
and Kalman-Filtering. H.Nanda and L.Davis introduced a
probabilistic template matching on hot-spot ROIs [4]. The
system of Tsuji et. al. consists of hot-spot analysis, stereo
verification and ego-motion compensation [5]. We ourselves
focused on FIR pixel classification so far [6]. An overview
on detection features for infrared data is given in [7]. For
a general overview of recent pedestrian systems see [8].

C. Paper structure

After the first introductory section, including related work
and motivation, section two shortly introduces currently
promising pedestrian segmentation methods, partially origi-
nating from visible wavelength image processing. Section
three deals with our way to evaluate detector performance
and presents the evaluation results for each method of
its own, pointing out its strengths and weaknesses. Based
on these results, in section four we introduce a novel
detection system for FIR-data, with object list level output,
performing the detection task in realtime on a 3 GHz
Pentium IV. We close with an overview on problems still
unsolved and suggest further development steps.

II. PEDESTRIAN RECOGNITION METHODS

From examinations we know that schemes relying on in-
tensity, uniformity or symmetry assumptions fail to reliably
detect VRUs (compare fig.1 left and right). This is why
our approach completely operates on pattern correlation
and trained pattern classification. For the task of pedestrian



recognition we use a combination of the three power-
ful recognition methods,Hierarchical Countour Matching,
Cascade ClassificationandHyperpermutation Networks.

A. Chamfer Contour Matching

The Chamfer Contour Matching is a template correlation
method, based on the object feature shape [9]. It detects
pedestrians by comparing a huge database of possible
pedestrian-silhouettes with subregions of the camera data’s
edge image. To perform this correlation, the distance-
transform (DT) is applied to the edge-image first, using
the popular Chamfer-distance. Afterwards, the database
templates can be easily correlated with the edge image
by laying them over the DT and averaging all distance-
values of the DT below each template pixel. This average
- the mean distance between silhouette and edge-image - is
a good measure for similarity and can be thresholded for
pedestrian detection. Here we use the hierarchical template-
matching method introduced in [9] to overcome the extreme
computational cost for brute-force correlating each of the
templates on every image position.

Fig. 2. brief overview of chamfer matching: upper left - preprocessed
image, upper right - edge image, lower left - distance transform, lower
right - three layer hierarchical template matching

B. Cascade Classification

The cascade detector, introduced by Viola and Jones [10]
and modified by Wender and Loehlein [11], is a subwindow-
classifier. To classify a subwindow, the detector uses a cas-
cade of classifiers, successively increasing in computational
cost. The cascade aims to reject as many subwindows as
possible in the early computationally inexpensive stages and
to classify only the remaining very low percentage with the
computationally expensive ones. Subwindows passing all
stages become detections (fig.3/left). Each classifier within a
cascade is a scalar linear combination of a number of so cal-
led weak classifiers, build upon simple rectangular features,
quickly computed from integral images. The decision about

class membership in each stage is made by thresholding the
linear combination value. The number of features increases
from stage to stage, thus implying better discrimination
at simultaneously raising computational cost. The count,
type and positions of the features, the linear combination
weights and the final decision thresholds within each stage
are learned from pre-classified random sample images with
the adaboost algorithm.

C. The Hyperpermutation Network

The Hyperpermutation Network (HPN) [12] generates a
discrete confidence level for each pixel, indicating weather
it probably belongs to class ”background” or to class
”object”. Thresholding these levels leads to pixel classi-
fication. Low probability outputs discriminate background
areas, high ones object areas and values in the middle can
be interpreted as network indifference. To transform the
original input image into the per pixel likelyhood image
(Fig. 3/right), several HPN stages are successively computed
on the image, meaning each stage processes the output
image of the previous one. To compute the output value
of each pixel within a stage, the HPN uses information of
its local environment by scanning a random pattern of pixel
values around it. This pattern was chosen randomly for each
stage during training with growing spatial extent from stage
to stage. This architecture implies feature extraction over
small local image areas in the lower stages and inference
on class membership, considering these features in larger
image regions in the upper stages. The binary transformati-
on function from the pattern pixel values to the target pixel
value is done by lookup-tables, whose optimization is the
network training task, described in detail in [13].

Fig. 3. left: subwindows passing the cascade classifier, right: HPN
likelyhood image

III. E VALUATION OF RECOGNITION METHODS

A. Evaluation parameters

Corresponding to the shape templates’ bounding boxes in
chamfer template matching, correlating a template with an
image position can be interpreted as classifying a subwin-
dow, too. Therefore all presented methods can be evaluated
with the basics of classifier evaluation. The membership of
patternP, representing rectangular subwindows for chamfer
matching and cascade classification and pixels for HPN
likelyhood estimation, to class ”object” (K) or class ”back-
ground” (K̄) is determined by human pre-classification. The



classification algorithm ”Cl” to evaluate, presents a class
estimationCl(P), too. We distinguish four cases (see table
I). Value ”a” counts the number of true positives, hence pi-

TABLE I

CONFUSION MATRIX

P∈ K P∈ K̄

Cl(P) = K a b
Cl(P) = K̄ c (d)

xels or subwindows belonging to a pedestrian and classified
as pedestrian. Value ”b” counts false positives, and value
”c” false negatives, respectively. At least for subwindow
classification, we can not use value ”d”, the true negative
count, because the number of subwindows containing no
pedestrian is almost infinite. Separating case ”a” and ”b”
in subwindow classification additionally requires a ”match
operator”, since we cannot expect pixel-accurate detections
from the detectors. Tolerating some spatial imprecision up
to a certain level was accomplished by defining a distance
measure on two subwindows (B1,B2) upon the ratio of the
area within the conjunction of the two boxes and the area
of their disjunction:

cov(B1,B2) =
A(B1∩B2)
A(B1∪B2)

∈ [0,1] (1)

This coverage measure can be transformed to a distance
measure viad(B1,B2) = cov(B1,B2)−1−1∈ [0,∞]. Thres-
holding this distance (or the coverage) leads to a binary
scale invariant decision between case ”a” and ”b”. Upon
the confusion matrix entries, created by comparing human
pre-classification and detector output, one can define the
evaluation performance parameters. The sensitivity s (or
detection rate) is an estimation of the probability, a real
world object gets detected by the algorithm and is optimal at
value one:s= a(a+b)−1 ∈ [0,1]. The precision p estimates
the probability that a detection resulted from a real world
object and not from clutter and is optimal at value one,
too: p = a(a+ c)−1 ∈ [0,1]. Another often used parameter
in subwindow classification is the false alarm rate f per
image, normalizing the false alarm count ”b” on the image
count ”N”, that is equivalent to the number of false alarms
per time (transformation via measurement frequency):f =
b/N∈ [0,∞]. In pixel classification the true negative number
”d” is known from the image resolution, thus the false
positive rate can be defined asf = b(b + d)−1 ∈ [0,1].
Assuming the number of real world objectsa+ c and the
number of detectionsa+b grow proportional with time, the
parameters p and f carry the same information - the quantity
of false alarms.

Honest detector evaluation depends on the simultaneous
presentation of both, detection probability and false alarm
quantity, expressed by a vector function(s, p)T = f (~x) on
the varying algorithm parameter vector~x.

B. Evaluation results

We took our data set from urban as well as country scenes
in the autumn and winter time at night and day. The data set
was divided into learn and test set as usual. For evaluation
set pedestrian and image quantities see table II. Additionally

TABLE II

EVALUATION SET QUANTITIES

images pedestrians

learn set 3853 4688
test set 1589 1703
total 5442 6391

to varying the algorithm parameters while generating the
performance measures, we varied the imprecision tolerance
for subwindow classification, giving us an idea of the locali-
zation performance. Besides generating an overall measure,
we discretized the pedestrian heights and calculated separate
measures for each height interval, providing us information
of how well the algorithm will detect objects in different
distances w.r.t. the mounted optics. From figures 4/5 we
learn that cascade detection is more robust against object
downscaling than chamfer matching. The fact that feature
shape looses discrimination the smaller the objects become,
due to raster data representation, explains this behavior.
Additionally the architecture of the weak learners in cascade
detection allows simultaneous processing of both, shape and
texture features leading to more precise discrimination of
small objects. As a consequence of these results, we apply
chamfer template matching only within short distances,
by removing the smaller shape templates. On the other
hand, in the height intervals where chamfer matching is
not penalized by image raster effects, it does much better
localization than cascade classification. This is observable
from nearly constant good performances at low imprecisi-
on tolerance, where cascade detection performance breaks
down, e.g. because subwindows are normalized to a fixed
size in cascade classification, disobeying the true pedestrian
aspect ratio. To transform the performance statements of
figures 4/5 into detection ranges we use the camera pro-
jection equations. Figure 7 shows the obstacle distances
in world coordinates for each discrete object height step
in image coordinates we used to evaluate the detectors. If
tolerating low localization precision, we are able to detect
pedestrians up to 75 meters. HPN pixel classification output
was compared to naive intensity thresholding, by varying
the HPN probability threshold and the intensity threshold.
Sensitivity over precision (Fig. 6/top) shows that HPN pixel
classification is far away from optimal discrimination, but
in fact much better than intensity thresholding. However,
in contrast to the other approaches the image content
independent computational cost and the general execution
speed, resulting from its arithmetic free architecture, are
advantages of HPN classification. Although the high proba-
bility pixel clouds diffusely disperse around real pedestrians
(fig. 3/right), corrupting any direct detection method, like
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Fig. 4. left column: ROC detection performance of hierarchical contour
matching with top-down increasing hit accuracy demand, broken down
into different object heights

i.e. binary connected components clustering [14], we learn
from the 90%-sensitivity kneepoints in fig. 6, that we can
operate the HPN with an average true negative rate of
approx. 96%. This observation motivates a new possibility
of HPN usage within a detection system, described in the
next section.

IV. REALTIME PEDESTRIAN DETECTION

A. Detector Combination

The chamfer template matching method, as well as the
cascade detector, cannot be applied in real-time, if every
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Fig. 5. right column: ROC detection performance of cascade subwindow
classification with top-down increasing hit accuracy demand, broken down
into different object heights

possible image position has to be correlated or classified.
That is why ROI-Extraction, as fast method for background
skipping, comes into play. The common solution for this
problem is the ”flat-world-assumption” (FWA, fig. 8), mea-
ning the camera is looking down on a planar world and,
additionally, every object in the world has to be standing
on that plane. Together with the standard camera transfor-
mation from world to image coordinates, this constellation
implies a restricted search area in the image plane for each
object, depending on its height. In practice this assumption
holds only for short distances because of the unknown
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Fig. 6. HPN (red) vs. intensity threshold (blue); top: sensitivity over
precision; bottom: sensitivity over false alarm rate

territory. Additionally, a real car is shaking on the road, due
to unevenness and road holes. We solved this problem by
combining a relaxed FWA and the HPN likelihood-image.
At first, the object search tunnel, provided by the FWA is
enlarged vertically, to compensate the territory uncertainty
and the vehicle shaking. The increase in computational
cost, linked to this relaxation, is compensated by skipping
each image region that passes the relaxed FWA from being
applied to chamfer matching and cascade classification, if
the HPN indicates a high probability for background within
its rectangular area. To compute the mean HPN activity for a
rectangular image region we used the integral image method
(eq. 3). The HPN integral imageIIHPN is computed once
per frame (eq. 2).

IIHPN(x,y) =
x

∑
i=0

y

∑
j=0

HPN(i, j) (2)

aHPN(x0,y0,x1,y1) =(IIHPN(x1,y1)− IIHPN(x0,y1)
− IIHPN(x1,y0)+ IIHPN(x0,y0))/
((x1−x0) · (y1−y0)) (3)

A threshold operation on the mean HPN activity performs
the necessary binary decision. The chamfer template mat-
ching and the cascade detector are both applied to the re-
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Fig. 8. Flat-World-Assumption

maining search areas. The bounding boxes of the matching
contour-templates and the positively classified subwindows
are combined into the detection box cloud.

B. Detection Filtering

Often multiple Chamfer matching and cascade detection
boxes spread around real pedestrians (i.e. fig. 3/left). Besi-
des cleaning the measurements from this noise, the filtering
component compensates short detector malfunctions and is
capable of associating detections of different images to the
same real world object, providing information for high level
situation analysis. We used bayesian estimation on a state
vector, consisting of position and size of the pedestrian
bounding box in image coordinates. As mentioned, detector
fusion is accomplished by sequential (or cooperative) fusion
of a HPN-ROI stage with a box detector stage, built
from a parallel fusion of chamfer template matching and
cascade classification. Multiple object filtering was solved
by a standard multiple filter approach. The oncoming data
association problem was solved by usage of a threshold
operation on the already introduced box distance measure
(eq. 1). For state prediction we used the second order motion
model(

~xt+1

~xt

)
=

(
A B
I 0

)(
~xt

~xt−1

)
+

(
~wt

0

)
(4)

A =
[
1+

t+1− t
t− t−1

]
· I (5)

B =− t+1− t
t− t−1

· I (6)



wheret+1, t, t−1 are three successive measurement points in
time. Since we did not identify the detectors measurement
noise and the pedestrian movement process noise to be
gaussian so far, we used the particle filter approach [15]
to solve the state estimation problem. The measurement
likelyhood function is defined on the set of associated
detection boxes Z with help of eq.1:

p(Z|x) ∝ |Z|
∑|Z|−1

i=0 d(zi ,x)2
(7)

V. CONCLUSION

The joint operation of parameter optimized methods as
fast background skipping by pixel classification, followed
by the more discriminating subwindow classification and a
filtering algorithm, enabled us to design a reliable realtime
pedestrian detection system (fig.9).

Fig. 9. pedestrian detection and filtering; left: orange - HPN ROI
extraction, green - cascade detections, red: Chamfer matching detections;
right: red - predicted state, green: corrected state, blue: trajectory

We do not go so far as to claim our system detects
pedestrians at 100% accuracy (see roc-diagrams in section
three), but we showed how strong evidence can be derived
from even very low resolution image data, where simple
assumption-based methods fail. To drive the object detection
certainty against its maximum, we will examine two possi-
ble ways in the future: First, our detection algorithms are
subject of permanent development, increasing their discri-
mination performance. Especially interesting is the question

of various detector output correlation, rating the benefit
of parallel detector fusion, that was not examined so far.
Therefore we assumed some degree of independence of the
detector outputs empirically observed from mutual exclusi-
ve true positives of the two subwindow approaches. Second,
we start intensive investigations on sensor fusion systems,
i.e. combining FIR-data with NIR or LIDAR data. Another
problem during our tests emerged from the preprocessing
stage. FIR sensor data seems to be strongly dependent
on daylight, weather and seasonal conditions. This can
be solved by either advanced preprocessing algorithms,
presenting nearly constant images to the other stages, w.r.t.
contrast and brightness, or by training specialized detectors
for different environmental conditions. In the future we
aim to quantitatively evaluate the performance of the whole
detection system, including data fusion and tracking, but
this requires object identity labeling of the random sample
images and a track-based evaluation scheme.
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