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Abstract

This paper presents a 3D segmentation framework for multiple objects or compartments embedded

as level sets. Thanks to a compact representation of the level set functions of multiple objects, the

framework guarantees no overlap and vacuum, and leads to a computationally efficient evolution

scheme largely independent of the number of objects. Appropriate topology constraints ensure not

only that the topology of each object remains the same, but that the relationship between objects is

also maintained. The decomposition of objects makes the framework specifically attractive to the

segmentation of related anatomical regions or the parcellation of an organ, where relationships

must be maintained and different evolution forces are needed on different parts of the objects

interface. Examples of 3D whole brain segmentation and thalamic parcellation demonstrate the

potential of our method for such segmentation tasks.

1. Introduction

Image segmentation of anatomical structures is a fundamental and challenging problem in

medical image analysis. The segmentation result often directly affects subsequent tasks such

as quantification, registration and visualization. In many cases, the simultaneous

segmentation of multiple objects is required—e.g., in whole brain segmentation [16]—while

at the same time due to the anatomy of human organs, the topology of each object and the

topological relationship between all the objects should be the same for different subjects. As

well, overlap of and vacuum between the objects should be avoided, so that each voxel is

assigned to one and only one object. Some tasks in medical imaging also require the

segmentation of images with little or no visible boundary between different parts, requiring

the inference of likely boundaries from the group structure of the objects [18, 27].

Active contours methods [23] have been exploited in image segmentation for many years,

both in parametric and geometric deformable models (cf. [30, 9]). Geometric deformable

models, made possible by the level set theory [31], are more flexible in topology and avoid

self-intersection by embedding the evolving curve/surface in a higher dimension. However,

as the topology is prescribed by anatomical knowledge in medical images, it is often

desirable to regain control of the topology. Han et al. [40] introduced a digital simple point

criterion to ensure that no topological changes occur during the evolution of a levelset.

Several recent works have enhanced this framework through improved resolution [5],

selective topology control [14], topology correction [39, 15], and through a more global

topology perspective [33]. However, none of these can simultaneously maintain the

topology of a group of objects, thus guaranteeing a strict homeomorphism, as illustrated in

Fig. 1.
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There are a number of multiple region segmentation methods [22, 13, 2, 26, 6, 8, 20, 3, 17,

34], most of which use N level set functions to segment N objects, relying on coupling

forces to avoid overlaps and vacuums [6, 26, 17, 8, 4]. These energy-based methods

discourage but do not guarantee the absence of overlaps and vacuums, and their

performance depends on the relative weights between other terms in the formulation. The

multiphase method [22] was proposed to segment N regions with log(N) level set functions

based on the Mumford-Shah model [11], guaranteeing no overlaps or vacuums between

objects. However, since it is derived from the region-based Chan-Vese model [35], no

boundary information can be explicitly incorporated other than the overall length of the zero

level sets, which may actually lead to a false segmentation since it does not minimize the

length of the object boundary [38]. A probabilistic embedding was proposed to avoid

overlap and vacuum by replacing the level set isocontours with a labeling of regions

according to their maximum probability [20]. Both methods remove overlaps and vacuums,

but restrict the type of boundary information that can be exploited in the segmentation

algorithm. None of the multiple level set segmentation methods maintain the topology of

either a single object or a group of objects.

In this paper, we introduce a multiple object segmentation framework, which 1) guarantees

no overlaps or vacuums, 2) can preserve the topology of all objects and groups of objects, 3)

can apply any existing type of force in the level set literature with different weights of forces

on different parts of one object, and 4) evolves only two level set functions and two label

functions in two dimensions or three level set functions and three label functions in three

dimensions—independently of how many objects are to be segmented. This framework

extends the theory from 2D [38] to 3D. Here, we also demonstrate the theoretical and

practical advantages of this framework for the simultaneous segmentation of the whole brain

into ten structures and for the parcellation of the thalamic nuclei.

2. Theory

2.1. Level Set Decomposition

Let φi, i = 1, 2, …, N be the level set functions of N objects that parcellate an image I, where

the background (if it exists) is also treated as an object. By convention, these functions are

signed distance functions that are positive inside their respective objects (cf. [32, 19]) and

negative outside. We seek an evolution of the level set functions to minimize an energy

function

(1)

where Eint, Eext and Eprior are internal, external and prior shape energies, respectively.

Solution by gradient descent permits us to think of the energy derivatives—e.g.,  — as

forces that “push” the objects around in space. Internal energy forces encourage smoothness

of the zero level set based on its curvature or length [31, 36]. External energy forces—e.g.,

region forces, balloon forces, gradient forces, etc. [7, 35]—encourage the level set to

conform to the underlying image. Prior shape forces guide the objects toward specific

shapes or classes of shapes that are expected [10, 37, 25, 24].

In the context of multiple level sets, if we want to segment the image into N compartments

with no overlaps or vacuums, we must preserve the mutual boundary between objects. In

3D, neighboring objects can be connected by a surface, a curve, or a point. We will consider

the simplifying condition that there can be only three objects connected by a line and four
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objects connected by a point, a condition that is usually satisfactory in the segmentation of

anatomy.

Let us consider the most general case of four objects Oi, Oj, Ok, and Ol. Suppose the

distance from a region Oj to a point x where L(x) ≠ j is the smallest distance of all the points

in Oj to x. At every point x, we define the label functions L, F, S and T as

(2)

where Oj being the first closest neighbor to x means that of all the regions except OL(x), the

distance from Oj to x is smaller than any other regions. Similarly, the second/third closest

neighbor means this distance is the second/third smallest. Using these labels, we introduce

three distance-derived functions ϕL, ϕF, and ϕS as

(3)

where φij and φijk are the signed distance functions for Oi ∪ Oj and Oi ∪ Oj ∪ Ok,

respectively. These functions have a geometric meaning, corresponding to a decomposition

of the distance functions inside the objects (ϕL) and at the boundary between two (ϕF ) and

three (ϕS) objects. The decomposition into L, F, S and T is illustrated in Fig. 2 on a 2D slice

of the upsampled thalamus computed in 3D, as well as the corresponding ϕL, ϕF and ϕS in

the right column. Notice that the color schemes for L, F, S and T in the figures correspond to

the underlying objects, i.e., F in one color is the first neighbor of the region in the same

color in L, while S is the second neighbor of that same-colored region of L.

Using this decomposition, one can reconstruct some parts of the the underlying signed

distance function of object Oi as follows:

(4)

Although the reconstruction is not known everywhere, it is sufficient for surface evolution

when using a narrow band [19] technique. We will approximate the level set function in the

unknown regions as −ϕL(x) − ϕF (x) − ϕS(x), so that:

(5)
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Actually although not the exact signed distance function, Eq. 5 is a level set function of Oi,

satisfying Lipschitz continuity, and positive inside the region while negative outside.

2.2. Evolution

Given the compact decomposition of the level set functions into ϕL, ϕF and ϕS, the evolution

of any individual level set function φi according to the overall forces fi applied on Oi can be

recast as the evolution of ϕL, ϕF and ϕS and the labels L, F and S1.

The evolution of the labels depend on the change of sign in the corresponding functions.

Suppose for voxel x, L(x) = i, F (x) = j and S(x) = k. By definition, we require ϕL > 0, so

whenever ϕL < 0 at voxel x, L(x) must be changed to another label. The only valid candidate

is the first neighbor ĵ, assuming Oĵ is the first closest neighbor to x in the current

segmentation, whose identity may change during the evolution of ϕF. The evolution of the

boundary between i and ĵ depends on which region has a stronger expanding force, so the

evolution of ϕL is

(6)

During the evolution, it is necessary to make sure that the first neighbor is the nearest

neighbor, as the configuration of neighbors changes along with changes in L. Frequent

reinitialization can ensure a correct configuration, but this is time consuming and inelegant.

Instead, we can evolve ϕF and ϕS so that all the labels remain consistent. At any time, the

competition to be the updated first closest neighbor is between the original first closest

neighbor j, and the second closest neighbor k̂. In other words, if ϕF < 0, then the first and

second closest neighbors must switch. The evolution of ϕF is similar to the evolution of ϕL:

(7)

But where does k̂ come from? All the regions neighboring i, except j and k, are competing

with k to be the second neighbor k̂. Of all the candidates, the one that possesses the strongest

expanding force on x is the best candidate for the second closest neighbor. Accordingly, the

evolution of ϕS is

(8)

Like L and F, the second closest neighbor at x must change from k to arg maxl≠i,j,k fl when

ϕS < 0.

Note that this evolution method is dependent on the dimensionality of the image. In 2D, only

L and F are necessary as there is no non-singular boundary with more than three objects. To

generalize the framework in even higher dimensions, we would need to add a third neighbor,

fourth neighbor, and so on.

1Since the approximation of the recovery is used by Eq. 5, it is unnecessary to keep track of T.
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Note that our approach derives everything in the level set framework; therefore, efficient

schemes from the level set literature can be readily used. In the following experiments, the

fast marching method [19] is used for initialization, while the narrow band algorithm is used

for fast evolution.

For medical applications, we are usually interested in applying topological constraints that

are known a priori, as the objects to segment follow standard anatomy. Topology constraints

can be incorporated seamlessly in our framework by modifying slightly the evolution of ϕL:

when ϕL would change from positive to negative, and if the topology constraints for the new

segmentation given by L are not respected, then the label is left unchanged and the function

is reset to a small value ε > 0. To preserve the topology of groups of objects, we must use

the digital homeomorphism constraint (DHC) of [29] as it guarantees to preserve the

topology of both the objects and their relationships.

In summary, ∀x in which L(x) = i, F (x) = j and S(x) = k, the multi-compartment geometric

deformable model (MGDM) algorithm is:

1. find l̂ = arg maxl≠i,j,k fl, with Ol neighbor of Oi,

2. compute , if , change S(x) from k to l̂. The updated second

closest neighbor is k̂.

3. Compute . If , change F (x) from j to k̂ and S(x) from k̂ to j.

The updated first closest neighbor is ĵ.

4.
Compute , if  the DHC allows, change the label L(x) from i

to ĵ and first neighbor F (x) from ĵ to i, otherwise set ϕL = ε.

Compared with the N level sets approach, our method is significantly more efficient, with a

fast marching initialization in  and a narrow band evolution in O(εn2) time, where

n is the number of grid points along one dimension and ε the narrow band width (see [38]).

3. Experiments

3.1. Whole Brain Segmentation

We applied this framework to the segmentation of the whole brain into ten separate

structures: cerebral and cerebellar gray and white matter, sulcal cerebro-spinal fluid (CSF),

ventricles, caudate, putamen, thalamus, and brain stem. We first used an atlas-based

classification algorithm to get membership functions for each object and a (voxel-accurate)

segmentation with the desired topology [28]. MGDM is then used to smooth the boundaries

and yield sub-voxel accuracy, in analogous fashion to that of [20]. The memberships are

used in a balloon image-guiding force, and the boundary is regularized by a curvature

smoothing force, as follows

(9)

in which Fi is the membership function of region Oi, κ is the curvature, and fi the force

acting on region Oi. It takes 45 minutes in 120 iterations on the data set of size 256 * 256 *

205 for the algorithm to converge. In Figs. 3 and 4, we compare four segmentation results,

first using only the balloon forces or the balloon and curvature forces and no topology

constraint, then adding a single object topology constraint as in [40] and finally using the

homeomorphic constraint of [29].
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It is apparent that without any topological constraint, the segmentation connects the

cerebrum and cerebellum together, while the CSF is supposed to separate them. Even with

topological constraints on each separate object, including the CSF, this connection is still

possible because the CSF sheet can move in 3D at the interface. As expected, the smoothing

“cleans up” the smaller regions and produces a much smoother boundary (see Fig. 3). To

better analyze the result in 3D and to see the relationships between objects, we visualized

three objects—ventricle in red, caudate in green, and thalamus in blue—in Fig. 4. 3D

visualization provides us a clear view of the little spots disconnected from the whole tissue

when no topological constraint is applied. The single-object topological constraint results in

the thalamus and caudate being connected, while the homeomorphic constraint guarantees

the relationship between objects is the same throughout the evolution, comparing the

enlarged pictures of the black box in Fig. 4. The Euler number has been checked, and they

remain the same during the evolution.

3.2. Thalamic Nuclei Parcellation

The second experiment focuses on thalamic nuclei parcellation using diffusion tensor MRI

(DT-MRI). Because of the added information derived from the diffusion tensors, it is

possible to differentiate the nuclei that are otherwise indistinguishable in structural images.

This application is challenging due to the large number of small regions that must be

simultaneously segmented (13 in each hemisphere), and the complex topological

relationships between them. Previous works obtained promising results with K-means

clustering modeling the diffusion in the cluster distance metric [12], using a normalized cuts

spectral clustering approach [41], or introducing a region force driven by diffusion tensors

belonging to the region in a level set framework [21]. All these methods are based on the

hypothesis that the fiber orientations are homogeneous inside each nucleus but differ

between different nuclei. No previous approach addressed the issue of topology

preservation.

In this experiment, we start with a whole brain segmentation (see [28]) using a standard MP-

RAGE image of the brain [Fig. 5(a)], yielding (among other things) a membership function

corresponding to the thalamus [Fig. 5(b)]. Diffusion tensors of a co-registered DT-MRI

image are then estimated and the primary eigenvector (PEV) and fractional anisotropy (FA)

are computed from the diffusion tensors [Figs. 5(c) and (d)].

To parcellate the thalamus according to the directional homogeneity inside each nucleus, we

designed a force in the fashion of the Chan-Vese model [35] (very similar to that of [21]).

Because MGDM compares the forces from neighboring regions, however, only the diffusion

tensor forces of the current nucleus are needed to evolve ϕL, ϕF, ϕS, as follows

(10)

where v is the principal orientation for the current voxel, Vi is the mean principal orientation

from region i, and fi(x) is the force at voxel x from region i.

The diffusion tensors change smoothly when leaving the thalamus toward the neighboring

white matter, so a balloon force from the membership function of the segmented thalamus is

needed to maintain the outer boundary of the thalamus. At the same time, the DTI-based

force of Eq. (10) is used to parcellate the nuclei inside the thalamus. Thus, the forces used at

the boundary of each nucleus depend on whether the neighboring region is a nucleus or the

extra-thalamic region. An initial topologically correct parcellation was taken from the ICBM

atlas [1] [Fig. 5(e)] and aligned to the underlying thalamus.
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The resulting segmentation is shown in Fig. 5(f). Comparing the Figs. 5(b), (e), and (f), one

can see that the final thalamus shape is correct and its final regions correspond well to the

orientations that one sees in the PEV’s. The algorithm takes only several minutes for a

256*256*173 data set by cropping out and dealing with the thalamus of size 61*54*48. A

3D view of the 26 nuclei is given in Fig. 6. As long as the topological relationship between

nuclei is correct in the initialization, it will not change during the evolution because of the

homeomorphic constraint.

4. Conclusion

We presented a novel multiple object segmentation framework utilizing level sets that is

well suited to 3D medical images. The compact representation is computationally efficient,

guarantees there is no overlap or vacuum among objects, and allows us to preserve the

global topology of the segmentation at all times. Any existing force in the level set literature

can be incorporated in our MGDM algorithm, and different forces can be applied to different

parts of each object. Applications to whole brain segmentation and thalamic parcellation

illustrate the capacity of MGDM to include different forces, with or without topological

constraint on one or multiple objects. The thalamus experiment further demonstrates how

the framework can successfully handle many interacting objects, and how the need for

different forces on different parts of an object arises quite naturally in the design of a

segmentation method.
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Figure 1.

Illustration of the homeomorphic constraint: if there is no constraint on the topology of

groups of objects, then the organs can slide freely and exchange place during evolution,

though each one may keep its own topology.
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Figure 2.

Illustration of L, F, and S in the decomposition of an object: (a) L, (b) ϕL, (c) F, (d) ϕF, (e) S,

(f) ϕS, (g) T.
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Figure 3.

Whole brain segmentation: (a) source image, (b) original segmentation result, and MGDM

result with (c) no smoothing or topology constraint, (d) smoothing and no topology

constraint, (e) smoothing and single object topology constraint, and (f) smoothing and

homeomorphic constraint.
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Figure 4.

3D visualization of whole brain segmentation results for ventricles (red), caudate (green)

and thalamus (blue): a) with no topology constraint, no smoothing, b) with smoothing, but

no topology constraint, c) with smoothing and single object topology constraint, d) with

smoothing and homeomorphic constraint.
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Figure 5.

Thalamic nuclei parcellation: (a) mprage image coregistered with FA, (b) membership

function for the thalamus, (c) FA image with a principal eigenvector color map, (d) principal

orientation with only the thalamus left, (e) initialization with 26 regions, (f) final

parcellation result.

Fan et al. Page 14

Conf Comput Vis Pattern Recognit Workshops. Author manuscript; available in PMC 2011 November 30.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Figure 6.

3D rendering of the thalamic nuclei parcellation result: (a) front view, (b) back view, (c) off

left view, (d) off diagonal view.
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