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Extreme learning machine (ELM) is a rapid learning algorithm of the single-hidden-layer feedforward neural network, which
randomly initializes the weights between the input layer and the hidden layer and the bias of hidden layer neurons and 	nally uses
the least-squares method to calculate the weights between the hidden layer and the output layer. �is paper proposes a multiple
hidden layers ELM (MELM for short) which inherits the characteristics of parameters of the 	rst hidden layer. �e parameters
of the remaining hidden layers are obtained by introducing a method (make the actual output zero error approach the expected
hidden layer output). Based on the MELM algorithm, many experiments on regression and classi	cation show that the MELM can
achieve the satisfactory results based on average precision and good generalization performance compared to the two-hidden-layer
ELM (TELM), the ELM, and some other multilayer ELM.

1. Introduction

At present, arti	cial neural network has been widely applied
in many research 	elds, such as pattern recognition, signal
processing, and short-term prediction. Among them, the
single-hidden-layer feedforward neural network (SLFN) is
the most widely used type of the arti	cial neural network [1,
2]. Because the parameters of traditional feedforward neural
network are usually determined by gradient-based error
backpropagation algorithms, the network bears the time-
expensive training and testing process and easily falls into the
local optimum. Now, many algorithms have been proposed
to improve the SLFN operation rate and precision such as the
backpropagation algorithm (BP) and its improved algorithms
[3, 4]. With limitations of BP algorithms, generalization
ability of networks is unsatisfactory and the over learning
easily occurs. In 1989, Lowe proposed theRBFneural network
[5] which indicated that the parameters of the SLFNs can
also be randomly selected in his articles. In 1992, Pao Y. H.
et al. proposed the theory of the random vector functional
link network (RVFL) [6, 7], and they presented that only one

parameter of the output weights should be calculated during
the training process.

In 2004, Huang G. B. proposed the extreme learning
machine (ELM) reducing the training time of network and
improving the generalization performance [8–10]. Tradi-
tional neural network learning algorithms (such as BP) need
to randomly set all the training parameters and use iterative
algorithm to update the parameters. Also it is easy to generate
local optimal solution. But ELM only needs to randomly
set the weights and bias of the hidden neurons, and the
output weights are determined by using the Moore-Penrose
pseudoinverse under the criterion of least-squares method.
In recent years, various ELM variants have been proposed
aiming to achieve better achievements, such as the deep ELM
with kernel based on Multilayer Extreme Learning Machine
(DELM) algorithm [11]; two-hidden-layer extreme learning
machine (TELM) [12]; a Four-Layered Feedforward Neural
Network [13]; online sequential extreme learning machine
[14, 15]; multiple kernel extreme learning machine (MK-
ELM) [16]; two-stage extreme learning machine [17], using
noise detection and improving the classi	er accuracy [18, 19].
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First, consider the DELM with kernel based on ELM-AE
algorithm (DELM) presented in [11], which quotes the ELM
autoencoder (ELM-AE) [20–22] as the learning algorithm in
each layer. �e DELM also has multilayer network structure
divided into two parts: the 	rst part uses the ELM-AE
to deep learn the original data aiming at obtaining the
most representative new data; the second part calculates the
network parameters by using the Kernel ELM algorithmwith
a three-layer structure (the output of the 	rst part, hidden
layer, and output layer). But for theMELMwedo not need the
data processing (such as extract the representative data from
the original data) but make the actual output of the hidden
layers more closer to the expected output of the hidden layers
by calculating step by step in the multiple hidden layers.

Next, a two-hidden-layer feedforward network (TLFN)
was proposed by Huang in 2003 [23]. �is article demon-
strates that the TLFNs could learn arbitrary � training
samples with a very small training error by employing

2√(� + 3)� hidden neurons [24]. But the changing process
of the TLFNs structure is very complicated. First the TLFN
has a three-layer network with � output neurons, then adds2� neurons (two parts) to the hidden layer aiming at making
the original output layer transform into the second hidden
layer with � hidden neurons, and 	nally adds a output layer
to the structure. Eventually the 	nal network structure has
one input layer, two hidden layers, and one output layer. But
the MELM has a relatively simple stable network structure
and the simple calculation process, and the MELM is a time-
saving algorithm compared with TLFNs.

In the paper, we propose amultiple hidden layers extreme
learning machine algorithm (MELM) that the MELM adds
some hidden layers to the original ELM network structure,
randomly initializes the weights between the input layer and
the 	rst hidden layer as well as the bias of the 	rst hidden
layer, utilizes the method (make the actual each hidden layer
output approach the expected each hidden layer output) to
calculate the parameters of the hidden layers (except the 	rst
hidden layer), and 	nally uses the least square method to
calculate the output weights of the network. In the following
chapters, we have carried out many experiments with the
ideas proposed. �e MELM experimental results on regres-
sion problems and some popular classi	cation problems have
shown satisfactory advantages in terms of average accuracy
compared to other ELM variants. Our experiments also study
the e�ect of di�erent numbers of the hidden layer neurons,
the compatible activation function, and the di�erent numbers
of the hidden layers on the same problems.

�e rest of this paper is organized as follows. Section 2
reviews the original ELM; Section 3 presents the method
and framework structure of two-hidden-layer ELM; Section 4
presents the proposed the MELM technique: multihidden-
layer ELM; Section 5 reports and analyzes experimental
results; Section 6 presents the conclusions.

2. Extreme Learning Machine

�e extreme learning machine (ELM) proposed by Huang
G.B. aims at avoiding time-costing iterative training process
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Figure 1: �e structure of the ELM.

and improving the generalization performance [8–10, 25]. As
a single-hidden-layer feedforward neural networks (SLFNs),
the ELM structure includes input layer, hidden layer, and
output layer. Di�erent from the traditional neural network
learning algorithms (such as BP algorithm) randomly setting
all the network training parameters and easily generating
local optimal solution, the ELM only sets the number of
hidden neurons of the network, randomizes the weights
between the input layer and the hidden layer aswell as the bias
of the hidden neurons in the algorithm execution process,
calculates the hidden layer output matrix, and 	nally obtains
the weight between the hidden layer and the output layer by
using the Moore-Penrose pseudoinverse under the criterion
of least-squares method. Because the ELM has the simple
network structure and the concise parameters computation
processes, so the ELM has the advantages of fast learning
speed.�e original structure of ELM is expressed in Figure 1.

Figure 1 is the extreme learning machine network struc-
ture which includes � input layer neurons, � hidden layer
neurons, and � output layer neurons. First, consider the
training sample {�,Y} = {	�, 
�} (� = 1, 2, . . . ,Q), and there is
an input feature � = [	�1 	�2 ⋅ ⋅ ⋅ 	��] and a desired matrix

� = [
�1 
�2 ⋅ ⋅ ⋅ 
��] comprised of the training samples,
where the matrix � and the matrix � can be expressed as
follows:

� =
[[[[[[[
[

	11 	12 ⋅ ⋅ ⋅ 	1�
	21 	22 ⋅ ⋅ ⋅ 	2�
... ... d

...
	�1 	�2 ⋅ ⋅ ⋅ 	��

]]]]]]]
]

,

� =
[[[[[[[
[


11 
12 ⋅ ⋅ ⋅ 
��

21 
22 ⋅ ⋅ ⋅ 
��
... ... d

...

�1 
�2 ⋅ ⋅ ⋅ 
��

]]]]]]]
]

,

(1)
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where the parameters � and � are the dimension of input
matrix and output matrix.

�en the ELM randomly sets the weights between the
input layer and the hidden layer:

� =
[[[[[[[
[

�11 �12 ⋅ ⋅ ⋅ �1�
�21 �22 ⋅ ⋅ ⋅ �2�
... ... d

...
��1 ��2 ⋅ ⋅ ⋅ ���

]]]]]]]
]

, (2)

where ��� represents the weights between the �th input layer
neuron and �th hidden layer neuron.

�ird, the ELM assumes the weights between the hidden
layer and the output layer that can be expressed as follows:

� =
[[[[[[
[

�11 �12 ⋅ ⋅ ⋅ �1�
�21 �22 ⋅ ⋅ ⋅ �2�
... ... d

...
��1 ��2 ⋅ ⋅ ⋅ ���

]]]]]]
]
, (3)

where ��� represents the weights between the �th hidden
layer neuron and �th output layer neuron.

Fourth, the ELM randomly sets the bias of the hidden
layer neurons:

� = [�1 �2 ⋅ ⋅ ⋅ ��]	 . (4)

Fi�h, the ELM chooses the network activation function �(	).
According to Figure 1, the output matrix � can be expressed
as follows:

� = [�1, �2, . . . , ��]�×� . (5)

Each column vector of the output matrix � is as follows:

�� =
[[[[[[[
[

�1�
�2�
...

���

]]]]]]]
]

=

[[[[[[[[[[[[[[
[

�∑
�=1

��1� (��	� + ��)
�∑
�=1

��2� (��	� + ��)
...

�∑
�=1

���� (��	� + ��)

]]]]]]]]]]]]]]
]
(� = 1, 2, 3, . . . , #) .

(6)

Sixth, consider formulae (5) and (6), and we can get

%� = �
, (7)

where �
 is the transpose of � and % is the output of the
hidden layer. In order to obtain the unique solution with
minimum-error, we use least square method to calculate the
weight matrix values of � [8, 9].

� = %+�
. (8)
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Figure 2: �e work�ow of the TELM.

To improve the generalization ability of network and
make the results more stable, we add a regularization term
to the � [26]. When the number of hidden layer neurons is
less than the number of training samples, � can be expressed
as

� = ( '
* + %	%)−1%	�
. (9)

When the number of hidden layer nodes is more than the
number of training samples, � can be expressed as

� = %	 ( '
* + %%	)−1 �
. (10)

3. Two-Hidden-Layer ELM

In 2016, B. Y. Qu and B. F. Lang proposed the two-hidden-
layer extreme learning machine (TELM) in [11]. �e TELM
tries to make the actual hidden layers output approach
expected hidden layer outputs by adding parameter setting
step for the second hidden layer. Finally, the TELM 	nds a
better way to map the relationship between input and output
signals, which is the two-hidden-layer ELM. �e network
structure of TELM includes one input layer, two hidden
layers, one output layer, and each hidden layer with � hidden
neurons. �e activation function of the network is selected
for �(	).

�e focus of the TELM algorithm is the process of
calculating and updating the weights between the 	rst hidden
layer and the second hidden layer as well as the bias of the
hidden layer and the output weights between the second
hidden layer and the output layer.�e work�ow of the TELM
architecture is depicted in Figure 2.

Consider the training sample datasets {�,T} ={	�, ��} (� = 1, 2, 3, . . . , #), where the matrix � is input
samples and � is the labeled samples.

�e TELM 	rst puts the two hidden layers as one hidden
layer, so the output of the hidden layer can be expressed as% = �(/� + �) with the parameters of the weight / and
bias � of the 	rst hidden layer randomly initialized. Next, the
output weight matrix � between the second hidden layer and
the output layer can be obtained by using

� = %+�. (11)

Now the TELM separates the two hidden layers merged
previously, so the network has two hidden layers. According
to the work�ow of Figure 2, the output of the second hidden
layer can be obtained as follows:

� (/1% + �1) = %1, (12)
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where/1 is theweightmatrixes between the 	rst hidden layer
and the second hidden layer,% is the outputmatrix of the 	rst
hidden layer, �1 is the bias of the second hidden layer, and%1
is the expected output of the second hidden layer.

However the expected output of the second hidden layer
can be obtained by calculating

%1 = ��+, (13)

where �+ is the generalized inverse of the matrix �.
Now the TELM de	nes the matrix /�� = [�1 /1],

so the parameters of the second hidden layer can be easily
obtained by using formula (12) and the inverse function of
the activation function.

/�� = �−1 (%1)%+� , (14)

where %+� is the generalized inverse of %� = [1 %]	, 1
denotes a one-column vector of size #, and its elements are
the scalar unit 1. �e notation �−1(	) indicates the inverse of
the activation function �(	).

With selecting the appropriate activation function �(	),
the TELM calculates (14), so the actual output of the second
hidden layer is updated as follows:

%2 = � (/��%�) . (15)

So the weights matrix � between the second hidden layer
and the output layer is updated as follows:

�new = %+2 �, (16)

where%+2 is the generalized inverse of%2, so the actual output
of the TELM network can be expressed as

0 (	) = %2�new. (17)

To sum up, the TELM algorithm process can be expressed as
follows.

Algorithm 1. (1) Assume the training sample dataset is{�, �} = {	�, ��} (� = 1, 2, 3, . . . , #), where the matrix � is
input samples and the matrix � is the labeled samples; each
hidden layer with � hidden neurons; the activation function�(	).(2) Randomly generate the weights / between the input
layer and the 	rst hidden layer and bias � of the 	rst hidden

neurons/
� = [� /] , �� = [1 �]	.(3) Calculate the equation% = �(/
���).(4) Obtain the weights between the second hidden layer
and output layer � = %+�.(5) Calculate the expected output of the second hidden
layer%1 = ��+.(6) According to formulae (12)–(14) and the algorithm
steps (4, 5), calculate the weights/1 between the 	rst hidden
layer and the second hidden layer and the bias �1 of the
second hidden neurons/�� = �−1(%1)%+� .(7) Obtain and update the actual output of the second
hidden layer%2 = �(/��%�).(8)Update the weights matrix � between the second
hidden layer and the output layer �new = %+2 �.(9)Calculate the output of the network 0(	) =�{[/��(/� + �) + �1]}�new.
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Figure 3: �e structure of the three-hidden-layer ELM.
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Figure 4: �e work�ow of the three-hidden-layer ELM.

4. Multihidden-Layer ELM

At present, some scholars have proposed many improve-
ments on ELM algorithm and structure and obtained some
achievements and advantages. Such advantages of neural
network motivate us to explore the better ideas behind the
ELM. Based on the above articles, we adjust the structure of
ELM neural network. �us we propose an algorithm named
multiple hidden layers extreme learning machine (MELM).
�e structure of the MELM (select the three-hidden-layer
ELM for example) is illustrated in Figure 3. �e work�ow of
the three-hidden-layer ELM is illustrated in Figure 4.

Here we take a three-hidden-layer ELM, for example, and
analyze the MELM algorithm below. First give the training
samples {�,T} = {	�, ��} (� = 1, 2, 3, . . . , #) and the three-
hidden-layer network structure (each of the three-hidden-
layer has � hidden neurons) with the activation function �(	).
�e structure of the three-hidden-layer ELM has input layer,
three hidden layers, and output layer. According to the theory
of the TELMalgorithm, nowwe put the three hidden layers as
two hidden layers (the 	rst hidden layer is still the 	rst hidden
layer, but put the second hidden layer and the third hidden
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layer together as one hidden layer), so that the structure of the
network is the same as the TELM network mentioned above.
So we can obtain the weights matrix �new between the second
hidden layer and the output layer. According to the number
of the actual samples, we can use formula (8) or formula (9) to
calculate the weights �, which can improve the generalization
ability of the network.

�en theMELMseparates the three hidden layersmerged
previously, so theMELMstructure has three hidden layers. So
the expected output of the third hidden layer can be expressed
as follows:

%3 = ��+
new

. (18)

�+
new

is generalized inverse of the weights matrix �new.
�ird the MELM de	nes the matrix /��1 = [�2 /2],

so the parameters of the third hidden layer can be easily
obtained by calculating formula (18) and the formula %3 =�(%2/2 + �2) = �(/��1%�1).

/��1 = �−1 (%3)%+�1, (19)

where%2 is the actual output of the second hidden layer,/2
is the weights between the second hidden layer and the third
hidden layer,�2 is the bias of the third hidden neurons,%+�1 is
the generational inverse of %�1 = [1 %2]	, 1 denotes a one-
column vector of size #, and its elements are the scalar unit
1. �e notation �−1(	) indicates the inverse of the activation
function �(	).

In order to test the performance of the proposed MELM
algorithm, we adopt di�erent activation functions for regres-
sion and classi	cation problems to experiment. Generally, we
adopt the logistic sigmoid function �(	) = 1/(1 + ;−�) . �e
actual output of the third hidden layer is calculated as follows:

%4 = � (W��1%�1) . (20)

Finally, the output weights matrix �new between the third
hidden layer and the output layer is calculated as follows:
when the number of hidden layer neurons is less than the
number of training samples, � can be expressed as follows:

�new = ( '
* + %	4%4)

−1%	4 �. (21)

When the number of hidden layer neurons is more than
the number of training samples,� can be expressed as follows:

�new = %	4 ( '
* + %4%	4 )

−1 �. (22)

�e actual output of the three-hidden-layer ELMnetwork can
be expressed as follows:

0 (	) = %4�new. (23)

To ensure that the actual 	nal hidden output more
approaches the expected hidden output during the training
process, the operation process is the optimization of the net-
work structure parameters starting from the second hidden
layer.

�e above is the parameter calculation process of three-
hidden-layer ELM network, but the purpose of this paper
is to calculate the parameter of the multiple hidden layers
ELM network and the 	nal output of the MELM network
structure. We can use cycle calculation theory to illustrate
the calculating process of theMELM.When the four-hidden-
layer ELM network occurs, we can recalculate formula (18)
to formula (22) in the calculation process of the network,
obtain and record the parameters of each hidden layer, and
	nally calculate the 	nal output of the MELM network. If the
number of hidden layers increased, the calculation process
can be recycled and executed in the sameway.�e calculation
process of MELM network can be described as follows.

Algorithm 2. (1) Assume the training sample dataset is{�, �} = {	�, ��} (� = 1, 2, 3, . . . , #), where the matrix � is
the input samples and the matrix � is the labeled samples.
Each hidden layer has � hidden neurons with the activation
function �(	).(2) Randomly initialize the weights/ between the input
layer and the 	rst hidden layer as well as the bias � of the 	rst

hidden neurons/
� = [� /] , �� = [1 �]	.(3) Calculate the equation% = �(/
���).(4) Calculate the weights between the hidden layers and

the output layer � = ('/* + %	%)−1%	� or � = %	('/* +
%%	)−1�.(5) Calculate the expected output of the second hidden
layer%1 = ��+.(6) According to formulae (12)–(14) and the algorithm
steps (4, 5), calculate the weights/1 between the 	rst hidden
layer and the second hidden layer and the bias �1 of the
second hidden neurons/�� = �−1(%1)%+� .(7) Obtain and update the actual output of the second
hidden layer%2 = �(/��%�).(8)Update the weights matrix � between the hidden layer

and the output layer �new = ('/* + %	2%2)−1%	2 � or �new =
%	2 ('/* + %2%	2 )−1�.(9) If the number of the hidden layer is three, we can
calculate the parameters by recycle executing the above
operation from step (5) to step (9). Now �new is expressed as

follows: �new = �, %� = [1 %2]	.(10) Calculate the output, 0(	) = %2�new.
If the number> of the hidden layer ismore than three, recycle
is executing step (5) to step (9) for (> − 1) times. All the %
matrix (%1, %2) must be normalized between the range of−0.9 and 0.9, when the max of the matrix is more than 1 and
the min of the matrix is less than −1.
5. Application

In order to verify the actual e�ect of the algorithm proposed
in this paper, we have done the following experiments which
are divided into three parts: regression problems, classi	-
cation problems, and the application of mineral selection
industry. All the experiments are conducted in the MATLAB
2010b computational environment running on a computer
with a 2.302GHZ in i3 CPU.
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Table 1: �e RMSE of the three function examples.

Algorithm Training RMSE Testing RMSE

01(	)
TELM 8.6233? − 9 1.0797? − 8
MELM (three-hidden-layer) 8.722? − 15 1.3055? − 14
MLELM 1.8428? − 6 1.5204? − 5

02(	)
TELM 0.2867 0.2775
MELM (three-hidden-layer) 0.0011 0.0019
MELM 0.1060 0.1098

03(	)
TELM 0.3528 0.6204
MELM (three-hidden-layer) 0.2110 0.4177
MLELM 0.5538 0.4591

5.1. Regression Problems. To test the performance of the

regression problems, several widely used functions are listed

below [27].Weuse these functions to generate a datasetwhich

includes random selection of su�cient training samples and

the remaining is used as a testing samples, and the activation

function is selected as the hyperbolic tangent function �(	) =(1 − ;−�)/(1 + ;−�).
(1) 01(	) = ∑��=1 	�.
(2) 02(	) = ∑�−1�=1 (100(	2� − 	�+1)2 + (	� − 1)2).
(3) 03(	) = −20;−0.2√∑��=1 �2� /� − ;∑��=1 cos(2���)/� + 20.
�e symbol A that is set as a positive integer represents

the dimensions of the function we are using. �e function

02(	) and 03(	) are the complex multimodal function.

Each function-experiment has 900 training samples and 100

testing samples. �e evaluation criterion of the experiments

is the average accuracy, namely, the root mean square error

(RMSE) in the regression problems. We 	rst need to conduct

some experiments to verify the average accuracy of the neural

network structure in di�erent number of hidden neurons

and hidden layers. �en we can observe the optimal neural

network structure with speci	c hidden layers number and

hidden neurons number compared with the results of the

TELM on regression problems.
In Table 1, we give the average RMSE of the above three

functions in the case of the two-hidden-layer structure, the
MLELM, and the three-hidden-layer structure (we do a series
of experiments, including the four-hidden-layer structure,
	ve-hidden-layer structure, and eight-hidden-layer struc-
ture. But the experiments proved that the three-hidden-
layer structure for the three functions 01(	), 02(	), 03(	) can
achieve the best results, so we only give the value of the RMSE
of the three-hidden-layer structure) in regression problems.
�e table includes the testing RMSE and the training RMSE
of the three algorithm structure. We can see that the MELM
(three-hidden-layer) has the better results.

Table 2: �e three datasets for the classi	cation.

Datasets Training samples Testing samples Attributes Class

Mice Protein 750 330 82 8

svmguide4 300 312 10 6

vowel 568 422 10 11

AutoUnix 380 120 101 4

Iris 100 50 4 3

5.2. Classi�cation Problems. To test the performance of the
MELM algorithm proposed on classi	cation datasets, so we
quote some datasets (such asMice Protein, svmguide4, vowel,
AutoUnix, and Iris) that are collected from the University of
California [28] and the LIBSVM website [29]. �e training
data and testing data of each experiment are randomly
selected from the original datasets. �is information of the
datasets introduced is given in Table 2.

�e classi	cation performance criteria of the problems
are the average classi	cation accuracy of the testing data. In
the Figure 5, the average testing classi	cation correct percent-
age for the ELM, TELM, MLELM, and MELM algorithm is
shown clearly by using (a) Mice Protein, (b) svmguide4, (c)
Vowel, (d) AutoUnix, and (e) Iris, and di�erent datasets (a,
b, c, d, and e) have an important e�ect on the classi	cation
accuracy for the three algorithms (ELM, TELM, MLELM,
and MELM). But from the changing trend of the average
testing correct percentage for the three algorithms with the
same datasets, we can see that the MELM algorithm can
select the optimal number of hidden layers for the network
structure to adapt to the speci	c datasets, aiming at obtaining
the better results. So the datasets of the Mice Protein and
the Forest type mapping use the three-hidden-layer ELM
algorithm to experiment and the datasets of the svmguide4
use the 	ve-hidden-layer ELM algorithm to experiment.

5.3. 	e Application of Ores Selection Industry. In this part,
we use the actual datasets to analyze and experiment with
the model we have established and test the performance of
the MELM algorithm. First, our datasets come from AnQian
Mining Group, namely, the mining area of Ya-ba-ling and
Xi-da-bei. And the samples we selected are the hematite
(50 samples), magnetite (90 samples), granite (57 samples),
phyllite (15 samples), and chlorite (32 samples). On the
precise classi	cation of the ores and the prediction of total
iron content of iron ores, people usually use the chemical
analysis method. But the analysis process of total iron content
is a complex process, a long process, and the color of the
solution sometimes without the signi	cantly change in the
end. Due to the extensive using of near infrared spectroscopy
for chemical composition analysis, we can infer the structure
of the unknown substance according to the position and
shape of peaks in the absorption spectra. So we can use the
theory to obtain the correct information of the ores with the
low in�uence of environment on data acquisition. HR1024
SVC spectrometer is used to test the spectral data of each
sample, and the total iron content of hematite and magnetite
is obtained from the chemical analysis center of Northeastern
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Figure 5: �e average testing classi	cation correct percentage for the ELM, TELM, and MELM using (a) Mice Protein, (b) svmguide4, (c)
Vowel, (d) AutoUnix, and (e) Iris.
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Figure 6: Average classi	cation accuracy of di�erent hidden layers.

University of China. Our experiments’ datasets are the near

infrared spectrum information of iron ores which are the

absorption rate of di�erent iron ores under the condition of

the near infrared spectrum. �e wavelength of near infrared

spectrum is 300 nm–2500 nm, so the datasets of the iron ores

we obtained have the very high dimensions (973 dimensions).

We use the theory of the principal component analysis to

reduce the dimensions of the datasets.
(A) Here we use the algorithm proposed in this paper to

classify the 	ve kinds of ores and compare with the results

of the ELM algorithm and TELM algorithm. �e activa-

tion function of the algorithm in classi	cation problems is

selected as the sigmoid function �(	) = 1/(1 + ;−�).
Figure 6 expresses the average classi	cation accuracy of

the ELM, TELM, MLELM, and MELM (three-hidden-layer
ELM) algorithm in di�erent hidden layers. A�er we conduct
a series of experiments with di�erent hidden layers of the
MELM structure, 	nally we select the three-hidden-layer
ELM structure which can obtain the optimal classi	cation
results in the MELM algorithm. Figure 6(a) is the average
training correct percentage and the MELM has the high
result compared with others in the same hidden neurons.
Figure 6(b) is the average testing correct percentage and the
MELM has the high result in the hidden neurons between 20
and 60. In the actual situation, we can reasonably choose the
number of each hidden neurons to model.

(B) Here we use the method proposed in this paper to
test the total iron content of the hematite and magnetite and
compare with the results of the ELM algorithm and TELM
algorithm. Here is the prediction of total iron content of
hematite and magnetite with the optimal hidden layers and
optimal hidden layer neurons. �e activation function of the

algorithm in regression problems is selected as the hyperbolic

tangent function �(	) = (1 − ;−�)/(1 + ;−�).
Figures 7 and 8, respectively, expresses the total iron

content of the hematite and magnetite by using the ELM,

TELM, MLELM, andMELM algorithm (the MELM includes

the eight-hidden-layer structure which is the optimal struc-
ture in Figure 7; the six-hidden-layer structure which is the

optimal structure in Figure 8). �e optimal results of each

algorithm are obtained by constantly experimenting with the

di�erent number of hidden layer neurons. In the prediction

process of the hematite, we can see that the MELM has the

better results and each hidden layer of this structure has 100

hidden neurons. In the prediction process of the magnetite,
we can see that the MELM has the better results and each

hidden layer of this structure has 20 hidden neurons. So

the MELM algorithm has strong performance to the ores
selection problems, which can achieve the best adaptability
to the problems by adjusting the number of hidden layers and
the number of hidden layer neurons to improve the ability of
system regression analysis.

6. Conclusion

�e MELM we proposed in this paper solves the two prob-
lems which exist in the training process of the original ELM.
�e 	rst is the stability of single network that the disadvan-
tage will also in�uence the generalization performance. �e
second is that the outputweights are calculated by the product
of the generalized inverse of hidden layer output and the
system actual output. And the parameters randomly selected
of hidden layer neurons which can lead to the singular
matrix or morbid matrix. At the same time, the MELM
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Figure 7: �e total iron content of the hematite.
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Figure 8: �e total iron content of the magnetite.

network structure also improves the average accuracy of

training and testing performance compared to the ELM and

TELM network structure. �e MELM algorithm inherits the

characteristics of traditional ELM that randomly initializes

the weights and bias (between the input layer and the 	rst

hidden layer), also adopts a part of the TELM algorithm, and

uses the inverse activation function to calculate the weights

and bias of hidden layers (except the 	rst hidden layer).

�en we make the actual hidden layer output approximate

to the expected hidden layer output and use the parameters

obtained above to calculate the actual output. In the function
regression problems, this algorithm reduces the least mean
square error. In the datasets classi	cation problems, the
average accuracy of themultiple classi	cations is signi	cantly
higher than that of the ELM and TELMnetwork structure. In
such cases, the MELM is able to improve the performance of
the network structure.
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