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Abstract—Fault localization problem is one of the most difficult
processes in software debugging. Several spectrum-based ranking
metrics have been proposed and none is shown to be empirically
optimal. In this paper, we consider the fault localization prob-
lem as a multicriteria decision making problem. The proposed
approach tackles the different metrics by aggregating them into
a single metric using a weighted linear formulation. A learning
step is used to maintain the right expected weights of criteria.
This approach is based on Analytic Hierarchy Process (AHP),
where a ranking is given to a statement in terms of suspiciousness
according to a comparison of ranks given by the different metrics.
Experiments performed on standard benchmark programs show
that our approach enables to propose a more precise localization
than existing spectrum-based metrics.

Index Terms—Fault Localization; Spectrum-based Fault Lo-
calization; Multiple Fault; Multicriteria decision making; AHP

I. INTRODUCTION

Developing software programs is universally acknowledged

as an error-prone task. The major bottleneck in software

debugging is how to identify where the bugs are [1], this is

known as fault localization problem. Nonetheless, locating a

fault is still an extremely time-consuming and tedious task.

Over the last decade, several automated techniques have been

proposed to tackle this problem.

Spectrum-based approaches. Spectrum-based fault local-

ization (SBFL) (e.g. [2], [3]) is a class of popular fault

localization approaches that take as input a set of failing and

passing test case executions, and then highlight the suspicious

program statements that are likely responsible for the failures.

A ranking metric is used to compute a suspiciousness score

for each program statement based on observations of passing

and failing test case execution. The basic assumption is that

statements with high scores, i.e. those executed more often

by failed test cases but never or rarely by passing test cases,

are more likely to be faulty. Several ranking metrics have

been proposed to capture the notion of suspiciousness, such as

TARANTULA [4], OCHIAI [5], and JACCARD [5]. The ultimate

objective of SBFL is to have a metric able to always rank first

the faulty statements. In practice, we are very far from this

ideal [6]. SBFL metrics do not rely on a particular model of

the program under test and thus, they are easy to use and

practical in the presence of CPU time and memory resources

constraints. SBFL metrics give different interpretation of sus-

piciousness degree. In addition, the semantics of statements

and the dependencies are not taken into account. Thus, the

accuracy of SBFL approaches is inherently limited.

Multiple fault programs. Most of current localization tech-

niques are based on the single fault hypothesis. By dismissing

such assumption, faults can be tightly dependent in a program,

giving rise to numerous behaviours [7]. Thus, it makes the

localization process difficult for multiple fault approaches [8]–

[10]. The main idea of these approaches is to make a partition

on test cases into fault-clusters where each one contains the

test cases covering the same fault. The drawback is that a

test case can cover many faults with overlapping clusters,

which leads to a rough localization. Another idea consists in

localizing one fault at a time [11]. Here, we start by locating

a first fault, then correct it (which is an error-prone step),

generate again new test cases, and so on until no fault remains

in the program.

Artificial Intelligence based approaches. In the last decade,

fault localization was abstracted as a data mining (DM) prob-

lem. Podgurski et al. present a method to automatically group

faulty spectra with respect to the fault that leads to the failure

[9]. This method relies on cluster analysis. Cellier et al. [12],

[13] propose a combination of association rules and Formal

Concept Analysis (FCA) to assist in fault localization. In [14],

[15], the authors formalize the problem of fault localization as

a closed pattern mining problem. A constraint programming

model, with CLOSEDPATTERN global constraint, is used to

extract the k best patterns in terms of suspiciousness degree.

Other approaches tackle fault localization as a supervised

learning problem [16], [17].

Multicriteria decision making. Many real-world decision

problems involve several criteria. As soon as multiple con-

flicting criteria are considered in the evaluation of a decision,

the notion of optimality is not workable, since no criterion

is systematically better than all the others. In this context,

the Multicriteria decision-making (MCDM) [18] provides

a systematic approach to characterize and find the most-

preferred trade-off solutions. While many preference models

have been proposed in the literature, the additive preference

model is the most commonly used in MCDM. It consists

to aggregate additively the criteria into a single criterion, so

as to take advantage of all advanced techniques in solving

single-criterion optimization problems. A first difficult step in

this direction consists to find the right weights. Fortunately,

there are some existing methods that tackle, either directly or



indirectly, weights elicitation problem, in particular the AHP

method described in Section III-B.

In this paper, we consider the fault localization problem

as a multicriteria decision making problem. The proposed

approach tackles the different metrics by aggregating them

into a single metric using a weighted linear formulation.

We propose a passive/active learning step to maintain the

right expected weights of criteria. This approach is based

on Analytic hierarchy Process (AHP), where a ranking is

given to a statement in terms of suspiciousness according to

a comparison of ranks given by the different metrics III-B.

The approach is implemented in AHP-LOC. Experiments

performed on standard benchmark programs show that our

approach enables to propose a more precise localization than

existing spectrum-based metrics.

This paper is organized as follows. Section 2 presents re-

lated work. Section 3 recalls preliminaries. Section 4 describes

our approach. Section 5 illustrates the approach on a small

program. Section 6 reports experimental results and a complete

comparison with AHP-LOC and SBFL metrics. Finally, we

conclude this work in Section 7.

II. RELATED WORK

To the best of our knowledge, Xuan and Monperrus propose

in 2014 the first and unique work combining multiple ranking

metrics [19]. MULTRIC is based on a passive learning process

acting on multiple ranking metrics. MULTRIC consists of two

phases: learning and ranking. It combines different ranking

metrics in a weighted model. The learning phase is a passive

one using a training set. The training set corresponds to a set of

pairs of statements with their spectra. From each already dealt

faulty program, only faulty statements and their uppers and

lowers statements in terms of suspiciousness are considered.

Then, pairs of faulty/non-faulty statements are extracted and

added to the training set. Considering all possible pairs of

faulty programs can lead to a very large training set. To bypass

this limitation, MULTRIC uses a neighborhood strategy with

few uppers and lowers statements of the faulty statement.

Learning the weight of each metric is based on the assumption

that given a pair of statements (sf , sn), where sf is a faulty

one and sn is a non-faulty one, sf should be ranked above

sn. The learning is also based on a standard binary classifier

in machine learning. The ranking phase combines in a simple

manner the scores of the different metrics with a weighting

function and using the learned weights.

AHP-LOC has two distinguishing elements w.r.t., MUL-

TRIC. Firstly, AHP-LOC is an adaptive approach based on an

active learning makes it able to start with an empty training

set. Secondly, AHP-LOC benefits from multicriteria AHP in

the aggregation of different metrics.

III. BACKGROUND

A. Fault Localization

Let us consider a faulty program Pi having ni lines, labeled

ei,1 to ei,ni
. A test case tci,j is a tuple 〈Di,j , Oi,j〉, where

Di,j is the input data and Oi,j is the expected output. Let

〈Di,j , Oi,j〉 a test case and Ai,j be the current output returned

by a program P after the execution of its input Di,j . If Ai,j =
Oi,j , tci,j is considered as a passing (i.e. positive), failing (i.e.

negative) otherwise. A test suite Ti = {tci,1, tci,2, ..., tci,mi
}

is a set of mi test cases to check whether the program Pi

follows a given set of requirements.

Given a test case tci,j and a program Pi, the set of executed

(at least once) statements of P with tci,j is called a test case

coverage Ii,j = (Ii,j,1, ..., Ii,j,ni
), where Ii,j,k = 1 if the kth

statement is executed, 0 otherwise. Ii,j indicates which parts

of the program are active during a specific execution.

SBFL techniques assign suspiciousness scores for each of

statements and rank them in a descending order of suspicious-

ness. Most of suspiciousness metrics are defined manually and

analytically on the basis of multiple assumptions on programs,

test cases and the introduced faults. Fig 1 lists the formula

of three well-known metrics: TARANTULA [4], OCHIAI [5]

and JACCARD [5]. Given a statement ei,j , pass(Ti) (resp.

fail(Ti)) is the set of all passed (resp. all failed) test cases.

pass(ei,j) (resp. fail(ei,j)) is the set of passed (resp. failed)

test cases covering ei,j . The basic assumption is that the

program fails when the faulty statement is executed. Moreover,

the whole of suspiciousness metrics shares the same intuition:

the more often a statement is executed by failing test cases,

and the less often it is executed by passing test cases, the

more suspicious the statement is considered. Fig.1 shows the

suspiciousness spectrum of the different metrics according to

an up to 1K passing and/or failing test cases:

• TARANTULA allows some tolerance for the fault to be

executed by passing test cases (see Fig.1a). However,

this metric is not able to differentiate between statements

that are not executed by passing tests. For instance,

consider two statements ei,j and ei,k with |pass(ei,j)| =
|pass(ei,k)| = 0, |fail(ei,j)| = 1 and |fail(ei,k)| =
1000: ei,j and ei,k have the same suspiciousness degree

according to TARANTULA.

• OCHIAI came originally from molecular biology. The

specificity of this metric is that it attaches a particular

importance of the presence to a statement in the failing

test cases (see Fig.1b).

• JACCARD has been defined to find a proper balance

between the impact of passing/failing test cases on the

scoring measure [5] (see Fig.1c).

B. Analytical Hierarchy Process (AHP) [20]

AHP is a simple and easy to use structured process for

organizing and eliciting criteria weights. It involves three main

steps:

1) The criteria are subjectively compared in a pairwise

manner according to their respective weight wi. The

comparison is organized into a square matrix A =
[1..m, 1..m], where A[i, j] is the relative importance of

criterion i w.r.t., criterion j. The ith criterion is better

than the jth criterion if (A[i, j] > 1). In AHP, we

have 9 degrees of dominance where A[i, j] indicates
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+
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Fig. 1: Suspiciousness Degrees.

an indifference preference and A[i, j] = 9 a strong

dominance. Note that A[i, j] = 1/A[j, i] and A[i, i] = 1.

2) AHP assesses the criteria weighting vector w by solving

the characteristic equation:

A · w = λmax · w (1)

where λmax is the highest eigen value of A.

3) Inconsistencies may occur in pairwise comparisons, be-

cause AHP does not enforce the preferences to be tran-

sitive. For this reason, a consistency check is conducted

by calculating the consistency ratio (CR).

CR =
CI

RI
, CI =

(λmax − n)

n− 1
(2)

where RI is a constant taken from the Random Consistency

Index table of AHP. The weighting vector w is considered as

reliable if CR < 0.1.

The AHP can be combined with a popular direct weights

elicitation method ROC (Rank-Order Centroid) [21]. ROC

produces an estimation of the weights that minimizes the

maximum error of each weight. The ROC method assumes

that the true weights are uniformly distributed on the simplex

of rank-order weights. That is, ROC is a function based on the

average of the corners in the polytope defined by the simplex

Sw = w1 > w2 > · · · > wn,
∑

i wi = 1, and wi > 0, such

that:

wi =
1

n

n∑

k=i

1

rk
(3)

where ri is the rank of the ith criterion.

IV. AHP-LOC APPROACH

Let {P1, ..., Pn} be a set of n faulty programs. A faulty

program context is a triplet (Pi, Li, Ti), i = 1..n, where Pi is a

given faulty program, whose k faults are located at lines Li =
{Li1 , ..., Lik}, and Ti is a test suite. Let (M1,M2, ...,Mm) be

some SBFL ranking metrics (e.g., Tarantula, Ochiai, Jaccard,

etc.).

The aim of this paper is to propose an approach aggregat-

ing SBFL ranking metrics in a single SBFL ranking metric

that takes benefit of their localization effectiveness. This is

achieved thanks to AHP technique. AHP requires a squared

matrix A[1..m, 1..m], where A[i, j] scores how much criteria

i is ranked better than criteria j.

1) Scoring a single SBFL technique.

To evaluate how well the localization accuracy is, a

suspiciousness score, denoted as EXAM score [11], is

assigned to every faulty version of each subject program.

The score defines the percentage of statements that need

to be examined before the one locating the fault: lower

is better. When running a single SBFL technique Mj on

some faulty program context (Pi, Li, Ti), it can return a

set of equivalent statements in terms of suspiciousness

(i.e., with the same suspiciousness degree). In this case,

the effectiveness depends on which statement is to check

first. For that reason, we consider two EXAM scores, the

optimistic and the pessimistic one, denoted respectively

RP
i,j and RO

i,j . We talk about optimistic EXAM (resp.

pessimistic exam) when the first (resp. last) statement

to be checked in the set of equivalent statements is

the faulty one. We also define a third metric, ∆ EXAM

R∆
i,j = (RP

i,j − RO
i,j), representing the margin of the

EXAM score, and middle EXAM RM
i,j =

RP
i,j+RO

i,j

2
.

In other words, ∆ EXAM (middle exam) represents

the distance between the optimistic and the pessimistic

scores (resp. the average between the optimistic and the

pessimistic scores).

2) Comparing two SBFL techniques.

Let Mj and Ml be two SBFL techniques to be compared

on some faulty program context (Pi, Li, Ti), by consid-

ering their pessimistic and optimistic results. Computing

their middle gap EM
i,j,l = (RM

i,j −RM
i,l ) enables to know

how much Mj is better than Ml: if EM
i,j,l ≥ 0, then

Ml is better, else the converse. We can also consider

their pessimistic or optimistic gaps, but the middle gap

is preferred since that it aggregates them.

Finally, when running two SBFL techniques Mj and Mk

on all of the faulty program contexts (Pi, Li, Ti), i =
1..n, we can estimate the most efficient technique by

averaging their middle gaps on all of the programs

AV Gj,l =
1

n

∑
i=1..n E

M
i,j,l.

3) Computing AHP ranking matrix



Algorithm 1: Learning

1 Input D =
{〈Pi, Li, Ti〉|Pi: faulty program, Li: fault localions, Ti: test cases};
M set of m ranking metrics;

2 InOut A: AHP matrix;

3 foreach metric Mj ∈M do
4 A[j, j]← 1
5 foreach 〈Pi, Ti, Li〉 ∈ D do

6 Compute RP
i,j using Mj

7 Compute RO
i,j using Mj

8 n← 0; AV G∗,∗ ← 0
9 foreach pair of metrics Mj ,Ml ∈M do

10 foreach 〈Pi, Ti, Li〉 ∈ D do

11 EP
i,j,l ← RP

i,j −RP
i,l

12 EO
i,j,l ← RO

i,j −RO
i,l

13 AV Gj,l ←
n

n+1
AV Gj,l +

1
n+1

(EP
i,j,l + EO

i,j,l)
14 n← n+ 1;
15 foreach AV Gj,l : j, l ∈ {1, . . . ,m} do
16 Scale |AV Gj,l| to [1, 9]
17 if AV Gj,l < 0 then
18 A[l, j]← AV Gj,l; A[j, l]← 1/AV Gj,l ;
19 else A[j, l]← AV Gj,l; A[l, j]← 1/AV Gj,l ;
20 return A;

Algorithm 1 generates the AHP matrix without any prior

ranking of decision criteria, by exploiting pairs compar-

isons. It loops on all of the pairs of SBFL techniques:

for all j, l ∈ 1..m, compute AV Gj,l. Than it computes a

scaling of m×m comparisons AV Gj,l to the permitted

values of the AHP matrix A. As explained in section

III-B, an indirect weight elicitation is performed with

an indirect assessment of weights, which is obtained by

computing the eigenvector w associated to the highest

eigenvalue λmax. This technique is far superior to any

of the direct techniques due to its ability to capture the

decision maker’s trade-offs between criteria.

The consistency ratio CR (see formula 2) is checked

to see in what extent the learned coefficients of A are

plausible.

A. Passive version of AHP-LOC

Algorithm 1 enables to learn the AHP matrix from a

training set composed of faulty program contexts D =
{(P1, L1, T1), ..., (Pn, Ln, Tn)}. The passive version of AHP-

LOC consists of running Algorithm 1 on a an already fixed set

of faulty program contexts. The performances of this passive

approach depends on the quality of the given training set.

B. Active version of AHP-LOC

The passive approach is straightforward and simple, but

it is challenging to ensure that the given training set is

sufficient to start an efficient localization. In addition, it is

not taking benefit of current/future localizations. We propose

the active version of AHP-LOC where the learning process is

dynamically done. Its principle is the following: as long as the

current learning dataset implies an AHP matrix less efficient

than some SBFL ranking metric, a new faulty program context

is added to the learning dataset D of algo.1, updating the

AHP matrix, and so on, until reaching an AHP matrix, which

triggers the best localization matrix on the last added faulty

program context.

C. AHP ranking score

Once the AHP matrix A is learned in a passive or active

way, we proceed in computing the metrics weighting vector

w. For that, we solve the equation 1. Afterward, we compute

the score of a given statement e of a given faulty program

using the following weighted aggregation function:

scoreAHP (e) =

m∑

i=1

wi scale(scoreMi
(e)) (4)

The scale function is used to adjusting score values of the

different scales metrics to a [0, 1] scale.

V. RUNNING EXAMPLE

To illustrate our approach, we consider the Power program

given in Fig.2. In this figure, we have six test cases where

tc1 to tc3 are failing test cases, and tc4 to tc6 are passing

test cases. According to the provided test cases, we report

the suspiciousness ranking given by five ranking metrics ((1)

AMPLE [22], (2) TARANTULA [4], (3) GP13 [23], (4) OCHIAI

[5] and (5) JACCARD [5]) and our AHP-LOC approach. In this

example, two faults are introduced at e3 and e4, where the

correct statements are respectively ”p = −y;” and ”p = y;”.

AHP-LOC learns the AHP matrix from faulty program

examples in a passive/active way. In this example, we asked

an expert to provide us with preferences/dominances between

the different pairs of the five ranking metrics:

A =











(1) (2) (3) (4) (5)

(1) 1 2 3 9 9
(2) 1/2 1 2 3 7
(3) 1/3 1/2 1 2 4
(4) 1/9 1/3 1/2 1 2
(5) 1/9 1/7 1/4 1/2 1











(5)

It is important to stress here that: First, it is not always

possible to obtain the opinion of an expert. Second, an expert

will not be able to provide such matrix in an AHP context

when the number of criteria exceeds 10 [20]. Third, the expert

is facing a challenging tast where its opinion heavily depends

on the provided test cases. The learning step of AHP-LOC is

proposed to bypass this limitation. We learn the AHP matrix

from faulty programs contexts without the help of any expert.

Returning to our example, we compute the weighting vec-

tor w according to the equation 1. This leads us to w =
〈0.49, 0.25, 0.15, 0.07, 0.04〉. Now, for each statement we are

able to give a ranking AHP score using equation 2.

The weighting vector wAHP = 〈0.49, 0.25, 0.15, 0.07, 0.04〉
was generated using the AHP matrix (5), with a consistency

ration CR = 0.018 < 0.1.

Fig.2 shows how the ranking metrics can be different

with completely different rankings. The fault at e4 is ranked

first except for GP13 and OCHIAI. As they give a greater



prominence to the failing test cases, e4 is ranked at the

third position. The aggregation done by AHP-LOC ranks e4
at the first position as well. For the fault introduced at e3,

TARANTULA, OCHIAI and GP13 rank it in the next-to-bottom

place. The localization with AMPLE is able to rank it at the

first position. But this localization is not accurate, since we

have a big equivalent class. What is interesting here is that

AHP aggregation ranks it at the second position. Here, AHP-

LOC shows its best case by taking benefits of the difference

that exists among the ranking metrics.

VI. EXPERIMENTS

This section describes the experimental settings (including

benchmark programs, protocol and implementation), the ex-

perimental results and comparison with eight SBFL ranking

metrics. Experiments were performed on single and multiple

fault programs.

A. Benchmark programs

We evaluate our approach by analyzing the performance of

fault localization over 18 faulty programs coming from differ-

ent real-world applications. As our approach does not require

a specific programming language in order to be applied, we

investigated two types of programming paradigms, namely C

and Java Object Oriented programs.

Siemens and Space datasets. We have considered both

Siemens and Space datasets.1 A complete description of

Siemens suite and Space dataset can be found in [24], [25].

These C programs are the most common program suites used

to evaluate software testing and fault localization approaches.

The Siemens suite + Space are provided with eight C pro-

grams, each one has a correct version and a set of faulty

versions (one fault per version). The suite is also provided

with test suites for each faulty version.

Table I summarizes the 212 faulty programs. For each

program, we report the number of faulty versions (single fault

1F, two faults 2F and four faults 4F), the size of the program

with its lines of code (LOC) and lines of executable code

(LEC), the number of test cases. We have 139 versions with

single fault, 47 with two faults and 26 versions with four faults.

The single fault versions are provided, where multiple fault

versions are produced by combining randomly the provided

faults.

For C programs and to know the statements that are covered

by a given (passing/failing) test case, we used GCOV
2 profiler

tool to trace and save the coverage information of test cases

as a boolean matrix (e.g., see Fig.2). Then, each test case

is classified as positive/negative w.r.t. the provided correct

version.

Java Object-Oriented datasets We evaluate our approach

on 25, 386 faults in ten Java Open-Source softwares (see

Table II).3 We used the granularity of methods (rather than

the more common statements, as we did in Siemens suite). In

1sir.unl.edu/php/previewfiles.php
2https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
3http://www.feu.de/ps/prjs/EzUnit/eval/ISSTA13

TABLE I: Siemens suite.

Program #Versions LOC LEC Test cases
(1F, 2F, 4F)

Replace (29, 6, 3) 514 245 5,542
PrintTokens2 (9, 6, 3) 358 200 4,056
PrintTokens (4, 6, 3) 348 195 4,071
Schedule (5, 6, 3) 294 152 2,650
Schedule2 (8, 6, 3) 265 128 2,680
TotInfo (19, 6, 3) 272 123 1,052
Tcas (37, 6, 3) 135 65 1,578
Space (28, 5, 5) 9,126 3,657 13,585

Total (139, 47, 26) 11,312 4,765 35,214

LOC: lines of code in the correct version
LEC: lines of executable code

TABLE II: Java Open-source projects.

Program # Versions Methods∗ MUT Test cases

(1F, 2F, 4F)

Daikon 4.6.4 (352, 103,103) 14,387 1,936 157

Eventbus 1.4 (577,103,103) 859 338 91

Jaxen 1.1.5 (600,103,103) 1,689 961 695

Jester 1.37b (411,103,103) 378 152 64

JExel 1.0.0b13 (537,103,103) 242 150 335

JParsec 2.0 (598,103,103) 1,011 893 510

AC Codec 1.3 (543,103,103) 265 229 188

AC Lang 3.0 (599,103,103) 5,373 2,075 1,666

Eclipse Draw2d 3.4.2 (570,103,103) 3,231 878 89

HTML Parser 1.6 (599,103,103) 1,925 785 600

Total (5386, 104, 104) 29,360 8,397 4,395

MUT: Methods under test
∗ The total number of methods, not counting JUnit test methods

fact, methods have the advantage of giving a natural context

of each fault, and of being the natural skip/step into units of

contemporary debuggers (guided by the output of the fault

locator) [26].

Table II shows the details of the different projects, including

the number of faulty programs (single fault 1F, two faults

2F and four faults 4F), the number of methods (excluding

JUnit test methods), the number of methods under test, and

the number of test cases.

We have 5,386 single fault Java programs, 104 programs

with two faults and 104 programs with four faults. All are

provided by the distribution. The multiple faults are spread

over different methods.

B. Experimental protocol

Some statements can be equivalent in terms of suspi-

ciousness. Here, the accuracy may vary depending on which

statement to check first. For such reason, we report the two

exam scores, the optimistic and the pessimistic one, denoted

respectively in this section O-EXAM and P-EXAM. We recall

that we talk about O-EXAM (resp. P-EXAM) when the first

(resp. last) statement to check in the set of equivalent state-

ments is the faulty one. We also use ∆-EXAM = O-EXAM −
P-EXAM, representing the range of the EXAM score.

Our approach AHP-LOC is trained on faulty programs to

learn the coefficients of the AHP matrix (training set). To

evaluate how accurately the learned AHP matrix performs, the

resulting model is validated on the remaining part of the faulty
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Program : Power tc1 tc2 tc3 tc4 tc5 tc6

float pow (int x, int y) { x = 2 2 3 −2 3 1

int i, p; y = 3 −4 0 −2 3 −2

e1: i = 0; 1 1 1 1 1 1 2 1 4 1 1 4

e2: float result = 1.0 ; 1 1 1 1 1 1 2 1 4 1 1 4

e3: if ( y < 0 ) p = -x ; //fault1 0 1 0 1 0 1 6 6 1 6 6 2

e4: else p = x ; //fault2 1 0 1 0 1 0 1 3 1 1 3 1

e5: while ( i < p) { result = result * x ; 1 0 1 1 1 0 2 4 4 4 4 6

e6: i = i + 1 ; } 1 0 1 1 1 0 2 4 4 4 4 6

e7: if ( y < 0 ) result = 1 / result ; 0 1 0 1 0 1 6 6 1 6 6 2

return result ; }
Passing/Failing F F F P P P

Fig. 2: ”Power” program containing two faults.

programs (testing set). To avoid bias of random selection,

we performed a 6-folds cross-validation of the data using

different partitions. In each fold, we randomly select three

faulty versions to form the training set and use the remaining

15 faulty versions for evaluation (testing set). We report the

performance result using averaged EXAM score over the folds.

We compared our three AHP-LOC versions Active AHP-

LOC, Passive AHP-LOC and ROC based AHP-LOC, with

eight widely-studied spectrum-based ranking metrics, TARAN-

TULA, OCHIAI, JACCARD, M2 and AMPLE, and three re-

cent proposed ranking metrics including GP13, NAISH2 and

ER1B, which are proved as the optimal under theoretical

assumptions (cf. [27]).

C. Implementation

We have implemented our AHP-LOC versions (active,

passive and ROC) in C++. For a fair comparison between our

tool and the other approaches, we have implemented the SBFL

metrics, GP13, NAISH2, AMPLE, ER1B, M2, TARANTULA,

OCHIAI and JACCARD in C++ as presented in [4], [5]. Our

experiments were conducted on an Intel® i5-2400 CPU at

3.10GHz x 4 with 8 GB RAM.

D. Single Fault Results

Table III reports an EXAM score comparison (O-EXAM,

P-EXAM and ∆-EXAM) between Active AHP-LOC, Passive

AHP-LOC, ROC AHP-LOC and SBFL metrics on single fault

programs. The first observation that we can draw is that,

comparing our three versions, the Active AHP-LOC achieves

the lowest O-EXAM and P-EXAM. We also observe that AHP-

LOC (with its three versions) is more effective than SBFL

approaches in most of the benchmarking instances.

Now, when examining Fig.3 we can see that Active AHP-

LOC provides the narrowest ∆-EXAM (i.e. the range of state-

ments to be inspected in vain before reaching the faulty state-

ment is minimal). Remarkably, the P-EXAM (4.91 %) of Active

AHP-LOC is even lower that the O-EXAM of all the metrics.

It is also clear from the same figure, that metrics shown in red

(i.e. (5) TARANTULA, (7) JACCARD and (10) AMPLE) perform

poorly, as they generate big class of suspicious statements (see

also Tables III, ∆-EXAM). Interestingly, Passive AHP-LOC,

AHP-ROC, ER1B and NAISH2 almost achieve similar better

accuracy.
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Fig. 3: Qualitative comparison for single fault programs. (1): Active

AHP-LOC (2): Passive AHP-LOC (3): AHP-ROC (4): GP13

(5): TARANTULA (6): OCHIAI (7): JACCARD (8): NAISH2 (9):

M2 (10): AMPLE (11): ER1B

E. Multiple Fault Results

In this section, we report the EXAM score comparison results

on programs with multiple faults. The results for two and four

faults are shown in Table III.

Let us start with the two faults programs. Our first ob-

servation is that the Active AHP-LOC is drastically more

efficient than all SBFL metrics in terms of P-EXAM, O-EXAM

and ∆-EXAM. This is indicative of high effectiveness, and

thus an improved localization on most subject programs (C

and Java). However, the SBFL metrics, namely, GP13 and

TARANTULA show the opposite behavior, which is indicative

of a low effectiveness and large wasted debugging effort.

Fig.4 shows a comparison on P-EXAM (fig.4a) and O-

EXAM (fig.4b) between SBFL metrics, and AHP-LOC. When

focusing on the exam score required to localize both faults

(f1 and f2), we can see that Active AHP-LOC is the most

accurate (quickly locates the last fault). Moreover, the Active

AHP-LOC improve the localization accuracy by 45% for the

O-EXAM and more than 47% for the P-EXAM compared to the

best localization score given by ER1B metric. Here, we notice

that the Passive AHP-LOC and AHP-ROC enable to better

locate both of faults compared with SBFL metrics. Fig.4 also

shows that, in some cases, the standard metric can be effective.

For instance, the NAISH2 and ER1B report similar accuracy

and are able to capture quickly the first fault compared to the

remaining metrics.



TABLE III: Qualitative comparison for multiple faults on Siemens Suite (EXAM score %). (1): Active AHP-LOC (2): Passive AHP-LOC

(3): AHP-ROC (4): GP13 (5): TARANTULA (6): OCHIAI (7): JACCARD (8): NAISH2 (9): M2 (10): AMPLE (11): ER1B

Program
P-EXAM (%)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

A f1 4.91 9.69 9.53 9.89 13.97 11.10 12.55 9.52 10.11 14.25 9.52

B
f1 15.26 25.19 24.42 36.09 35.46 31.91 33.84 27.94 32.94 34.03 27.94
f2 15.39 28.95 28.57 38.03 40.26 39.71 40.73 29.35 37.04 37.86 29.35

C

f1 24.45 27.10 34.86 45.33 31.04 29.93 28.92 35.04 38.42 30.03 35.05
f2 24.78 27.20 36.87 45.53 33.57 43.05 37.26 35.09 44.06 31.44 35.09
f3 24.98 27.30 38.27 45.83 40.14 43.95 48.75 35.80 49.75 39.58 35.80
f4 25.11 27.96 41.25 53.30 47.55 49.35 51.63 43.02 52.00 44.37 43.02

Global 19.27 24.77 30.54 39.14 34.57 35.57 36.24 30.82 37.76 33.08 30.82

Program
O-EXAM (%)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

A f1 2.15 5.92 5.76 5.62 9.46 6.83 8.27 5.74 5.84 10.04 5.74

B
f1 12.52 19.48 18.71 20.40 19.56 21.20 23.14 22.23 22.25 27.86 22.23
f2 12.63 22.63 22.26 21.28 23.30 27.94 28.96 23.04 25.29 30.64 23.04

C

f1 20.43 23.05 32.45 29.87 15.30 14.43 13.43 32.45 22.95 26.93 32.35
f2 20.64 23.07 34.27 30.06 17.30 27.20 21.78 32.68 28.60 29.02 32.45
f3 20.64 23.30 35.88 30.76 24.38 28.45 32.90 33.41 34.68 36.95 33.41
f4 21.11 23.80 38.17 37.47 32.21 34.25 36.54 39.94 36.17 41.61 39.95

Global 15.73 20.18 26.79 25.06 20.22 22.90 23.57 27.07 25.11 29.01 27.02

Program
∆-EXAM (%)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

A f1 2.76 3.77 3.77 4.27 4.52 4.27 4.28 3.77 4.27 4.21 3.77

B
f1 2.74 5.71 5.71 15.69 15.90 10.71 10.71 5.71 10.69 6.17 5.71
f2 2.76 6.31 6.31 16.75 16.95 11.77 11.77 6.31 11.75 7.22 6.31

C

f1 4.02 4.05 2.41 15.47 15.73 15.50 15.49 2.41 15.47 2.43 2.74
f2 4.14 4.13 2.60 15.46 16.27 15.86 15.48 2.59 15.46 3.10 2.60
f3 4.34 4.00 2.39 15.07 15.76 15.49 15.86 2.39 15.07 2.62 2.39

f4 4.00 4.16 3.08 15.83 15.34 15.10 15.09 3.08 15.83 2.76 3.07

Global 3.54 4.59 3.75 14.08 14.35 12.67 12.67 3.75 12.65 4.07 3.80

A: 1 fault B: 2 faults C: 4 faults

Interestingly, the pessimistic EXAM score of Active AHP-

LOC is nearly better than the optimistic score of all metrics

(including the Passive AHP-LOC and AHP-ROC). In second

position comes the AHP-based multicriteria approaches, with

the best EXAM scores against the SBFL metrics.

For four-faults programs, here the results presented in

Fig.5 and Table III support our previous observations on the

comparison between metrics and our AHP-based approaches.

In fact, our approach significantly dominates all the SBFL

approaches by capturing quickly all faults with high accuracy,

especially according to the P-EXAM score. Regarding the O-

EXAM score, this observation remains true for both the third

and fourth faults (i.e. f3 and f4).

Concerning the first two faults, i.e. f1 and f2, the result

depicted in Fig.5c needs to be clarified and analyzed in

depth. Indeed, standard SBFL metrics, namely, TARANTULA,

OCHIAI and JACCARD seem to provide the best result. How-

ever, our approach is rather good in term of effectiveness,

because those metrics give a large class of equivalent suspi-

cious statements. To support this justification, we consider an

important information given by the median of the box plots,

which represent the average EXAM score of P-EXAM and O-

EXAM.

Overall, by observing the global EXAM scores given in

Table III, the Active AHP-LOC remains the best localization

approach for programs with one, two and four faults.

VII. CONCLUSION

In this paper we have proposed a new fault localization

method based on AHP (Analytic Hierarchy Process) mul-

ticriteria based approach, which aggregates spectrum-based
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Fig. 4: Qualitative comparison for two faults programs. (1): Active

AHP-LOC (2): Passive AHP-LOC (3): AHP-ROC (4): GP13

(5): TARANTULA (6): OCHIAI (7): JACCARD (8): NAISH2 (9):

M2 (10): AMPLE (11): ER1B

ranking metrics. We propose a passive and active learning

versions to maintain the right expected weights of criteria.

We have compared experimentally our approach with state

of the art SBFL metrics on a set of multiple faults programs.

The results we obtained show that our approach enables to

aggregate the benefits of various SBFL metrics to get a single

efficient SBFL technique. As future works, we plan to prospect

other learning strategies to boost even more the performances

of our AHP aggregation multicriteria approach.
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[12] P. Cellier, M. Ducassé, S. Ferré, and O. Ridoux, “Dellis: A data mining
process for fault localization,” in Proceedings of the 21st Interna-

tional Conference on Software Engineering & Knowledge Engineering

(SEKE’2009), Boston, USA, July 1-3, 2009, 2009, pp. 432–437.
[13] ——, “Multiple fault localization with data mining,” in Proceedings of

the 23rd International Conference on Software Engineering & Knowl-

edge Engineering (SEKE’2011), Eden Roc Renaissance, Miami Beach,

USA, July 7-9, 2011, 2011, pp. 238–243.
[14] M. Maamar, N. Lazaar, S. Loudni, and Y. Lebbah, “Fault localization

using itemset mining under constraints,” Autom. Softw. Eng., vol. 24,
no. 2, pp. 341–368, 2017. [Online]. Available: http://dx.doi.org/10.
1007/s10515-015-0189-z

[15] N. Aribi, M. Maamar, N. Lazaar, Y. Lebbah, and S. Loudni, “Multiple
fault localization using constraint programming and pattern mining,” in
29th IEEE International Conference on Tools with Artificial Intelligence,

ICTAI 2017, Boston, MA, USA, November 6-8, 2017, 2017, pp. 860–867.
[16] S. Ali, J. H. Andrews, T. Dhandapani, and W. Wang, “Evaluating

the accuracy of fault localization techniques,” in ASE 2009,

24th IEEE/ACM International Conference on Automated Software

Engineering, Auckland, New Zealand, November 16-20, 2009, 2009,
pp. 76–87. [Online]. Available: http://dx.doi.org/10.1109/ASE.2009.89

[17] Y. Tian, D. Wijedasa, D. Lo, and C. Le Goues, “Learning to rank
for bug report assignee recommendation,” in 24th IEEE International

Conference on Program Comprehension, ICPC 2016, Austin, TX,

USA, May 16-17, 2016, 2016, pp. 1–10. [Online]. Available:
http://dx.doi.org/10.1109/ICPC.2016.7503715

[18] J. Figueira, S. Greco, and M. Ehrgott, Multiple Criteria Decision

Analysis: State of the Art Surveys. Boston, Dordrecht, London:
Springer Verlag, 2005. [Online]. Available: http://www.springeronline.
com/sgw/cda/frontpage/0,11855,5-165-22-34954528-0,00.html

[19] J. Xuan and M. Monperrus, “Learning to combine multiple ranking
metrics for fault localization,” in ICSME. IEEE Computer Society,
2014, pp. 191–200.

[20] T. L. Saaty, “How to make a decision: The analytic hierarchy
process,” European Journal of Operational Research, vol. 48,
no. 1, pp. 9 – 26, 1990, desicion making by the analytic
hierarchy process: Theory and applications. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/037722179090057I

[21] F. H. Barron and B. E. Barrett, “Decision quality using ranked attribute
weights,” Manage. Sci., vol. 42, no. 11, pp. 1515–1523, Nov. 1996.
[Online]. Available: http://dx.doi.org/10.1287/mnsc.42.11.1515

[22] V. Dallmeier, C. Lindig, and A. Zeller, “Lightweight bug localization
with AMPLE,” in Proceedings of the Sixth International Workshop

on Automated Debugging, AADEBUG 2005, Monterey, California,

USA, September 19-21, 2005, 2005, pp. 99–104. [Online]. Available:
http://doi.acm.org/10.1145/1085130.1085143

[23] S. Yoo, “Evolving human competitive spectra-based fault localisation
techniques,” in Search Based Software Engineering - 4th International

Symposium, SSBSE 2012, Riva del Garda, Italy, September 28-

30, 2012. Proceedings, 2012, pp. 244–258. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-33119-0 18

[24] H. Do, S. Elbaum, and G. Rothermel, “Supporting controlled
experimentation with testing techniques: An infrastructure and its
potential impact,” Empirical Softw. Engg., vol. 10, no. 4, pp.
405–435, Oct. 2005. [Online]. Available: http://dx.doi.org/10.1007/
s10664-005-3861-2

[25] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand, “Experiments
of the effectiveness of dataflow-and controlflow-based test adequacy
criteria,” in Proceedings of the 16th international conference on Software

engineering. IEEE Computer Society Press, 1994, pp. 191–200.
[26] F. Steimann, M. Frenkel, and R. Abreu, “Threats to the validity and

value of empirical assessments of the accuracy of coverage-based fault
locators,” in Proceedings of the 2013 International Symposium on

Software Testing and Analysis (ISSTA), ACM. Lugano, Switzerland:
ACM, July 2013, p. 314–324.

[27] L. Naish, H. J. Lee, and K. Ramamohanarao, “A model for
spectra-based software diagnosis,” ACM Trans. Softw. Eng. Methodol.,
vol. 20, no. 3, pp. 11:1–11:32, Aug. 2011. [Online]. Available:
http://doi.acm.org/10.1145/2000791.2000795

http://dx.doi.org/10.1016/j.jss.2009.06.035
http://dx.doi.org/10.1109/ICSE.2003.1201224
http://doi.acm.org/10.1145/1273463.1273468
https://doi.org/10.1109/TSE.2016.2521368
https://doi.org/10.1109/TSE.2016.2521368
http://dx.doi.org/10.1007/s10515-015-0189-z
http://dx.doi.org/10.1007/s10515-015-0189-z
http://dx.doi.org/10.1109/ASE.2009.89
http://dx.doi.org/10.1109/ICPC.2016.7503715
http://www.springeronline.com/sgw/cda/frontpage/0,11855,5-165-22-34954528-0,00.html
http://www.springeronline.com/sgw/cda/frontpage/0,11855,5-165-22-34954528-0,00.html
http://www.sciencedirect.com/science/article/pii/037722179090057I
http://dx.doi.org/10.1287/mnsc.42.11.1515
http://doi.acm.org/10.1145/1085130.1085143
http://dx.doi.org/10.1007/978-3-642-33119-0_18
http://dx.doi.org/10.1007/s10664-005-3861-2
http://dx.doi.org/10.1007/s10664-005-3861-2
http://doi.acm.org/10.1145/2000791.2000795



