
Received April 5, 2020, accepted April 13, 2020, date of publication April 29, 2020, date of current version May 18, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2991130

A Multiple-Format Steganography
Algorithm for Color Images

ARSHIYA S. ANSARI 1, MOHAMMAD S. MOHAMMADI 2,
AND MOHAMMAD TANVIR PARVEZ 3
1Department of Information Technology, College of Computer and Information Sciences, Majmaah University, Al Majma’ah 11952, Saudi Arabia
2Department of Information Technology, College of Computer, Qassim University, Buraidah, Saudi Arabia
3Department of Computer Engineering, College of Computer, Qassim University, Buraidah, Saudi Arabia

Corresponding author: Arshiya S. Ansari (ar.ansari@mu.edu.sa)

The work of Arshiya S. Ansari was supported by the Majmaah University’s Deanship of Scientific Research under Project R-1441-117.

ABSTRACT This paper presents an image Steganography algorithm that can work for cover images of

multiple formats. Having a single algorithm for multiple image types provides several advantages. For

example, we can apply uniform security policies across all image formats, we can adaptively select the most

suitable cover image based on data length, network bandwidth and allowable distortions, etc. We present our

algorithm based on the abstract concept of image components that can be adapted for JPEG, Bitmap, TIFF

and PNG cover images. To the best of our knowledge, the proposed algorithm is the first Steganography

algorithm that can work for multiple cover image formats. In addition, we have utilized concepts like

capacity pre-estimation, adaptive partition schemes and data spreading to embed secret data with enhanced

security. The proposed method is tested for robustness against Steganalysis with favorable results. Moreover,

comparative results for the proposed algorithm are very promising for three different cover image formats.

INDEX TERMS Data embedding, data hiding, image steganography, JPEG steganography.

I. INTRODUCTION

The area of Steganography generally covers techniques that

try to hide information in some media file being transmitted.

The goal of Steganography is to ensure that an adversary

should not suspect the presence of a hidden message. Text,

image, audio or video files can be used as media to conceal

the secret message. In Image Steganography, after Steganog-

raphy operations, nobody should be able to notice the visual

difference between original image (called cover image) and

the resultant image (called stego image). Text, image, audio

or video files can all be treated as sequence of data bits and

can be transmitted by hiding in cover images using image

Steganography. Data bits are also called payload data, secret

data, data object and hidden data.

With the best of our knowledge, the reported results

for image Steganography focus on cover images of some

particular format. Out of the numerous image Steganogra-

phy algorithms, there are works that use cover images of

type JPEG [7]–[9], [18], [21], PNG [11]–[14], [30] and

RGB [1]–[6], [19], [20]. In this paper, we present a Generic

Steganography

The associate editor coordinating the review of this manuscript and

approving it for publication was Vicente Alarcon-Aquino .

Algorithm (called GSA) that is described for abstract image

components. The novel aspect of GSA is that, we can

implement GSA for all these types of cover images (i.e.

JPEG, Bitmap or PNG) with trivial adaptations. In addition,

we have implemented GSA for JPEG, Bitmap and PNG for-

mats with very promising results compared to other reported

methods.

At this point, the following query may come up in the

mind of the reader: what is the benefit of having an image

Steganography algorithm that can work for multiple cover

image formats? We can answer this question by noting the

following points, which also provide the motivations for the

current work.

• Having the option to use any types of cover images using

one algorithm provides flexibility and simplicity for a

user.

• Capacity of a cover image can vary based on the image

format. Based on the data length, network bandwidth

and allowable distortions, GSA can adaptively select the

best cover image format (for the same image) to hide

data.

• Since the same algorithm is used for various cover image

formats, security levels can be enhanced by modifying

83926 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
VOLUME 8, 2020

https://orcid.org/0000-0001-5375-0188
https://orcid.org/0000-0002-3082-5068
https://orcid.org/0000-0001-9033-014X
https://orcid.org/0000-0002-9843-9219


A. S. Ansari et al.: Multiple-Format Steganography Algorithm for Color Images

only a few parameters (like, using data spreading tech-

nique in GSA).
In summary, the proposed method works as follows.

We consider a cover image as a sequence of components Ci.

Each of these components Ci consists of a number of param-

eters Pij, of which we only consider three: P
i
j1,P

i
j2,P

i
j3. Out of

these three parameters, one is selected at random as the indi-

cator parameter. Data bits are stored in one of the remaining

two parameters fromPij1,P
i
j2,P

i
j3 based on the concept of par-

tition schemes. Specific adaptations of the above mentioned

process for various cover image types are discussed later in

this paper. As an example, a pixel in a Bitmap cover image

can be considered as a component Ci with P
i
j1,P

i
j2,P

i
j3 being

the R, G, B intensity values.

Additionally, we use capacity pre-estimations of cover

images to select the best cover image and the concept of

data spreading to reduce distortions. Experimental results

show that the proposed algorithm performs better compared

to other reported works for various cover image types. Thus,

this paper contributes to advance the state-of-art in image

Steganography in two ways:
• Introducing an algorithm (called GSA) that can be triv-

ially adapted for multiple cover image formats.

• Adaptations of GSA showing promising and better

results when compared with other methods.
The rest of the paper is organized as follows. Section II

focuses on literature review. Section III gives the abstract

description of the proposed method. Section IV presents the

implementation issues of our algorithm. Section V describes

the adaptations of the proposed algorithm for different cover

image formats. Section VI deals with experimental results.

Finally, we conclude the work in Section VII.

II. RELATED WORKS

There are a lot of works reported in image Steganography.

In this section, we briefly review some of the works related

to our approach.

Before we discuss different works, it is good to discuss

some factors that we should consider while evaluating a

Steganography algorithm. Fig. 1 illustrates some essential

factors in Steganography. In confidentiality, the Stego image

transmission must be confidential, where only the authorized

person must be able to read the message, while others should

not even suspect it. Integrity means that only an authorized

person would be able to modify or change the message.

Robustness is the ability of stego image to resist manipula-

tions like filtering or compression. Hiding Capacity is the

amount of information hidden in the cover image media. It is

measured as bpp (bits per pixel) or bpc (bits per coefficient).

In Authentication, the origin of the message is recognized

correctly with an assurance that identity is not false. Percep-

tibility implies that the Stego image must be same like cover

image without visual difference and hidden message should

not to be detectable by eyes.

PSNR (Peak Signal to Noise Ratio) is a visual qual-

ity estimator for stego images. It is used to measure the

FIGURE 1. Major technical aspects of an image Steganography algorithm.

perceptible quality of the modified Steganography image

in decibels (dB). A high value for PSNR indicates higher

quality of an image. MSE (Mean Square Error) is an esti-

mate for error between the original cover image and the

output stego (reconstructed) images. There is an inverse

relationship between PSNR and MSE, a lower MSE value

indicates lower difference between input and output images.

If MSE value is less than one, it implies that modified

image has been properly restored. Stego key is a key that is

embedded into the cover media along with the secret data to

retrieve the embedded secret data back correctly (explained

in detail in Section III). The various image Steganogra-

phy algorithms attempt to optimize one or more of these

factors.

Previous works present various Steganography algorithms

for specific image formats [1]–[24], [26]. Algorithms for

image formats like JPEG [7]–[9], [18], [21], [23], [24], [26],

PNG [11]–[14], and RGB [1]–[6], [19], [20] are discussed

here, the most common ones. Table 1 summarizes the various

image Steganography algorithms.

A. SPATIAL DOMAIN (RGB/BITMAP) STEGANOGRAPHY

Algorithms for bitmap images work in spatial domain, using

direct modifications in the cover image pixels. RGB algo-

rithms provide high capacity but less security because image

pixels can be modified directly as per the scene’s curves

and edges. Examples of RGB algorithms are LSB (least

significant bit) substitutionmethod, pixel indicator technique,

optimal pixel adjustment procedure, secure key based image

realization Steganography, etc.

The techniques in [3], [4], [6], [33], [34] are all

LSB substitution based methods, where the basic idea is to

embed the message into the right most bits of the pixel array

sequentially or randomly without disturbing the original pixel

values much. Pixel indicator techniques are based on the con-

cept of an indicator channel and an embedding channel [1].

Amirtharajan et al. [2] used both LSB and pixel indicator

techniques to enhance security.

VOLUME 8, 2020 83927



A. S. Ansari et al.: Multiple-Format Steganography Algorithm for Color Images

TABLE 1. A summary of some recent image Steganography algorithms.

B. FREQUENCY DOMAIN (JPEG) STEGANOGRAPHY

JPEG image format algorithms work in the frequency

transform domain (they work on the rate at which the pixel

values are changing in the spatial domain). Frequency trans-

form domain is divided into two categories: high-frequency

domain (deals with edges) and low-frequency domain (deals

with smooth and plane area). Changes in low frequencies

can be more apparent. Both DCT (Discrete Cosine Trans-

form) and DWT (Discrete Wavelet Transform) can be used

to embed the secret data into the image coefficients. The

frequency domain Steganography approaches were shown be

more secured compared to the spatial domain methods [22].

The methods reported in [2], [7], [18], [21], [23] are

based on DCT. These methods uses relationships between the

83928 VOLUME 8, 2020



A. S. Ansari et al.: Multiple-Format Steganography Algorithm for Color Images

FIGURE 2. Block diagram of the main phases in Generic Steganography
Algorithm (GSA).

DCT coefficients and STCs. Yang et.al. [8] proposed simple

DCT method to insert confidential data into zero coefficients

in a zigzag sequence of 8×8 DCT blocks. In [17], the method

uses bit-plane encoding procedure multiple times and a

redundancy evaluation approach to increase hiding capacity.

The work proposed in [11] is based on IntegerWavelet Trans-

form (IWT). A careful review of various image Steganog-

raphy algorithms can reveal that algorithms for JPEG cover

images performs better in security aspects compared to all

other image formats [22].

C. PNG (PALETTE BASE/IMAGE DATA BASE)

STEGANOGRAPHY

There are generally two approaches to embed data bits in

PNG images: one can insert data bits into palettes or one can

insert data bits into the image data [11]. The first method

(palette-mode) is probably the easier to implement, but has

less capacity to store data depending on the palette size. In this

approach, it is difficult to store even one bit per image com-

ponent, since it is easy to distinguish images with and without

secret message. In contrast, the secondmethod (image-mode)

offers more capacity, although this approach has difficulty in

ensuring security. It is possible to embed one bit, 2 bits, 3 bits,

and up to 7 bits per pixel of image data without distorting the

image. In our work, we will use image data based approach

to insert data bits into PNG image to have increased capacity

(explained later). As discussed later, we try to overcome the

security issues by spreading data unevenly and using variable

bits partition scheme. Works proposed in [11], [12], [14]

are palette-mode methods; whereas [13] is an image-mode

method.

III. ALGORITHMIC FORMULATIONS

In this section, we present the proposed algorithm in abstract

mathematical terms. Specific implementations for different

image types will be discussed later. Fig. 2 illustrates the

main modules in the proposed method. A cover image passes

through capacity pre-estimation procedure to select the best

cover image for the secret data bits. Once a cover image is

selected, concepts like partition schemes are used to store data

in image components. In the following sections, each of these

modules will be described in details.

A. BASIC DEFINITIONS

An image is a visual representation of an entity. We can

consider an image I as a two dimensional matrix of finite

number of elements or components. Let Cx,y be a component

of the image I , x = 1, 2, . . . , r and y = 1, 2, . . . , c, where

r and c denote the number of rows and columns in the matrix

representation of I . For example, this Cx,y can be an intensity

value in a gray scale image, or it can represent color intensity

values in some color image formats or can be some sort of

coefficient values in other image formats.

Each of the (r × c) components Cx,y consists of a num-

ber of parameters Pix,y, i = 1, 2, . . . , p. For example,

parameters Pix,y could be the color component values in some

image formats. In JPEG images, Cx,y consists of coefficient

values as parameters.

In our approach, we divide the image matrix I into a series

of n × n blocks. Through experimentations, we found that

n = 8 gave the best results, as blockswith size less than (8×8)

does not have enough capacity for hiding data. On the other

hand, blocks with size greater than (8×8) may sharply reduce

the overall capacity of the cover image. Therefore, for n = 8,

we can have a total of ((r × c) /64) blocks.

Now, we define a triode T as a group of three elements,

where a triode element can be either a parameter in a compo-

nent or a component itself. In the first case, we denote the

triode T as TP, whereas in the second case, T is denoted

by TC . Assume that the three elements of a triode T are

denoted as e1, e2 and e3. Our proposed method works at the

triode level, either using TP or TC , based on the cover image

format. The proposed method selects one triode at a time and

makes one element in that triode as an indicator randomly

(discussed next). Then secret data bits are stored in one of

the two remaining elements in that triode based on element

values. Fig. 3 illustrates the use of triodes for data hiding in

image component blocks. Note that, not all possible triodes in

a component block may be used for hiding data. For example,

in our algorithm for JPEG cover images, only four triodes

per 8 × 8 component block are used (Fig. 3(b)). In other

case, 64 triodes per component block can be used using TP.

In general, our algorithm considers m number of differ-

ent triodes in each component block, labelled as triode 1,

triode 2, . . . , triode m.

In summary, Generic Stenography Algorithm (calledGSA)

hides data by altering some element values in each triode of

each component block for a given cover of a particular format.

B. TRIODE INDICATORS

As discussed above, out of three elements e1, e2 and e3 in a

triode T , one of them is selected as indicator. The idea here is

that only one of the triode elements will store data. This way,

we can keep the distortion level low with increased security.

To find out which triode element will store data, we identify

one of the e1, e2 or e3 as indicator. Say, ein is the indicator

element. This selection of ein is done randomly using a ran-

dom number generator (RNG) for security purpose. During

data extraction, the receiver must know the exact ein used in

a triode at the sender side. For this reason, both sender and

receiver must agree on a shared key for the RNG.

Now, ein is used to indicate which of the other triode ele-

ments will store data. Suppose ej and ek are the two elements

VOLUME 8, 2020 83929



A. S. Ansari et al.: Multiple-Format Steganography Algorithm for Color Images

FIGURE 3. Illustration of triodes for embedding data in component block:
(a) Triodes in an image of size (rxc) components, (b) triodes in an 8 ×

8 JPEG coefficients block (with random coefficient values).

in T other than ein. Data will be stored in ej if the numeric

value of ej is lower than ek . Otherwise, ek will store the data.

The number of bits to be stored in either ej or ek is decided

using the concept of partition schemes, to be discussed next.

C. PARTITION SCHEMES

In general, a partition scheme is a mapping that decides the

number of bits to be stored in a selected element of a triode

in a cover image. For the discussion purpose, we assume

that the element in a triode T that will store data is denoted

by edata.

We first define partition schemes in general terms. Generic

Variable Bit Adaptive Partition Schemes (GVBAPS) can be

defined as sequence of schemes (Si), i = 0, 1, . . . , k , where

each (Si) allows a triode element to store a maximum of

(n− k + i) bits of data, for some k, n > 0. For a particu-

lar element, only one scheme can be utilized based on the

element value. Table 2 illustrates GVBAPS for k = 7 and

n = 8.

The goal of a partition scheme is to allow variable number

of bits to store in a triode element, based on the value of the

element. Some partition schemes allow larger number bits

to be stored in a triode element compared to other schemes.

TABLE 2. Generic variable bit adaptive partition schemes.

The partition schemes are called adaptive, since the best par-

tition scheme is adaptively selected for a given cover image I

and some secret data D. To accomplish this, an estimation

of the capacity of I is needed. Assume that the estimated

capacity of I is Icap. Now, we select a partition scheme (Si)

that can ensure that D can be stored in I with the maximum

number of components of I being used (called data spreading

in this paper). Therefore, we next discuss the estimation of

capacity of a cover image and the concept of data spreading.

D. CAPACITY ESTIMATION AND DATA SPREADING

For the estimation of the capacity of a given cover image,

our algorithm uses a value called Maximum Constant, MC .

The value MC is estimated experimentally as follows. For

a cover image I of a particular format (say JPEG) and for

some random data bits, we insert d bits into each triode

of a component block, starting with d = 1. Gradually the

value of d is increased until the quality of the stego image

gets badly affected (which roughly corresponds to a PSNR

value less than 48 dB). Thus,MC is estimated approximately

as 12.5 for each block in JPEG images. With MC more

than 12.5, the PSNR of the stego image reduces signifi-

cantly (for example, for ‘Pepper’ image, PSNR is 57.7dB

at MC∼12.5, whereas PSNR goes down to 48.45dB at

MC∼14). Then, the expected capacity of a I is: Ecap =

(r × c×Mc) /64. Here, Ecap is the expected capacity of a

cover image with (r × c) components and 8 × 8 component

blocks.

If the amount of secret data is less and capacity of cover

image under consideration is high, then instead of embedding

secret data in less number of image components, we attempt

to scatter it throughout the entire image components. This

technique can help reduce the distortions in stego images.

This goal is achieved by selecting the partition scheme that

allows minimum amount of changes per triode element.

To improve security further, our algorithm uses interleaved

selection of blocks (alternate blocks) for storing data bits.

Now, let the total number of image components/parameters

utilized to hide data with data spreading be C . Let X be

the number of utilized components/parameters without

data spreading. Then, C − X is the amount of extra

83930 VOLUME 8, 2020



A. S. Ansari et al.: Multiple-Format Steganography Algorithm for Color Images

components/parameters utilized (calledECU), Hence%Extra

Component/ parameter Utilised, ECU = (C − X) × 100%.

We attempt to maximize ECU for given data bits and a cover

image. This is done with the help ofDecision Factor, defined

as follows.

Decision factor Df is defined as a ratio of the difference

between the expected capacity of a cover image and secret

data length in bits, to the total number of blocks in the cover

image. Therefore, decision factor Df = floor (Data differ-

ence / Total number of 8 ×8 blocks). Here, Data difference =

Expected Capacity of Cover Image – Secret Data length and

Total number of component blocks = ((r × c) /64) × s,

where s is a constant value (1 or 1.5) depending on the image

format. Therefore, a lower decision factor value means that

the capacity of the cover image is close to the length of the

secret data and thus less amount of data spreading is possible.

E. EMBEDDING EXAMPLE

Table 3 illustrates an example for embedding data in the

parameter/component using Generic Variable Bit Adaptive

Partition Schemes (GVBAPS). Say, x, y, and z denote three

parameters/components (i.e. elements) with values 154, 152,

and 140 respectively in any one of the triodes. For example,

these three parameters can be the RGB values in a pixel

or three DCT coefficients. The values of the elements are

selected randomly and the following steps are applicable

for any values of the elements. To simplify the process,

parameters/components are sequenced in a cyclic order, like

x → y → z → x. In the following, the ‘steps’ refer to the

step numbers mentioned in Table 3.

In Step 1, element ‘z’ is randomly selected as an indicator,

which means ‘z’ will not store any data. This selection of

an indicator can be done using a random number generator.

Now data bits are stored in one of the element other than the

indicator. The selection of element that will store data bits is

done in Step 2.

In Step 2, since the value of ‘y’ is lower than ‘x’, therefore

‘y’ is selected to store data. Once we select the element that

will store data, we need to decide the number of bits that

will be stored in that element. In Step 3, the number of bits

to store is found based on the partition scheme and values

of the parameters/components. For ease of understanding,

parameter/component values in Table 3 are shown in binary.

In Step 4, three secret data bits (as calculated by the par-

tition scheme) are inserted in the lower three bits of ‘y’.

Now, the value of ‘y’ changes from 10011000 to 10011111.

In Step 5, after changing the bits, the value of element ‘y’

changes from decimal 152 to 159.

As for the detection/retrieval phase, the following points

need to be considered. Once we embed data bits in an ele-

ment, the value of the element may change in a way that the

rule used in Step 2 may no longer be valid. In the current

example, the new value of ‘y’ will make the receiver confused,

as now the element ‘x’ is lower in value compared to the

new value of ‘y’. Thus, in case the value of ‘y′ becomes

greater than ‘x’ after modification, it will be impossible to

TABLE 3. An example of storing data in a triode element using adaptive
partition schemes.

retrieve data by the receiver using the rule of Step 2 alone.

Therefore, to retrieve the correct data, LSB of ‘x’ may need

to be modified so as to correctly find (at the receiver’s side)

the parameter/component that stored data. The following rule

is used for this purpose.

Suppose, a and b are the two elements other than the indi-

cator element. Also, suppose b stores the data. In the example

here, a is the element x and b is the element y. Now, if b comes

AFTER a in the cyclic order of the parameters/components,

then LSB of a will be modified so that the LSBs of a and b

(after embedding) do not match. Conversely, if b comes

BEFORE a in the cyclic order of parameter/component, then

LSB of a will be modified so that the LSBs of a and b (after

embedding) are same (either both 0 and both 1). Thus, at the

receiver, only the LSBs of a and b are checked to decidewhich

parameter/component has been used to store the secret data.

Referring to Table 3, step 6, the LSB of ‘x’ is not changed in

this case, as ‘y’ comes after ‘x’ in cyclic order and the LSBs

of ‘x’ and ‘y’ (after embedding) are already different.

F. PSEUDO-CODE

Based on the discussions above, the followingGSA algorithm

captures the process of our proposed Generic Steganography

Algorithm (GSA).

IV. IMPLEMENTATION OF PARTITION SCHEMES

Before we describe the specific adaptations of GSA for mul-

tiple image formats, we discuss how partition schemes can be

devised for different types of cover images.

A. PARTITION SCHEMES FOR JPEG IMAGES

GSA is mapped to JPEG cover images by considering the

DCT coefficients as image components. Based on this map-

ping, we can devise partition schemes for JPEG images.

For JPEG images, we call GVBAPS as JPEG Variable

Bit Adaptive Partition Schemes or JVBAPS. In this paper,

VOLUME 8, 2020 83931



A. S. Ansari et al.: Multiple-Format Steganography Algorithm for Color Images

Algorithm GSA

Input: Cover Image, Secret Data, Shared key

Output: Stego Image

1 Begin

2 Calculate cover image and data sizes in bits.

3 Estimate the capacity of Cover Image Ecap
4 Repeat for each 8 × 8 interleaved component block and interleaved row from cover image I

5 Repeat for each Triode j where j = 1 to v (v = 4 or 64)

6 Assume that triode elements are e1, e2, and e3.

7 Use the shared key to find indicator element (say ein). Let the other two elements be ej and ek .

8 Let, {q, r} ∈ {ej, ek}, where value (q) = min (value (ej), value (ek )) and value (r) = max (value (ej), value (ek )).

9 Calculate the number of bits n to be stored in q through partition scheme.

10 Hide data in q by replacing the lower n bits of q by the n bits from data.

11 If value (q) > value (r), adjust the last bit of r .

12 Save new values of e1, e2, and e3 back into 8 × 8 component block.

13 Adjust unmodified elements

14 End

TABLE 4. Decision factors and bits per component for JVBAPSP1.

JVBAPS are of two types: Variable Bit Adaptive Partition

Scheme Part 1 (JVBAPSP1) for first three triodes and Vari-

able Bit Adaptive Partition Scheme Part 2 (JVBAPSP2) for

fourth triode (ref. Fig. 3(b)). JVBAPSP1 is mathematically

defined as a sequence (Si), i = 1, . . . , k , for the decision

factor Df . By default Df = 0 and partition scheme Pdefault
stores k+1 bits. A partition scheme (Si) allows k bits to store

per component with Df = (k − i+ 1). Table 4 illustrates

JVBAPSP1 for k = 8.

As can be seen in Table 4, the number of bits to be stored

in the first three triode coefficients of a JPEG image depends

on the decision factor value. Decision factor values allow

different number of bits to be stored in selected coefficients

in each triode. This approach may give more utilization of

coefficients of the cover image for entire secret data. This

coefficient utilization would be most under maximum esti-

mated capacity of the cover image. In all these cases, our

algorithm allows spreading of data over the cover image.

JVBAPSP2 (shown in Table 5) is used for hiding data in the

fourth triode of a JPEG cover image. JVBAPSP2 is defined

as a sequence (Si) , i = 0, . . . , k − 1, for the coefficient

value Cv. The scheme (Si) allows to store i number of bits

in the image coefficient when Cv meets the certain condition.

TABLE 5. Ranges of DCT coefficients values for JVBAPSP2.

Table 5 shows an example of JVBAPSP2 for k = 8. For

example, as shown in Table 5, partition scheme (S5) is

selected if the coefficient value Cv lies between −400 to

−499, allowing 5 bpc from the secret data to be stored in

a component. Triode 4 generally has high-valued (mostly

negative) DCT coefficients. Based on observations, we found

that we could store more bits in more negative valued

DCT coefficients without compromising quality, leading to

the design of JVBAPSP2 in Table 5.

JVBAPSP2 allows hiding more bits in negatively valued

coefficients. As the value of a coefficient goes more negative,

JVBAPSP2 allows increasing number of bits to be stored in

that coefficient. In contrast, storing more number of bits into

the coefficients with positive values can give rise to variation

in brightness or color or produce blur effect or dots in the

stego image. Positive coefficients can only store a maximum

of one bit of data per component.

B. PARTITION SCHEMES FOR RGB, PNG AND TIFF

In Variable Bit Adaptive Partition Scheme (VBAPS) for

RGB, PNG and TIFF images, we want to store variable

number of bits according to the color intensity values of the

channels. Channels with high values will store less number

83932 VOLUME 8, 2020



A. S. Ansari et al.: Multiple-Format Steganography Algorithm for Color Images

TABLE 6. Ranges of channel intensity values for VBAPS for RGB, PNG, and
TIFF images.

of bits, whereas, channels with low values will store more

number of bits using partition schemes. Thus, the selection

of a partition scheme depends on the intensity values of a

cover image. The capacity of a cover image depends on the

color intensity values of the channels being used to store data.

Our partition scheme allows different number of data bits to

be stored per channel based on the channel intensity values

(for example, one color intensity level may allow to store

1 bits per parameter/channel (bpp) whereas, another color

intensity level may allow 5 bpp).

The partition scheme decides the number of bits to be

stored throughout the cover image depending on the require-

ments and allowable level of distortion. For example, if secret

data bits are less than the estimated capacity of a cover

image, only one bit or two bits per channel is used over the

cover image. If the number of secret data bits to be stored

is high (say, nearly equal to the estimated capacity of the

cover image), then more number of bits (may be 3/4/5 bits)

will be stored in each channel depending on the size of data

and partition scheme. Table 6 illustrates one such VBAPS for

RGB/PNG/TIFF images.

V. ADAPTATIONS FOR MULTIPLE IMAGE FORMATS

In this section, we show how GSA algorithm presented in

Section III can be readily adapted for some popular cover

image formats, namely JPEG, RGB, PNG and TIFF.

A. GSA FOR JPEG IMAGES

Every JPEG image consists of a header. Each header has a

field named coef_arrays of size 1 × 3 cells. The 1st cell is of

size r × c where r and c are the row and column dimensions

of the image under consideration. The 2nd and 3rd cells are

of size r/2 × c/2. Hence, in the formulation of decision

factor constant, s = 3/2 for JPEG format (as discussed

in Section III). Our algorithm selects n× n coefficients from

coefficient matrices of a JPEG cover image to be processed

once at a time, where n = 8 (ref. Fig. 3(b)). Therefore,

in JPEG cover images, image components refer to the coef-

ficient values and a triode refers to a set of three coeffi-

cients. For each component block (which is an 8 × 8 block

of coefficients), four triodes are considered (ref. Fig. 3(b)),

named as triode 1, triode 2, triode 3 and triode 4. In each

triode, we have three coefficients (Fig. 3(b)). For Capacity

Estimation of Cover Image Ecap, we found the value of MC

as 12.5 bits per block. The following GSA_JPEG algorithm

is the implementation of GSA for JPEG images.

B. GSA FOR BITMAP (RGB/PNG/TIFF) IMAGES

For Bitmap cover images, each component corresponds to

an image pixel, with each pixel having three parameters: R,

G and B. Therefore, an 8 × 8 component block contains a

total of 64 pixels. Thus, each triode in this component block

contains the parameters R, G, B; making a triode same as a

pixel for a Bitmap image. For Capacity Estimation of Cover

Image Ecap, we found the optimum value ofMC to be 192 bits

per component block.

GSA for PNG (Portable Network Graphics) cover images

are almost same as for RGB images. PNG is palettes based

file format that supports indexed color, gray scale and RGB

images. It supports palette-based images of 24 bit RGB or

32 bit RGB colors, grayscale images, and full-color non

palette based RGB images. Again,MC = 192 for PNG cover

images.

Similarly, TIFF (Tagged Image File Format) supports bi-

level, grayscale, palette-color, and RGB full-color images.

TIFF images can store 16 to 48 bit images and meta data.

TIFF contains property of loss-less compression, uncom-

pressed option, Grayscale, RGB color, 8 to 24-bit color and

indexed color. Our proposed method uses the RGB color

mode property of TIFF image and store secret bits as like

method [2]. Our proposed method does not support TIFF

48 bit RGB data. Again,MC = 192 for TIFF cover images.

The following GSA_RPT algorithm illustrates the steps for

GSA for Bitmap/PNG/TIFF cover images.

VI. EXPERIMENTAL RESULTS

We have tested the proposed algorithm (GSA) for around

100 different cover images of multiple formats. We first

present some results of testing GSA for various cover images

with different secret data. We then discuss Steganalysis

results for the proposed method. Finally, we compare the

proposed method with other reported methods for three types

of cover images using some popular cover images used by

other researchers.

A. GSA FOR JPEG/RGB/PNG/TIFF COVER IMAGES

We have tested our Generic Steganography Algorithm (GSA)

for a number of color cover images of JPEG/BMP/PNG/TIFF

formats. The output stego images for three cover images (each

of them in four different formats) are shown in Fig. 4. For

experimentations, we have taken the ‘soldier’ image (contains

35,160 bits) as a secret data (ref. Fig. 4). The detailed results

for different cover images are given in Table 7. A comparative

graph is shown in Fig. 5.

The data hiding capacity of a colored cover image depends

on its dimension, colors, edges and fine details. For the same

data length and cover image size, the PSNR values for Lena,

VOLUME 8, 2020 83933



A. S. Ansari et al.: Multiple-Format Steganography Algorithm for Color Images

Algorithm GSA_JPEG

Input: Cover Image, Secret Data, Shared key

Output: Stego Image

1 Begin

2 Calculate cover image and data sizes in bits.

3 Estimate the capacity of Cover Image Ecap and Calculate Decision Factor Df
4 Repeat for each 8 × 8 interleave component block and interleaved row from image I .

5 Repeat for each Triode j where j = 1 to 4.

6 Let p1, p2, and p3 be the parameters (coefficients) in triode j

7 Use the shared key to find indicator coefficient (say p1).

8 Let, {q, t} ∈{p2, p3}, where value (q) = min (value (p2), value (p3)) and value (t) = max (value (p2), value (p3)).

9 Calculate the number of bits n to be stored in q through VBAPSP2 (j = 4) or VBAPSP1 (j = 1, 2, 3).

10 Hide data in q by replacing the lower n bits of q by the n bits from data.

11 If value (q) > value (t), adjust the last bit of t .

12 Save new values of p1, p2 and p3 back into the coefficients and save 8 × 8 coefficient block

13 Adjust unmodified elements ei.

14 End

Algorithm GSA_RPT

Input: Cover Image, Secret Data, Shared key

Output: Stego Image

1 Begin

2 Calculate cover image and data sizes in bits.

3 Estimate the capacity of Cover Image Ecap
4 Repeat for each 8 × 8 interleave component block and interleaved row from image I .

5 Repeat for each Triode (a pixel) j, j = 1 to 64

6 Let p1, p2, and p3 be the parameters of a component (RGB values of pixel j)

7 Use the shared key to find indicator coefficient (say p1).

8 Let, {q, t} ∈ {p2, p3}, where value (q) = min (value (p2), value (p3)) and value (t) = max (value (p2), value (p3)).

9 Calculate the number of bits n to be stored in q through partition scheme.

10 Hide data in q by replacing the lower n bits of q by the n bits from data.

11 If value (q) > value (t), adjust the last bit of t .

12 Save new values of p1, p2 and p3 back into component (pixel) and save 8 × 8 pixel block.

13 Adjust unmodified elements ei.

14 End

Pepper and Baboon images are slightly different based on

color or other parameters (ref. to Table 7).

As can be seen in Fig. 5, the difference between aver-

age PSNRs of JPEG cover images with any other format

is nearly13 dB. A possible reason behind this difference is

that in JPEG cover images, the DCT coefficients cannot be

altered much. However, the capacity utilization (% compo-

nent/parameter utilization) being same due to the same size

of the cover images.

For the cover image number four (‘doll’ in Table 7), for the

same data length, utilization of parameters reaches 88.4%.

This high utilization of parameters can be explained as fol-

lows. The estimated capacity of the ‘doll’ image is 120,000

bits. In this case, our algorithm selects to maximize the data

spreading throughout the image; hence, it selects to store

1 bit/component with VBAPS partition scheme to be set for

only 1 bit. In this way, we get % Extra Component/parameter

Utilized as given previously as: ECU = 88.4 – 28.5. Here,

value of X is found by experimentation with VBAPS. With

ECU = 59.86, we achieve a high level of data spreading.

Similarly, 96.65% and 97.14% utilizations of parameters are

achieved (with data length of 4,72,928 bits) for cover images

‘Earth’ and ‘Cake’ respectively, as shown in Table 7 (serial

number 10 and 11).

However, in ‘Birds’ image (serial number 7 in Table 7), for

the data length of 7,57,953 bits, the utilization of parameters

is 65.27%. This is because, for this particular cover image

and given data length, the maximum level for data spreading

(which is 1 bit/component) was not possible.

B. ROBUSTNESS AGAINST STEGANALYSIS

In this section, we discuss the security aspects of the proposed

method based on Steganalysis. In addition, we present ideas

to handle a few of the possible attacks.

Seganalysis detects the stego image when it finds some

similarities or irregularities or heavily loaded areas in the

83934 VOLUME 8, 2020



A. S. Ansari et al.: Multiple-Format Steganography Algorithm for Color Images

FIGURE 4. Stego output results of the proposed GSA using the
JPEG/BMP/PNG/TIFF cover images (Lena, Pepper, Baboon of
size (512 × 512)).

FIGURE 5. Illustrations of PSNR values for GSA for JPEG/RGB/PNG/TIFF
formats for 35,160 bits of secret data.

image. To achieve robustness against Steganalysis, the stego

image should not have any bulky area of similarities or

should not have irregularities which can be recognized by

Steganalysis. In our algorithm GSA, data embedding is based

on values of image elements; for example, DCT elements

values ranging from −1023 to 1024, whereas bitmap image

pixel values range from 0 to 255 (8 bits/pixel). We worked

directly on color images without any pre-processing steps

(like color conversion). Let ei denote the number of data

bits embedded in an element i. In GSA, the average secret

data length per element is estimated by experimentation and

FIGURE 6. Error indices across payload size (bits per element).

found to be around 3.1 bits. To test robustness of the proposed

method, we vary the value of ei and test the robustness against

Steganalysis attack.

In our experimentations, for ei = 0.1 to 3.1, error value

ER < 1. After embedding high amount of secret data

bits/element with ei > 3.1, ER becomes more than one.

Therefore, the quality of the stego image starts to reducewhen

more than 3.1 bpc / bpp are used. For ei less than 3.1 bpc / bpp,

error less than one can be tolerated and does not affect the

quality of the image much. The error ER increases more after

embedding more secret data bits in more positive element

values as shown in Figure 6. Since the attacks are more

effective on high frequency elements, so we tested our modi-

fied high frequency elements against the attack and fixed the

maximum number of bits/element to be 3.1 bpc/bpp. Embed-

ding was done in interleaved blocks for the selected triode in

an element. To compensate the effect of this modification,

we used the technique of counter embedding bits in other

remaining elements. For ease of discussions, we refer to the

elements selected by GSA as ‘modified’ elements and the

other elements as ‘unmodified’ elements. Suppose, we embed

α bits in each unmodified element to balance the weight

of elements so that the Steganalysis does not recognize the

difference between the modified and unmodified elements.

Then we compared the unmodified elements error value

ER with modified element error value, AER. We have tried

to keep the balance between the modified and unmodified

elements to achieve the balanced error. The error value of

modified elements should be nearly equal to the error value of

unmodified elements so that the Steganalysis will not be able

to detect the difference between modified and unmodified

elements; that means the error for the α bits AER should

be ∼ = ER.

We also tested the robustness of the proposed algorithm

against image processing attacks. For this purpose, we used

format independent rich Steganalysis model [27]. Rich model

works on the coefficients/pixel perceptual weight difference

error and the distortion error at different level of sensitivity.

For secret data length/element ei < 3.1 bpc/bpp, the Stegana-

lyzer found ER < 0.5. For, ei < 0.5, we got ER < 0.25 as

shown in Figure 6. It means that our generic algorithm is

robust against Steganalysis with ei < 3.1. We also tested the

VOLUME 8, 2020 83935



A. S. Ansari et al.: Multiple-Format Steganography Algorithm for Color Images

TABLE 7. GSA outputs using generic variable bits adaptive partition schemes for different cover image formats/sizes with various secret data size.

JPEG and TIFF stego images generated in our experimen-

tations using Ben-4D specific Steganalysis tool. The results

are very promising for JPEG and TIFF images as shown

in Table 8.

In the following, we suggest further modifications to GSA

to counter some other attacks. Other common attacks on stego

images include image processing attacks, like image cropping

attack, orientation (rotation) attack or clipping attack, etc.

Clustering and duplication are two approaches that can be

applied for each image element to get rid of orientation attack

(rotation attack) and image cropping attack. Duplication of

information in the image can be a good solution to tackle

the cropping or cutting attack on the image. Although this is

a costly approach, we can divide the cover image into four

quadrants and then replicate the secret data four times in

each quadrant of the cover image. Another solution against

cropping attack is to embed the secret data in the ‘central’

area of image so that if any attacker crops the corner sides of

image, secret data can be still available in the center. Also we

can combine these two methods of clustering and duplication

to make our algorithm GSA more secure.

It is challenging to achieve three aspects of Steganogra-

phy simultaneously, such as secret data embedding capacity,

perceptibility of the stego image and its robustness against

Steganalysis or attack. GSA is a step towards this goal, as it

provides high perceptibility, high PSNR after embedding,

high capacity secret data bits and promising results against

Steganalysis.

C. COMPARATIVE RESULTS

Comparative results for PSNR values of some existing works

with the proposed algorithm (GSA) are illustrated in Table 9

(JPEG cover images), Table 10 (Bitmap cover images) and

Table 11 (PNG cover images). In all of these comparative

results, we have used Lena, Paper and Baboon as cover

83936 VOLUME 8, 2020



A. S. Ansari et al.: Multiple-Format Steganography Algorithm for Color Images

TABLE 8. Steganalysis results using Ben-4D Steganalysis tool.

TABLE 9. Comparative results measuring performance in terms of PSNR
(JPEG images).

images in different formats (JPEG/ BMP/ PNG) with the

same dimensions and for same data length.

Table 9 shows the comparative results with nine other

reported works. The proposed method shows 26% - 31%

average improvements in terms of PNSR values for three

cases. A closer look at the numbers in Table 9 reveals that, out

of nine works, only onework [29], [30] reported PSNR values

greater than 50 for all three images. Even for these ‘best pre-

vious results’, our method provides 9% - 11% improvements

for all three images.

Similar comments can be made from Table 10, where

comparisons are made with methods that work for Bitmap

cover images. Here again, nine other methods (different than

the methods in Table 9) are compared with the proposed

method. However, as compared with Table 9, none of the

previous nine methods gives uniformly the best results for

all three images. Even if we take the best previous result for

each image separately, the proposed method provides higher

PNSR values for each of the three cover images. Likewise,

Table 11 illustrates the comparative results with five other

methods for PNG cover images. In all cases, the PSNR

values produced by GSA are better compared with the other

methods.

All three tables (Tables 9 – 11) combined, we have actually

compared the proposedmethodwith 23 other reported works!

It should be noted that, each of the previous methods in these

tables focuses on a single cover image type, thus optimizing

TABLE 10. Comparative results measuring performance in terms of PSNR
(BITMAP images).

TABLE 11. Comparative results measuring performance in terms of PSNR
(PNG images).

their parameters for the target image type. This means, each

method needs a particular image type for data hiding; a lack

of cover image of such image type requires either to convert

the cover image (which is not feasible sometimes, due to

quality issues) or to use another algorithm. In contrast, the

proposed method can utilize any types of cover images that

are available.

VII. CONCLUSION

The proposed algorithm (called GSA in this paper) features

the use of different types of images as cover media by uti-

lizing an algorithm that depends of the abstract definition

of image components. In addition, we used concepts like

capacity pre-estimation, partition schemes and data spreading

to embed high amount of secret data. The proposed method

can be further enhanced by using experimentally estimated

partition schemes.

When compared with other reported works based on PSNR

values, the proposed method achieved at least 26% improve-

ments. This result is very encouraging, although only themost

common cover images were used. However, the proposed

method provides other benefits that are possible only due its

nature. For example, to avoid Steganalysis, different parts of

VOLUME 8, 2020 83937



A. S. Ansari et al.: Multiple-Format Steganography Algorithm for Color Images

the data can be sent using different image types. Also, in case

of necessity, larger cover images can be used to spread the

data adaptively.

To the best of our knowledge, the proposed algorithm

is the first Steganography algorithm that can utilize cover

images of type JPEG, Bitmap, TIFF and PNG. This way,

the applicability of the proposed method is much wider that

other reported works.

ACKNOWLEDGMENT

Dr. Arshiya S. Ansari would like to thank Deanship of Sci-

entific Research at Majmaah University for supporting this

work under the Project No. R-1441-117.

REFERENCES

[1] M. T. Parvez and A. A.-A. Gutub, ‘‘Vibrant color image steganography

using channel differences and secret data distribution,’’Kuwait J. Sci. Eng.,

vol. 38, no. 1B, pp. 127–142, 2011.

[2] R. Amirtharajan, S. K. Behera, M. A. Swarup, M. Ashfaaq, and

J. B. B. Rayappan, ‘‘Colour guided colour image steganography,’’ 2010,

arXiv:1010.4007. [Online]. Available: http://arxiv.org/abs/1010.4007

[3] R. K. Singh and B. Lall, ‘‘Saliency map based image steganography,’’

in Proc. 28th Int. Conf. Image Vis. Comput. New Zealand (IVCNZ),

Nov. 2013, pp. 430–435.

[4] S. Dogan, ‘‘A new approach for data hiding based on pixel pairs and chaotic

map,’’ Int. J. Comput. Netw. Inf. Secur., vol. 10, no. 1, pp. 1–9, Jan. 2018.

[5] V. L. Reddy, ‘‘Novel chaos based steganography for images using matrix

encoding and catmapping techniques,’’ Inf. Secur. Comput. Fraud, vol. 3,

no. 1, pp. 8–14, 2015.

[6] A. Srinivasan, J. Wu, and J. Shi, ‘‘Android-stego: A novel service provider

imperceptible MMS steganography technique robust to message loss,’’ in

Proc. 8th Int. Conf. Mobile Multimedia Commun., 2015, pp. 205–212.

[7] Y. Zhang, X. Luo, C. Yang, D. Ye, and F. Liu, ‘‘A JPEG comparison

resistant adaptive steganography based on relative relationship between

DCT coefficients,’’ in Proc. 10th Int. Conf. Availability, Rel. Secur., 2015,

pp. 461–466.

[8] C.-N. Yang, C. Kim, and Y.-H. Lo, ‘‘Adaptive real-time reversible data

hiding for JPEG images,’’ J. Real-Time Image Process., vol. 14, no. 1,

pp. 147–157, Jan. 2018.

[9] J. Hiney, T. Dakve, K. Szczypiorski, and K. Gaj, ‘‘Using facebook for

image steganography,’’ in Proc. 10th Int. Conf. Availability, Rel. Secur.,

Aug. 2015, pp. 442–447.

[10] S. Rojali and A. Galih, ‘‘Website-based PNG image steganography using

the modified vigenere cipher, least significant bit, and dictionary based

compression methods,’’ in Proc. Amer. Inst. Phys. Conf. Ser., vol. 1867,

no. 2, pp. 020059-1–020059-11, 2017.

[11] J. Fridrich, ‘‘A new Steganographic method for palette-based images,’’ in

Proc. PICS, Apr. 1999, pp. 285–289.

[12] P. Sujitha and G. Murali, ‘‘Authentication of gray scale document images

via the use of PNG image with data repairing,’’ Int. J. Sci. Res., vol. 2,

no. 11, pp. 2319–7064, 2013.

[13] W. Zin, ‘‘Message embedding in PNG file using LSB steganographic

technique,’’ Int. J. Sci. Res., vol. 2, no. 1, pp. 226–230, Nov. 2013.

[14] Y.-F. Chen, S.-W. Chien, and H.-H. Lin, ‘‘True color image steganography

using palette and minimum spanning tree,’’ in Proc. Int. Conf. Math. Com-

put. Sci. Eng. (WSEAS), no. 3, X. Lifent Ed. Singapore: World Scientific,

and Engineering Academy and Society, 2009.

[15] T. Taburet, P. Bas, J. Fridrich, and W. Sawaya, ‘‘Computing dependencies

between DCT coefficients for natural steganography in JPEG domain,’’ in

Proc. ACMWorkshop Inf. Hiding Multimedia Secur., Jul. 2019, pp. 57–62.

[16] A. Febryan, T. W. Purboyo, and R. E. Saputra, ‘‘Analysis of steganography

on TIFF image using spread spectrum and adaptive Method,’’ J. Eng. Appl.

Sci., vol. 15, no. 2, pp. 373–379, 2020.

[17] T. Shahida and C. Sobin, ‘‘An efficient method for improving hiding

capacity for JPEG2000 images,’’ in Proc. Int. Conf. Internet Comput. Inf.

Commun. New Delhi, India: Springer, 2014, pp. 159–168.

[18] C. Wang and J. Ni, ‘‘An efficient JPEG steganographic scheme based on

the block entropy of DCT coefficients,’’ in Proc. IEEE Int. Conf. Acoust.,

Speech Signal Process. (ICASSP), Mar. 2012, pp. 1785–1788.

[19] M. K. Ramaiya, N. Hemrajani, and A. K. Saxena, ‘‘Security improvisation

in image steganography using DES,’’ in Proc. 3rd IEEE Int. Advance

Comput. Conf. (IACC), Feb. 2013, pp. 1094–1099.

[20] N. Grover and A. K. Mohapatra, ‘‘Digital image authentication model

based on edge adaptive steganography,’’ in Proc. 2nd Int. Conf. Adv.

Comput., Netw. Secur., Dec. 2013, pp. 238–242.

[21] U. D. Acharya and P. R. Kamath, ‘‘A secure and high capacity image

steganography technique,’’ Int. J. Signal Image Process., vol. 4, p. 83,

Feb. 2013. [Online]. Available: https://arxiv.org/abs/1304.3629

[22] P. Rai, S. Gurung, and M. K. Ghose, ‘‘Analysis of image steganography

techniques,’’ Int. J. Comput. Appl., vol. 114, no. 1, pp. 11–17, 2015.

[23] F. Huang, J. Huang, and Y.-Q. Shi, ‘‘New channel selection rule for

JPEG steganography,’’ IEEE Trans. Inf. Forensics Security, vol. 7, no. 4,

pp. 1181–1191, Aug. 2012.

[24] V. Holub, J. Fridrich, and T. Denemark, ‘‘Universal distortion function for

steganography in an arbitrary domain,’’ EURASIP J. Inf. Secur., vol. 2014,

no. 1, pp. 1–13, Dec. 2014.

[25] S. Al-Nofaie, M. Fattani, and A. Gutub, ‘‘Capacity improved arabic text

steganography technique utilizing ‘Kashida’ with whitespaces,’’ in Proc.

3rd Int. Conf. Math. Sci. Comput. Eng. (ICMSCE), 2016, pp. 38–44.

[26] T. Arshiya and A. Rahim, ‘‘Encrypting images by patch-level sparse rep-

resentation for high capacity reversible data hiding,’’ Int. J. Adv. Technol.

Innov. Res., vol. 9, no. 1, pp. 1–8, 2017.

[27] G. R. Suryawanshi and S. N. Mali, ‘‘Universal steganalysis using IQM

and multiclass discriminator for digital images,’’ in Proc. Int. Conf. Sig-

nal Process., Commun., Power Embedded Syst. (SCOPES), Oct. 2016,

pp. 877–881.

[28] C.-L. Liu and S.-R. Liao, ‘‘High-performance JPEG steganography using

complementary embedding strategy,’’ Pattern Recognit., vol. 41, no. 9,

pp. 2945–2955, Sep. 2008.

[29] A. Pradhan, K. R. Sekhar, and G. Swain, ‘‘Adaptive PVD steganography

using horizontal, vertical, and diagonal edges in six-pixel blocks,’’ Secur.

Commun. Netw., vol. 2017, pp. 1–13, 2017.

[30] S. Rojali and A. G. George, ‘‘Website-based PNG image steganography

using the modified Vigenere Cipher, least significant bit, and dictionary-

based compressionmethods,’’AIPConf. Proc., vol. 1867, no. 1, Aug. 2017,

Art. no. 020059.

[31] Z. Zhang, G. Fu, F. Di, C. Li, and J. Liu, ‘‘Generative reversible data

hiding by image-to-image translation via GANs,’’ Secur. Commun. Netw.,

vol. 2019, Sep. 2019, Art. no. 4932782, doi: 10.1155/2019/4932782.

[32] G. Swain, ‘‘Adaptive pixel value differencing steganography using both

vertical and horizontal edges,’’ Multimedia Tools Appl., vol. 75, no. 21,

pp. 13541–13556, 2016.

[33] N. Akhtar, S. Khan, and P. Johri, ‘‘An improved inverted LSB image

steganography,’’ inProc. Int. Conf. Issue Challenges Intell. Comput. Techn.

(ICICT), Feb. 2014, pp. 749–755.

[34] A. J. Umbarkar, P. R. Kamble, and A. V. Thakre, ‘‘Comparative study of

edge based LSB matching steganography for color images,’’ ICTACT J.

Image Video Process., vol. 6, no. 3, pp. 1185–1191, Feb. 2016.

[35] A. Sharma, M. Poriye, and V. Kumar, ‘‘A secure steganography tech-

nique using MSB,’’ Int. J. Emerg. Res. Manage. Technol., vol. 6, no. 6,

pp. 208–214, Jun. 2017.

[36] S. Dogan, ‘‘A new approach for data hiding based on pixel pairs and chaotic

map,’’ IJ Comput. Netw. Inf. Secur., vol. 10, no. 1, pp. 1–9, 2018.

[37] S. Y. Shen and L. H. Huang, ‘‘A data hiding scheme using pixel value

differencing and improving exploiting modification directions,’’ Comput.

Secur., vol. 48, pp. 131–141, Feb. 2015.

[38] S. Tyagi, R. K. Dwivedi, and A. K. Saxena, ‘‘High capacity steganography

protected using Shamir’s threshold scheme and permutation framework,’’

Int. J. Innov. Technol. Exploring Eng., vol. 8, no. 9, pp. 784–795, Jul. 2019.

ARSHIYA S. ANSARI received the B.E. degree in
computer technology from the Yashwantrao Cha-

van College of Engineering, Nagpur University,

India, the M.Tech. degree in computer engineer-

ing from NMIMS University, Mumbai, India, and

the Ph.D. degree from Noida International Univer-

sity, Noida, India. She has nine years of experi-

ence in teaching field. She is currently working as

an Assistant Professor with Majmaah University,

Saudi Arabia. Her research areas of interests are

image processing and data warehousing. She is a Lifetime Member of ISTE.

83938 VOLUME 8, 2020

http://dx.doi.org/10.1155/2019/4932782


A. S. Ansari et al.: Multiple-Format Steganography Algorithm for Color Images

MOHAMMAD S. MOHAMMADI received the

B.E. degree in computer technology from the

Yashwantrao Chavan College of Engineering,

Nagpur University, India, the M.Tech. degree in

computer engineering from NMIMS University,

Mumbai, India. He is currently pursuing the Ph.D.

degree with Noida International University, India.

He has total 16.5 years of experience, includ-

ing 1.5 years industrial experience in Reliance

Petroleum, Mumbai, and 14 years of teaching

experience. He is currently working as a Lecturer with the Computer Engi-

neering Department, Qassim University, Saudi Arabia. His research interest

includes image processing, information hiding, and information/network

security. He is a member of the Saudi Internet Scientific Society from

2017 to 2018.

MOHAMMAD TANVIR PARVEZ received the

B.Sc. and M.Sc. degrees in computer science

and engineering (CSE) from the Bangladesh Uni-

versity of Engineering and Technology (BUET),

Dhaka, and the Ph.D. degree in CSE from the

King Fahd University of Petroleum and Miner-

als (KFUPM), Dhahran, Saudi Arabia, in 2010.

He is currently working as an Associate Professor

of computer engineering with Qassim University.

His research interests include pattern recognition,

image processing, andmachine learning with the special interest in handwrit-

ing recognition using structural approach. He has received several awards

including the Best Poster Award in ICFHR 2012. He maintains the research

repository platform ideas2serve.net.

VOLUME 8, 2020 83939


