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ABSTRACT

A new approach is presented to account for a simultaneous solution of the three wind components from at
least a pair of Doppler radar observations, which could remove potential drawbacks of an iterative (nonsimul-
taneous) solution of Cartesian dual-Doppler analysis techniques. The multiple-Doppler synthesis and continuity
adjustment technique (MUSCAT) is derived from the extended overdetermined dual-Doppler (EODD) variational
formalism that contains the basis for a simultaneous (noniterative) solution of a dual- or multiple-equation system
and a mass continuity equation. Necessary accommodations are discussed, including the solutions for a plane-
to-plane synthesis (as in EODD) instead of a fully three-dimensional and computationally intensive analysis,
owing to the three-dimensional character of the continuity equation. The evaluation of MUSCAT is carried out
by first considering real data and then performing numerical tests based on simulated radar observations. The
comparative study with EODD applications shows that MUSCAT provides a more regular description of the
airflow and that EODD may still contain residual errors that make the retrieved wind components inconsistent.
Results from the numerical tests definitely reveal the real improvements of MUSCAT in synthesizing Doppler
radar data.

1. Introduction

Recently, Chong and Testud (1996) and Chong and
Campos (1996) investigated the potential of, respec-
tively, coplane and Cartesian dual-Doppler analyses in
deducing the wind components from airborne Doppler
radars that are equipped to make fore–aft observations
and thus to collect dual-Doppler data from a single
straight flight path, as proposed by Frush et al. (1986).
Both approaches combine the dual-Doppler observa-
tions with the anelastic mass continuity equation and
consider empirical relationships between radar reflec-
tivity and terminal fallspeed of precipitating particles to
correct for their contribution to the Doppler measure-
ments.

The coplane analysis proceeds in a well-posed so-
lution in the mathematical sense, since it uses the natural
cylindrical frame attached to the radar scanning that
yields an unambiguous determination of two orthogonal
cylindrical components (say, the coplanar components)
from observations, which are subsequently utilized in
the continuity equation to deduce the third component.
This is a major advantage over the conventional Car-
tesian dual-Doppler analysis in which the dual-equation
system is dependent on the three wind components. Un-
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less simultaneously solving this system with the con-
tinuity equation, an iterative procedure is required to
determine the horizontal wind components, on the one
hand, and the vertical component, on the other hand.
Usually, coplane and Cartesian dual-Doppler techniques
are limited to low elevation angles (#458) on either side
of the aircraft in order to mitigate the contribution of
the vertical particle motions to the observed Doppler
velocities. Moreover, at higher elevation angles, the Car-
tesian wind synthesis tends to be ill conditioned, as
shown by Chong and Campos (1996). These limitations
prevent wind synthesis in a cone above and below the
aircraft and also prevent taking advantage of the full
radar coverage when the aircraft is penetrating into the
cloud system.

The extended overdetermined dual-Doppler (EODD)
technique, performed in a Cartesian frame and proposed
by Chong and Campos (1996), is an alternative to over-
come the limitation problems. The proposed variational
formalism applies to dual- and multiple-Doppler data-
sets, such as quad-Doppler observations (Jorgensen et
al. 1996) that could be collected from coordinated and
parallel flight tracks in a two-plane mission. Its appli-
cation to datasets obtained during the Tropical Ocean
Global Atmosphere Coupled Ocean–Atmosphere Re-
sponse Experiment (TOGA COARE) (Webster and Lu-
kas 1992) field project in the western Pacific warm pool
has shown that a highly reliable flow structure could be
obtained in regions where the traditional approach pro-
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duced unrealistic components. However, due to a non-
simultaneous solution of the wind components (as in
the conventional analysis, an iterative process is need-
ed), we suspect that residual errors may remain.

This paper proposes a new approach to account for
a simultaneous solution, based upon the EODD varia-
tional formalism and valid for at least dual-Doppler ob-
servations. An overview of EODD and its potential lim-
its is given in section 2. Section 3 presents the proposed
multiple-Doppler synthesis and continuity adjustment
technique (MUSCAT), including an analysis of its nu-
merical aspects that are detailed in appendixes A–D.
The evaluation of MUSCAT is carried out in section 4,
based on a comparative study with respect to EODD.
Data from TOGA COARE, previously used to test
EODD, and simulated radar observations are employed
to investigate the performances of MUSCAT.

2. Overview of EODD analysis

a. Formalism

The aim of this section is not to recall the reasons
that have motivated the development of EODD analysis,
as can be found in Chong and Campos (1996), but to
remind the reader of its main characteristics. EODD is
a variational adjustment of the horizontal Cartesian wind
components u and y (considering a specified vertical
velocity w0) to observed Doppler velocities in individ-
ual horizontal planes, which minimizes the functional
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and includes the airmass continuity equation to derive
the vertical velocity w,

]u/]x 1 ]y /]y 1 ]w/]z 2 kw 5 0. (3)

Subscript i defines the radar (or beam for dual-beam
airborne radars) number that ranges from 1 to at least
2. Here, y T is the terminal fallspeed of precipitation
particles that can be estimated from an empirical rela-

tionship with the observed radar reflectivity; ai, bi, gi

are the direction cosines, in the x, y, and z directions,
respectively, of the beam-pointing angles; and Vi is the
radial velocity from radar i. Here, J2 [ (]2/]x2)2 1 2(]2/
]x]y)2 1 (]2/]y2)2 is a differential operator, k 5
2] lnr/]z accounts for the air density (r) decrease with
height, m1 and m2 are normalized weighting parameters
that control the relative importance of terms B and C
with respect to A. As in the conventional dual-Doppler
analysis, solution of (2) is obtained through an iterative
process with (3), allowing a step-by-step correction of
the vertical air velocity contribution to the measured
radial velocity. [At the initial step, w0 5 0 in (1); then
it is the solution of (3).]

In (1), A is the data adjustment term that links the
three wind components to the measured radial velocities.
This is the classic least squares minimization formalism
of the overdetermined dual-Doppler (ODD) technique
(Ray and Sangren 1983), which leads to an equivalent
form of the conventional dual-equation system. Term B
is the least squares expression of the mass continuity
equation, which limits the extent of horizontal wind
variations through the divergence term during the it-
erations. In essence, it allows us to moderate the con-
tribution of errors in determining w from (3) and thus
to improve the convergence of the iterative process.
Term C is a constraint on second derivatives of u and
y and helps to provide regular horizontal wind field by
filtering out small-scale variations. A main advantage
of this term is to give an objective solution of the ill-
conditioned dual-Doppler analysis that can be caused
by the geometrical configuration of the Doppler mea-
surements in both the cone above and below the aircraft
that involves high elevation angles. Note that such ill-
conditioned analysis also occurs in regions close to the
radar baseline when two ground-based radars are in-
volved. In this paper, discussion concerning airborne
radar analysis can be readily extended to the case of
ground-based radars.

b. Limitations of EODD

Although the variational EODD technique was shown
to provide highly reliable flow structure in regions
where the traditional approach failed, there remain some
limitations that should be clarified in this paper and that
justify additional improvements. The first limitation
concerns the interpolation of the polar coordinate radar
data onto a Cartesian grid, prior to the application of
EODD, in order to obtain, at each grid point, one Dopp-
ler-radial vector for each radar (or beam). Interpolated
grid values are defined as distance-weighted averages
of all data falling inside an ellipsoid with an influence
radius in the horizontal twice as large as in the vertical.
A fixed interpolation function applies at short and long
ranges differently. At short range this function forces
averaging vectors pointing in quite different directions
and creates a sampling problem, as these data are dif-
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ferent due to the changes in elevation and/or azimuth
angles and, hence, should not be averaged. In the context
of airborne radar sampling, which consists of helical
scans about the aircraft axis, the averaging process in-
volves such a variety of viewing angles for grid points
close to this axis, more specifically above and below it,
because of the larger horizontal influence radius. As a
result, the interpolated radial velocities and the asso-
ciated beam-pointing angles are less accurate in these
regions than elsewhere, exacerbating the errors in es-
timating the horizontal components. A solution would
consist of incorporating the interpolation step into the
least squares data adjustment procedure, allowing the
interpolation to take account of a number of measure-
ments (i.e., all the available observed velocity vectors
and their actual orientation) instead of a unique mean
observation from each radar or beam.

The second limitation results from the actual limits
of the proposed approach. Let us examine the functional
F [Eq. (1)] to be minimized. Constraint C on the second-
order derivatives of the wind field, which acts as a low-
pass filter, basically applies to the results of the least
squares data adjustment given by term A in order to
correct or reduce unreasonable horizontal winds that can
be obtained near the flight track (see Fig. 7 in Chong
and Campos 1996). However, in some circumstances,
this correction may be incomplete. Consider that unsta-
ble solutions occur within an interval of 4Dx in the
cross-track direction, where Dx is the grid spacing. If
their differences with solutions from well-defined
regions are maximized at the center of the unstable zone,
then they may be interpreted as varying with an equiv-
alent wavelength greater than or equal to 4Dx. Because
the cutoff wavelength of the low-pass filter (defined as
the wavelength for which the filter response is 0.5 since
the response function is not a pure step function) is
usually 4Dx, the filtered winds may contain residuals
that can reach 50% of the amplitude of the wind bias.
As a consequence, a localized wind extremum is ob-
tained and causes an artificial convergence/divergence
doublet that is penalizing for the determination of w
through (3).

The above limitation concurrently combines with the
problem arising from a separate estimation of the hor-
izontal and vertical wind components. Indeed, the it-
erative process forms another important limitation of
EODD in this region of unstable solution near the flight
track, where vertical motion accounts contribute more
than 70% of the measured radial velocity at elevation
angles greater than 458. In some conditions, prescribing
w0 5 0 in the initial step can be excessive, and biased
u and y estimates can be obtained due to associating
nonconsistent vertical and horizontal velocities during
the iterative process.

In fact, the dual-Doppler equation system and the
continuity equation define a mathematically complete
system to retrieve the three wind components, and ill-
conditioned problems could disappear if they are solved

simultaneously (noniterative process). Such a solution
has been already investigated by Scialom and Lemaı̂tre
(1990) in their adjustment technique of observations
with an analytical wind field and more recently by Ga-
mache (1995), who found, however, that the technique
was computationally intensive and required high mem-
ory storage in a three-dimensional context. An alter-
native approach consists of resolving the above-men-
tioned equations in individual planes. The EODD ap-
proach offers such an opportunity by simply extending
the minimization problem to the variable w. Improve-
ments are, however, necessary to preserve the plane-to-
plane wind synthesis. These will be described in the
next section, which presents the basis for MUSCAT, a
method that can be applied to airborne or ground-based
radar data.

3. MUSCAT formulation

The variational expression (1) for individual planes
can be rewritten in a generalized form including the
vertical air velocity w as

F9(u, y , w) 5 [A9(u, y , w) 1 B9(u, y , w)E
S

1 C9(u, y , w)] dx dy, (4)

where A9, B9, and C9 are expressions having equivalent
meanings as A, B, and C in (1). These expressions,
hereafter described along with their numerical counter-
part, are the MUSCAT formulation of data fit, continuity
equation adjustment, and filtering process, respectively.
Solution for u, y, and w is derived according to a si-
multaneous resolution of

]F9 ]F9 ]F9
5 0, 5 0, and 5 0. (5)

]u ]y ]w

a. Data fit

As previously explained, the use of grid values, ob-
tained with a fixed interpolation function, in the data fit
expression A of (1) may cause problems in regions
above and below the aircraft. Because data distribution
is not coincident with the grid mesh used to recover the
three-dimensional wind field, the interpolation process
must be maintained. The alternative proposed in the
previous section, consisting of inclusion of this process
in the data fit, may be expressed for a grid point (i, j)
of a horizontal plane as

A9(u, y , w)ij

n n (p)p q1
25 v [a u 1 b y 1 g (w 1 y ) 2 V ] ,O O q q q q T qN p51 q51

(6)

where u, y , w, and y T are defined for the considered
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grid point; subscript q defines the qth measurement of
a total number nq that can be observed from the pth
radar and that falls inside an ellipsoid of influence cen-
tered on the grid point; N is the cumulated nq’s over the
considered domain; vq is the Cressman weighting func-
tion depending on the distance between measurement q
within the ellipsoid and grid point (vq 5 1 at the center
of the ellipsoid and vq 5 0 on its surface); and np is
the total number of radars that must be equal to at least
2. Weighted data fit was also used by Roux and Sun
(1990) to evaluate wind components from a series of
conical single-Doppler scans of ground-based radar.

In (6), the terminal particle fallspeed y T is evaluated
from preinterpolated radar reflectivity Z, instead of in-
dividual reflectivity observations, because the radar sig-
nal may undergo strong attenuation in regions of heavy
precipitations and, to further mitigate this effect, the
maximum gridpoint value from more than two radars
can be considered. Another possibility may be provided
by the stereoradar analysis of dual reflectivity obser-
vations proposed to estimate corrected reflectivity fields
(Testud and Amayenc 1989; Kabèche and Testud 1995).

Minimizing (6) with respect to u, y , and w requires,
for each radar dataset, the estimation of nine terms for
each individual grid point. They are defined as follows:

1
2M 5 v a ,Ouu q qN q

1
2M 5 v b ,Oyy q qN q

1
2M 5 v g ,Oww q qN q

1
M 5 v a b ,Ouy q q qN q

1
M 5 v a g ,Ouw q q qN q

1
M 5 v b g ,Oyw q q qN q

1
P 5 v a V ,Ou q q qN q

1
P 5 v b V ,Oy q q qN q

and

1
2P 5 v (g V 2 g y ), (7)Ow q q q q TN q

such that

    M M M u PO O O Ouu uy uw u    
M M M y 5 P . (8)    O O O Ouy yy yw y
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Summations in the matrix arrays are performed over the
number np ($2) of available radars that contribute to
the observations at the considered grid point. Because
y T is derived from an independent processing and is a
constant during the summation, term Pw can be split
into two terms:

1
P9 5 v g VOw q q qN

and

1
2P0 5 v g ,Ow q qN

where Pv 5 2 . It should be noted that if theP9 P0yv v T

y T–Z relationship is changed, the above terms need not
be reevaluated, as long as these are saved. This is what
is done for MUSCAT software.

b. Continuity equation adjustment

The adjustment term B9 for the continuity equation
is exactly the same as in the EODD approach and is
rewritten as

2
]u ]y 1 ]rw

B9(u, y , w) 5 m 1 1 . (9)11 2]x ]y r ]z

In essence, B9 must be discretized by considering grid
point values of u, y , and w. Due to the vertical derivative
term, this necessarily involves two successive planes.
The discrete form of (9) allowing a plane-to-plane for-
mulation is described in appendix A. An off-centered
finite-difference scheme is used to express B9 at the
center of a grid box in terms of net mass flux through
the box sides. This differentiating scheme accounts for
the boundary conditions at the surface when starting the
wind synthesis from the lowest level, or at the top in a
downward plane-to-plane analysis, so that the integra-
tion of the continuity equation is implicitly performed.

c. Filtering process

As in EODD, the role of term C9 in (4) is to smooth
out small-scale variations of u, y , and also w in the
horizontal. Considering B9 as a weak constraint, it can
be shown (appendix B) that minimizing second deriv-
atives of wind components through J2(u), J2(y), and
J2(w) with a weight m2 as in (1) is equivalent to a low-
pass filter defined by a simple transfer function,

1
TF 5 , (10)

41 1 m |k|2

where k 5 (kx, ky) is the wave vector in the x–y plane.
Such a transfer function is isotropic and has a 3-dB
cutoff wavenumber kc controlled by m2 according to kc

5 , that is, a cutoff wavelength lc 5 .21/4 1/4m 2pm2 2

In fact, the adjustment for the continuity equation
cannot be considered as a simple constraint since it is
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an integral part of MUSCAT (in contrast to EODD).
Therefore, the transfer function is no longer isotropic,
as shown in appendix B. Additional terms to J2(u),
J2(y), and J2(w) are then required to obtain an isotropic
response of the filtering process, which are

3 3 2 3 2 2 3 2 2J9(u) 5 m [(] u /]x ) 1 2(] u /]x ]y) 1 (] u /]x]y ) ],2 1

3 3 2 3 2 2 3 2 2J9(y) 5 m [(] y /]y ) 1 2(] y /]x]y ) 1 (] y /]x ]y) ],2 1

and
3 2 2 3 2 2J9(w) 5 m [(] w/]x ]z ) 1 (] w/]y ]z)2 1

3 21 2(] w/]x]y]z) ].

Finally, term C9 is given by

C9(u, y , w) 5 m [J (u) 1 J9(u) 1 J (y) 1 J9(y)2 2 2 2 2

1 J (w) 1 J9(w)]. (11)2 2

The discrete forms of the various derivatives involved
in the expression of J 2 and are developed in ap-J92
pendix C.

d. Resolution procedure

Appendix D details the matrix equation that derives
from (5), taking account of the explicit expressions and
discretisized forms of A9, B9, and C9. Considering an
m 3 n Cartesian grid on the horizontal, the final form
of the variational adjustment of u, y , and w is given by
the matrix equation

MU 5 P, (12)

where M is a (3mn)2 band-diagonal, positive definite
symmetric matrix, composed of 61 diagonals into 19
groups; U is a (3mn) unique vector composed of three
successive vectors containing the u, y , and w grid el-
ements; and P is a (3mn) vector depending on known
parameters (observations, boundary conditions). Matrix
M and vector P are first filled with observational terms
defined in (7). Then, they are completed with the ac-
cumulation of terms associated with continuity equation
adjustment and filtering process, by considering the in-
dividual expansion described in appendixes A and C,
in a sequential inspection of the grid meshes. Due to
symmetric property of M, only 31 diagonals are saved,
reducing considerably the size of the matrix array. For
the application of section 4, MUSCAT requires 1.3
megawords of memory to solve the wind field on 72 500
grid points and 400 s of computation time on a Hewlett-
Packard HP-730 workstation.

Finally, the sparse matrix equation is solved with the
standard conjugate gradient method. Because the ob-
tained solution of u, y , and w satisfies the continuity
equation in a least squares sense, and to limit the errors
in the vertical velocity component, a refinement of the
w estimates is then performed by integrating this equa-

tion according to the approach proposed in Chong and
Testud (1983) and applied in EODD.

4. Comparisons of EODD and MUSCAT

In this section we will compare the relative quality
of the MUSCAT and EODD analyses. This evaluation
is carried out by first considering real data and then
performing numerical tests. These tests based on sim-
ulated radar observations help to investigate more pre-
cisely the positive effects of MUSCAT in the recovery
of the wind components.

a. Real data analysis

In Chong and Campos (1996), the EODD analysis
was applied to the data collected within a squall-line
system occurring on 22 February 1992 during TOGA
COARE, by the Doppler radars aboard the two NOAA
P-3 aircraft (N42 and N43, respectively). Observations
from a specific leg simultaneously performed by the two
aircraft within the time period 2110–2121 UTC were
used to test EODD, by considering, respectively, data
from only the N43 track (dual-Doppler scan) and data
from both N42 and N43 tracks (quad-Doppler scan).
These dual- and quad-Doppler configurations yielded
quite comparable results. Because of this, we will focus
on comparisons of EODD and MUSCAT applied to
dual-Doppler observations only.

To ensure some continuation with the previous work,
the same dataset relative to the above-mentioned N43
leg is used in this study. Detailed description of the
observations and data preprocessing can readily be
found in Chong and Campos (1996). Application of
MUSCAT is performed with the same Cartesian grid
and interpolation function characteristics as in the
EODD analysis, that is, a domain of 73.5 3 73.5 3
14.5 km3 with a grid resolution of 1.5 3 1.5 3 0.5 km3

and a Cressman weighting function with horizontal and
vertical influence radii of 2.5 and 1.2 km, respectively.
Also, the weights m1 and m2 for the continuity equation
adjustment and the filtering process of MUSCAT are
set to S 2 (S is the area of an elementary horizontal grid
mesh) and 0.164S 4, respectively. With these specifica-
tions, direct comparison with results presented in Chong
and Campos (1996) can be done.

Figures 1 and 2 compare the vertical cross sections
of the line-transverse (west–east section) relative flow
(with the corresponding radar reflectivity) and of the
vertical velocity at y 5 33 and y 5 60 km, respectively,
obtained from EODD (Figs. 1a and 2a) and MUSCAT
(Figs. 1b and 2b). Locations of the aircraft that flew at
170-m altitude are also indicated at x 5 16 km and x
5 0 km, respectively. The overall airflow structures
from both approaches appear similar (see left panels of
Figs. 1 and 2), and this mutual consistency substantiates
their validity in solving the three wind components from
a minimal configuration of dual-Doppler observations.
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FIG. 1. Vertical cross sections of the relative line-transverse wind and reflectivity (left panels), and vertical velocity (right panels) at y 5
33 km. (a) The upper panel corresponds to EODD application, while (b) the lower panel is for MUSCAT results. The vertical arrow below
the horizontal axis indicates the aircraft position. The scales for the wind components are also represented.

FIG. 2. As in Fig. 1 but at y 5 60 km.
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FIG. 3. Vertical cross sections of the line-transverse u (left panels) and line-parallel y (right panels) at y 5 33 km. (a) The upper panel
results from EODD, while (b) the lower panel is obtained from MUSCAT. The vertical arrow below the horizontal axis indicates the aircraft
position.

The components from the two analyses are within a few
meters per second of each other. However, the detailed
features are significantly different, and this can be at-
tributed to improvements due to the simultaneous so-
lution of MUSCAT as opposed to the iterative process
of EODD (this will be confirmed in the next section).
The differences are noticeable for the cross section at
y 5 33 km (Fig. 1), which displays an upper-level up-
draft (.10 m s21 above 13-km altitude) in the EODD
analysis (Fig. 1a), while MUSCAT provides a main up-
draft reaching a maximum of 4 m s21 at 10-km altitude
and then decreasing progressively to less than 1 m s21

at top levels (Fig. 1b). Moreover, an area of downward
motions less than 21 m s21 is observed at x 5 18–23
km, beneath the EODD-derived upper-level updraft.
There is a similar updraft–downdraft structure in the
EODD analysis in Fig. 2, at x , 8 km, which is not
revealed in MUSCAT results. In fact, this major dis-
crepancy occurs in regions close to the flight track,
where different conclusions about storm mechanisms
would result from using the two different approaches.
EODD depicts convergent flows composed of the main
upward front-to-rear flow (from right to left) opposing
a rear-to-front flow (from left to right) at high levels
greater than 8 km. This contrasts with the overall up-
ward front-to-rear flow from MUSCAT.

These differences on the line-transverse components
are also observed on the line-parallel ones, as shown in

Fig. 3, which compares the u and y components obtained
from EODD (Fig. 3a) and MUSCAT (Fig. 3b) at y 5
33 km. The associated line-transverse (]u/]x) and total
(]u/]x 1 ]y /]y) divergence patterns are shown in Fig.
4. In most respects, MUSCAT provides a smooth struc-
ture in wind components and divergence, while EODD
can produce strong gradients, especially in regions
above the aircraft. A rapid reversal of the components
is obtained from the EODD analysis, which contrasts
with the gradual variation found in the MUSCAT-de-
rived components. The high level region of strong ver-
tical velocities from EODD (Fig. 1a) clearly results from
the convergence zone above 8-km altitude (Fig. 4a). The
existence of such an area of convergence is questionable
at storm top, where virtually any numerical or concep-
tual model would indicate an area of divergence. Nu-
merical simulations of the present observational case
(Trier et al. 1996) show a progressive decrease of the
upward motions at top levels. This corroborates the
MUSCAT results, which show a divergent upper-level
flow (Fig. 4b) quite consistent with the detrainment of
updraft air toward the rear of the system, as previously
documented (see, e.g., Houze and Betts 1981; Chong et
al. 1987). At these levels above the aircraft, the con-
tribution of the incorrect vertical velocities from the
EODD analysis is maximized, which increases the errors
in the determination of the horizontal components dur-
ing the iterative process.
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FIG. 4. As in Fig. 3 but for line-transverse ]u/]x and total ]u/]x 1 ]y /]y divergence.

At low levels, although the u and y components (Fig.
3) depict similar features, there are small-scale varia-
tions in the EODD analysis that strongly affect the con-
vergence zone between the deep rear-to-front flow (pos-
itive u) and the shallow downdraft-generated diverging
outflow toward the rear of the convective cells (negative
u), as revealed by MUSCAT (Fig. 4b). As discussed in
section 2b, incorrect winds can explain the occurrence
of the doublets of convergence/divergence that can be
easily observed on the total divergence field of Fig. 4a
and that extend between x 5 10 km and x 5 22 km,
which is still in regions close to and above the aircraft.
Note that in these areas in which EODD fails other dual-
Doppler approaches will likely fail also.

b. Numerical tests

Comparison of the application of EODD and MUS-
CAT to real data has clearly shown noticeable differ-
ences in the derived wind structure, particularly in
regions above the aircraft track. Expected limitations of
EODD were put forward to explain these differences,
while previously documented airflow structure within
squall lines was suggested to evaluate the consistency
of the wind retrieval from MUSCAT. However, this
comparison remains qualitative since the reference wind
field (exact solution) cannot be observed in nature. An
alternative consists of using simulated radar observa-
tions and performing a quantitative analysis of the im-
provements of MUSCAT against EODD. Such an ap-

proach was also used by Chong and Testud (1996) in
their study of the coplane methodology to synthesize
airborne Doppler radar data. We adopt the same pro-
cedure to obtain numerical tests close to experimental
conditions, that is, we consider the dual-beam sampling
from the leg analyzed in the previous section and sub-
stitute the observed radial velocities with those derived
from an analytic form of the wind components. To sim-
ulate the radar statistical error, random errors with an
rms value of 1 m s21 are then added to these radial
components.

1) SIMULATED WIND FIELD

The two-dimensional wind field used in Chong and
Testud (1996) is considered, and it derives from a de-
scription of the vertical velocity w in terms of a product
of two sine functions defined as

w 5 A sinkzz sinkH(rH 2 az 2 b), (13)

where A is the amplitude; kH and kz are, respectively,
the horizontal and vertical wavenumbers; rH is the hor-
izontal distance; and a and b are parameters defining a
linear variation of the phase shift with height. Note that
w 5 0 is always verified at the surface and that implicitly
kH and rH are colinear. In the vertical plane containing
the wave vectors, rH 5 az 1 b defines the line for which
w 5 0, as do the parallel lines at a horizontal distance
that is a multiple of half the horizontal wavelength.
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FIG. 5. Vertical representation of the 2D wind field used to simulate
Doppler radar observations: (a) vector representation, (b) horizontal
component, and (c) vertical velocity.

Considering the mass continuity equation (3), the hor-
izontal wind VH in the rH direction can be expressed as

A
V 5 (k cosk z 2 k sink z) cosk (r 2 az 2 b)H z z z H HkH

1 aA sink z sink (r 2 az 2 b).z H H

In this study, the horizontal wave vector was assumed
along the x direction (i.e., u 5 VH and y 5 0), and
horizontal and vertical wavelengths were equal to 40
and 24 km, respectively. Amplitude A was set to 10 m
s21 and k, the inverse of the scale height of the air
density decrease, was assumed to be equal to 0.1. For
simplicity, the analysis domain was limited to 48 km in
the x direction since no observation was available be-
yond that limit and to 12 km in the vertical where w
vanishes. Parameters a and b were chosen to be equal
to 20.7 km21 and 17 km, respectively. The correspond-
ing y-independent two-dimensional wind field and the
associated u and w components are shown in Figs. 5a–
c, respectively. With the above specifications, the sim-
ulated airflow consists of two opposite vortex circula-
tions sloping to the left with an angle of 358 and centered
at x 5 13.8 and 33.8 km, and z 5 4.6 km. Upward
motions are in the central part of the domain and reach
10 m s21, as do the downdrafts on either side. Horizontal
velocities range from 0 to 618 m s21.

2) RESULTS

Figures 6a and 6b visualize the horizontal flow at 5-
km altitude, as deduced from the application of MUS-
CAT and EODD to the simulated data. The aircraft track
is also reported. While MUSCAT provides a horizontal
flow quite similar to the simulated one (not shown),
strong perturbations occur near the flight track, es-
pecially in its northern portion, when EODD is consid-
ered. Reversal of the flow components as discussed
above can be easily identified: a southwest-oriented flow
is generated, which contrasts with the original west–east
flow and substantially modifies the convergence pat-
terns. Although the differences between MUSCAT and
EODD are very localized, this example highlights the
real improvements of MUSCAT to synthesize the hor-
izontal components.

To investigate further the compared performances of
MUSCAT against EODD, Figs. 7 and 8 present vertical
sections of the airflow and the corresponding u, y, and
w components from both approaches at y 5 60 km,
where differences are maximized. Again, the aircraft
location at x 5 0 km is materialized. It can be seen that
MUSCAT correctly reproduces the flow features (com-
pare Figs. 5 and 7) with imperceptible discrepancy. Only
very small perturbations in the y components (assumed
to be zero) are observed. On the contrary, results from
EODD (Fig. 8) depict major differences with the actual
wind field, which concern all levels in regions close to
the aircraft (x , 10 km). Note the large errors in the y

component (Fig. 8c), which are also associated with
large errors in the u and w components. In particular,
artificial negative u and y instead of positive u and
nonexistent y are generated, modifying dramatically the
vortex circulation. A consequence is the complete re-
organization of the vertical motions associated with un-
realistic convergence/divergence patterns attached to
such flow. An updraft core at low levels is observed,
which tends to squeeze the downdraft structure to the
left side of the domain and changes the actual left-hand
sloping downdraft to a right-hand orientation. In terms
of negative effects of EODD when an inadequate so-
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FIG. 6. Retrieved horizontal flow at 5-km altitude from (a) MUSCAT and (b) EODD, as applied to the simulated data. Oblique line refers
to the flight track.

lution is obtained, a parallel one can be readily estab-
lished with the results shown in Figs. 1a and 3a for real
data, which supports the previous hypothesized reason
for failure of EODD and improvements of MUSCAT.
Considering the limitation to 458 elevation angle from
the radar position in Figs. 8a–d yields a good compro-
mise for dual-Doppler analyses, but these work well at
longer ranges. At shorter ranges, the finite interpolation
function smears the data, resulting in increasing errors,
particularly for ranges less than about 5 km and in lo-
cations where the iterative corrections from EODD can-
not adequately function.

MUSCAT is also more accurate than EODD in
regions where the latter can provide reliable wind field.
An example is given in Figs. 9 and 10, which show the
cross sections of the wind components at y 5 33 km.
Overall, the two methods yield results quite comparable
with the actual wind structure shown in Fig. 5. However,
small-scale variations are associated with EODD-de-
rived components (Fig. 10) that denote not only residual
errors again above the flight track but also in distant
regions where EODD is expected to work well (see the
vertical velocity pattern at x . 35 km). This is probably
related to the iterative resolution of horizontal and ver-
tical components, which is not so stable as the simul-
taneous determination of MUSCAT. Comparison of
Figs. 8 and 10 seems to indicate that the problem with

EODD, in Fig. 8, is presumably that the data are un-
bounded on the left, whereas, in Fig. 10, there are data
on both sides of the flight track. Another cause is the
contribution of the vertical motions, which is more im-
portant. We found that taking another value for b in
(13), such that the vertical velocity fluctuates about zero
near x 5 0 km, significantly reduced the biases shown
in Fig. 8.

As a summary, Fig. 11 gives the statistics of the errors
that can be evaluated as the differences between re-
trieved and simulated components. At each level, the
mean and standard deviation of these differences for u,
y , and w are displayed. Note that these errors do not
fully represent the errors in an actual analysis since other
sources of errors are not considered in this study, such
as those associated with aircraft positioning or radar
beam pointing angles (e.g., Hildebrand and Mueller
1985). The comparison of the various profiles of the
mean differences and associated standard deviations
shows the effective performance of MUSCAT, which
provides the most stable results. [We verified that im-
posing horizontal and vertical wavelengths of 30 and
30 km for the wind field (i.e., reducing the horizontal
extension of the updraft–downdraft structure and pre-
scribing a nonzero vertical velocity at the top) did not
modify these results.] Errors in the three components
are quite comparable in magnitude: mean values are less
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FIG. 7. MUSCAT-derived vertical wind structure at y 5 60 km:
(a) vector representation, (b) u component, (c) y component, and (d)
w vertical velocity. Aircraft position is identified by the vertical arrow
below the horizontal axis.

FIG. 8. As in Fig. 7 but for EODD application.
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FIG. 9. Contours of (a) u, (b) y , and (c) w in the vertical plane at
y 5 33 km, as obtained from MUSCAT. Aircraft position is identified
by the vertical arrow below the horizontal axis.

FIG. 10. As in Fig. 9 but for EODD.

than 0.2 m s21, while standard deviations remain within
0.7 m s21. On the other hand, these errors are signifi-
cantly increased when EODD is used. Mean errors (in
absolute value) and standard deviations are closely re-
lated since they have similar height variations whatever
the component may be. These errors that are mainly due
to the unstable solutions of the horizontal components
can be considered as bias errors. Both u and y biases
depict similar variations with pronounced extrema
around the 8-km level: the mean biases reach 21.0 and
20.6 m s21 with standard deviations of 3.4 and 2.0 m
s21, respectively. Errors in the vertical velocities can
reach a mean value of 1.0 m s21 and a standard deviation
of 2.7 m s21 around 5-km altitude.

5. Conclusions

This paper has examined a new approach to synthe-
sizing the three-dimensional wind field from dual-Dopp-
ler radar observations. The multiple-Doppler synthesis
and continuity adjustment technique has been developed
to solve, more efficiently, the major problems arising
from any Cartesian dual-Doppler analysis that is based
on an iterative resolution with the physical mass con-
tinuity equation. MUSCAT is designed to improve upon
the extended overdetermined dual-Doppler (EODD)
analysis, as proposed by Chong and Campos (1996),
which has shown a real ability to produce highly reliable
flow structure in regions where the traditional tech-
niques fail. EODD was primarily designed to overcome
the severe geometrical limitations of the data analysis
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FIG. 11. Height profiles of the mean and standard deviation of the
differences between synthesized and simulated u, y, w components
(from top to bottom). Left panels refer to MUSCAT-simulated dif-
ferences, while right panels are for EODD-simulated differences.

of airborne Doppler radars capable of fore–aft scanning
in either a dual-Doppler or a quad-Doppler (combining
coordinated and parallel flight tracks of a two-plane mis-
sion) configuration. However, the EODD-resolved wind
field can contain residual errors since the three wind
components are not obtained simultaneously.

MUSCAT provides a simultaneous resolution of the
three wind components and satisfies both the minimal
dual-equation system and the continuity equation. The
EODD technique considered the continuity equation as
a constraint for the least squares fit of the horizontal
components to grid-interpolated Doppler data in indi-
vidual planes and also constrained their second deriv-
atives in order to limit the small-scale variations. This

variational formalism has been fully retained in MUS-
CAT; only the associated minimization problem has
been extended to the vertical wind component. Some
accommodations have been necessary, however, to ac-
count for the three-dimensional continuity equation in
a plane-to-plane analysis or to extend the filtering of
small-scale variations to this component. A detailed in-
spection of the filtering terms has been performed to
obtain an isotropic response of the process. Refinements
have also concerned the data fit in the sense that data
interpolation has been included.

To analyze the improvements of MUSCAT over
EODD, applications to airborne Doppler observations
of a squall line in TOGA COARE and to simulated radar
observations were carried out. The real data clearly
showed noticeable differences in the derived wind struc-
ture. Although the components were within a few meters
per second of each other, some aspects of the EODD
synthesis were scientifically unrealistic, whereas MUS-
CAT corrected these problems. Examples in this paper
illustrate residual errors in EODD-resolved winds that
produced strong and inconsistent gradients associated
with a rapid reversal of the components. MUSCAT pro-
vides a more regular airflow, which is consistent with
previously documented flow patterns. Results from the
numerical tests using simulated data emphasize the real
improvements of MUSCAT since it was able to repro-
duce the characteristics of the simulated flow structure
with imperceptible discrepancy. MUSCAT provided the
most stable results in the sense that errors in the three
wind components were small and comparable. Finally,
this study has shown that a mathematically exact so-
lution necessitates a simultaneous resolution of the wind
components and has also revealed the importance of
numerical tests to investigate more precisely the per-
formances or failures of data analysis techniques that
could not evidently be detected from observed data.

APPENDIX A

Discrete Form of the Continuity Equation
Adjustment

We consider a three-dimensional grid of dimension
m 3 n in the horizontal (m grid points along x axis, n
along y axis) and p in the vertical. To simplify the no-
tations and to get a tractable form of the variational
problem, horizontal two-dimensional grid points (i, j)
are renumbered with a single one-dimensional index I
running from 1 to mn and defined as I 5 (j 2 1)m 1
i for i 5 1, m and j 5 1, n. Subscript k will define the
level index. Using off-centered finite differences, term
B9 [Eq. (9)] can be expressed at the center of each
elementary grid box I defined by grid points (I, I 1 1,
I 1 m, I 1 m 1 1) at levels k and k 2 1, as
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m1B9 5 {[(2u 1 u 2 u 1 u )Ik I I11 I1m I1m11 k16

1 (2u 1 u 2 u 1 u ) ]/LI I11 I1m I1m11 k21

1 [(2y 2 y 1 y 1 y )I I11 I1m I1m11 k

1 (2y 2 y 1 y 1 y ) ]/LI I11 I1m I1m11 k21

1 [2/(r 1 r )]k k21

3 [r (w 1 w 1 w 1 w )k I I11 I1m I1m11 k

2 r (w 1 w 1 wk21 I I11 I1m

21 w ) ]/l} , (A1)I1m11 k21

where L and l are the horizontal and vertical grid res-
olution, respectively.

With this scheme and in the context of a plane-to-
plane analysis, wind components on either level k or k
2 1 must be specified. These are upper or lower bound-
ary conditions (especially for the vertical velocities) for
the implicit integration of the continuity equation. For
example, let us consider an upward plane-to-plane syn-
thesis of the wind field. Wind components obtained at
the lower plane in the preceding plane-to-plane analysis
serve as input data for the variational problem. However,
assumptions should be made when the lower plane data
do not exist, in particular when the surface level is in-
volved. In this case, the vertical velocity is fixed to zero,
while the horizontal wind components are assumed to
be equal to those at the considered level. A similar de-
scription at the top level can be used for a downward
analysis. A more compact expression for B9, which ap-
plies to both upward and downward approaches, is

B9 5 [a(2u 1 u 2 u 1 u )I I I11 I1m I1m11

1 a(2y 2 y 1 y 1 y )I I11 I1m I1m11

21 b(w 1 w 1 w 1 w ) 2 X ] , (A2)I I11 I1m I1m11 I

where coefficients a and b can be readily found by com-
paring (A1) and (A2). Term 2XI combines all terms
involving input wind components, the subscript I is as-
sociated with the grid box number. Note that a should
be doubled when starting the process.

APPENDIX B

Forced Isotropic Response of a Low-Pass Filter

We examine the response of the filter included in
functional F9(u, y , w) [Eq. (4)] associated with the var-
iational formulation of MUSCAT. This can be predicted
by considering the Euler equation of F9 successively for
variables u, y , and w. The Euler equations are obtained
according to the approach presented by Sasaki (1970).
If we consider a filtering process that minimizes the
second derivatives of the wind components according
to the differential operator

J2 5 (]2/]x2)2 1 2(]2/]x]y)2 1 (]2/]y2)2, (B1)

functional for the specific variable u (assuming yF9u
and w are known variables) can be rewritten as

2 2F9 5 [(u 2 u ) 1 m (]u /]x 2 ]u /]x)u E 0 1 0

1 m J (u)] dx dy, (B2)2 2

where u0 defines observations including y and w. Ne-
glecting m1, the associated Euler equation is given by

4 4 4] ] ]
(u 2 u ) 1 m 1 1 2 u 5 0, (B3)0 2 4 4 2 21 2]x ]y ]x ]y

which transforms in Fourier’s space into

2 2 2(u 2 u ) 1 m (k 1 k ) u 5 0. (B4)0 2 x y

The response of the filter, given by the ratio u/u0, is

1
u /u 5 , (B5)0 41 1 m |k|2

where k 5 (kx, ky) defines the wave vector in the x–y
plane. Equation (B5) specifies an isotropic low-pass fil-
ter.

In the presence of the m1 term (this is the basic prin-
ciple of MUSCAT, which considers the continuity equa-
tion to be resolved), the Euler equation associated with
(B2) becomes

2 4 4 4] ] ] ]
1 2 m (u 2 u ) 1 m 1 1 2 5 0,1 0 22 4 4 2 21 2 1 2]x ]x ]y ]x ]y

(B6)

which yields a nonisotropic transfer function defined by

2u 1 1 m k1 x
5 , (B7)

2 4u 1 1 m k 1 m |k|0 1 x 2

To obtain an isotropic response, that is, to recover ex-
pression (B3), the second term on the left-hand side of
(B6) should be multiplied by (1 2 m1]

2/]x2). This im-
plies additional terms to J2(u) that can be readily found
to be

3 3 2 3 2 2 3 2 2J9(u) 5 m [(] u /]x ) 1 2(] u /]x ]y) 1 (] u /]x]y ) ].2 1

(B8)

Applying the same reasoning to variables y and w leads
to the following additional terms for J2(y) and J2(w):

3 3 2 3 2 2 3 2 2J9(y) 5 m [(] y /]y ) 1 2(] y /]x]y ) 1 (] y /]x ]y) ];2 1

(B9)
3 2 2 3 2 2J9(w) 5 m [(] w/]x ]z) 1 (] w/]y ]z)2 1

3 21 2(] w/]x]y]z) ]. (B10)
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APPENDIX C

Discrete Form of the Filter Differential Operator
J2 1 J92

The differential operator J2 1 applied to u, y , andJ92
w (appendix B) combines a variety of second- to third-
order derivatives, which are listed below [see (B1), (B8),
(B9), and (B10)]:

2 2 2 2 2(] /]x ), (] /]y ), (] /]x]y), for all variables,
3 2 3 2(] /]x ]y), (] /]x]y ), for u and y ,
3 3(] /]x ), for u,
3 3(] /]y ), for y ,

and
3 2 3 2(] /]x ]z), (] /]y ]z),

3(] /]x]y]z), for w.

Using off-centered finite differences and gridpoint index
I in the horizontal and k in the vertical as defined in
appendix A, the discrete form of the above derivatives
applied to any component U (denoting u, y , or w) can
be expressed in the following forms:

2 2 2] U/]x 5 (U 2 2U 1 U )/L at I. (C1)I21 I I11

2 2 2] U/]y 5 (U 2 2U 1 U )/L at I. (C2)I2m I I1m

2 2] U/]x]y 5 (U 2 U 2 U 1 U )/L (C3)I I11 I1m I1m11

at the center of horizontal grid mesh I.

3 2] U/]x ]y 5 (2U 1 2U 2 U 1 UI21 I I11 I1m21

32 2U 1 U )/L (C4)I1m I1m11

at grid point I shifted by L/2 in the y direction.

3 2] U/]x]y 5 (2U 1 U 1 2UI2m I2m11 I

32 2U 2 U 1 U )/L (C5)I11 I1m I1m11

at grid point I shifted by L/2 in the x direction.

3 3 3] U/]x 5 (2U 1 3U 2 3U 1 U )/L (C6)I21 I I11 I12

at grid point I shifted by L/2 in the x direction.

3 3 3] U/]y 5 (2U 1 3U 2 3U 1 U )/L (C7)I2m I I1m I12m

at grid point I shifted by L/2 in the y direction.

3 2] U/]x ]z 5 [(U 2 2U 1 U )I21 I I11 k

22 (U 2 2U 1 U ) ]/L l (C8)I21 I I11 k21

at grid point I shifted downward by l/2.

3 2] U/]y ]z 5 [(U 2 2U 1 U )I2m I I1m k

22 (U 2 2U 1 U ) ]/L l (C9)I2m I I1m k21

at grid point I shifted downward by l/2.

3] U/]x]y]z 5 [(U 2 U 2 U 1 U )I I11 I1m I1m11 k

22(U 2 U 2 U 1 U ) ]/L lI I11 I1m I1m11 k21

(C10)

at the center of a grid box I.
The last three derivatives involve two successive lev-

els k 2 1 and k, and components at one specified level
are input components, as explained in appendix A. Their
expansion into two similar blocks allows one to consider
either level k 2 1 or k.

APPENDIX D

Derivation of the Band Diagonal Matrix Equation
for MUSCAT

The discrete form of data fit (8), continuity equation
adjustment (A2), and differential operators associated
with the filtering process, (C1)–(C10), should be com-
bined to obtain the final functional F9 to be minimized
with respect to all gridpoint wind components. Accord-
ing to the least squares minimization problem, these
components are the solution of a linear system of 3mn
equations that can appear somewhat complex. Indeed,
each system equation links the three wind components
at several grid points of the horizontal mesh, and a
matrix equation is quite useful to represent such a sys-
tem. In appendixes A and C, three separate vectors are
used to represent the mn grid point values of u, y , and
w. The matrix equation (8) for an individual grid point
can be readily expanded to all grid points by using the
vector notation: An mn 3 mn diagonal submatrix sub-
stitutes for each matrix element of (8), while an mn
vector replaces each vector element.

Considering a unique vector U of 3mn elements in
place of the successive mn-separated u, y , w vector el-
ements, data fit can be expressed in the matrix form

MU 5 P, (D1)

where M is a (3mn)2 sparse pentadiagonal (the diagonal
plus four subdiagonals) matrix and P is a 3mn vector
associated with observations. Subdiagonals have posi-
tions shifted by 6mn and 62mn from the main diagonal.
Here, M is a positive definite and symmetric matrix since
it is derived from a quadratic positive definite form.
Additional terms, described below and resulting from
continuity adjustment and filtering, do not modify this
property.

The equivalent form of (A2) for an elementary grid
box I is

5B9I {a(2UI 1 UI11 2 UI1m 1 UI1m11 2 UI1mn

2 UI1mn11 1 UI1mn1m 1 UI1mn1m11)
1 b(UI12mn 1 UI12mn11 1 UI12mn1m

1 UI12mn1m11) 2 XI}2. (D2)

It appears that minimizing with respect to any UB9I
involves a limited number of grid points and then results
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FIG. D1. Schematic 3D representation of the positions (full circles)
of the 22 nonzero upper-side (subdiagonals) matrix terms with respect
to the main diagonal located on A, as deduced from the discrete form
of the continuity equation adjustment of MUSCAT. It is based on the
gridpoint representation of the U vector (containing the three successive
mn elements of u, y, and w; see text) in three successive mn-separated
levels, as illustrated by points A, B, and C. Distance between two grid
points connected by a line is reported as the grid number separation
(i.e., 1, m, or mn). The banded structure is associated with the points
connected by horizontal lines composed of successive grid points with
a grid number separation of 1 from each other.

FIG. D2. As in Fig. D1 but for the final structure of the band diag-
onal matrix associated with the variational form of MUSCAT.

in a limited number of nonzero terms, which are the
accumulation of 6a2, 6ab, and b2 terms in matrix M,
and of 6aX and bX in vector P.

Positions of nonzero terms that define positions of
matrix diagonal and subdiagonals can be readily found
by examining the relative positions of the various grid
points involved in (D2) with respect to the point for
which the minimum of is searched. Relationships ofB9I
a grid point with itself in (D2) contribute to the diagonal
of M. Due to the symmetric property, only positive grid
position differences need to be defined. This is facili-
tated by the increasing arrangement of grid indices in
(D2), which allows to examine successively each sub-
script attached to U with its next. Finally, there are 66
nonzero off-diagonal terms [i.e., r(r 2 1)/2, where r is
the number of grid values included in ] on the upperB9I
side of the diagonal that can be found to be distributed
over 22 subdiagonals, the positions of which are shown
in Fig. D1. The nearest and the farthest are shifted by
1 and 2mn 1 m 1 1 ranks from the diagonal. Following
Fig. D1 and extending to the symmetric part, minimi-
zation of B9 over the domain contributes to 45 diagonals
that are organized into 15 groups of 3 successive di-
agonals centered on the diagonal and on 6m, 6(mn 2
m), 6 mn, 6(mn 1 m), 6(2mn 2 m), 62mn and 6(2mn
1 m), respectively.

Similarly, it can be found that the differential oper-
ators (C1)–(C10) contribute to the diagonal and 24 sub-
diagonals at 61, 62, 63, 6(m 2 2), 6(m 2 1), 6m,
6(m 1 1), 6(m 1 2), 6(2m 2 1), 62m, 6(2m 1 1),
and 63m.

Finally, Fig. D2 illustrates the final structure of the
band diagonal matrix M, consisting of a total of 61 di-
agonals organized into 19 groups: a main group of 7
diagonals about the main diagonal, 2 groups of 5 cen-
tered at 6m, 2 groups of 3 at 62m, 2 single diagonals
at 63m, and 12 groups of 3 at 6(mn 2 m), 6mn, 6(mn
1 m), 6(2mn 2 m), 62mn, and 6(2mn 1 m).
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