
A Multiple Hill Climbing Approach to Software Module Clustering

Kiarash Mahdavi
Mark Harman

Robert Mark Hierons
Department of Information Systems and Computing (DISC)

Brunel University

Uxbridge

Middlesex

UB8 3PH, UK

Kiarash.Mahdavi@brunel.ac.uk
Mark.Harman@brunel.ac.uk
Rob.Hierons@brunel.ac.uk

Keywords: Module clustering, Search based software engineering, Hill climbing.

Abstract

Automated software module clustering is important

for maintenance of legacy systems written in a ‘mono-

lithic format’ with inadequate module boundaries. Even

where systems were originally designed with suitable

module boundaries, structure tends to degrade as the sys-

tem evolves, making re-modularization worthwhile. This

paper focuses upon search-based approaches to the au-

tomated module clustering problem, where hitherto, the

local search approach of hill climbing has been found to

be most successful.

In the paper we show that results from a set of mul-

tiple hill climbs can be combined to locate good ‘build-

ing blocks’ for subsequent searches. Building blocks are

formed by identifying the common features in a selection

of best hill climbs. This process reduces the search space,

while simultaneously ‘hard wiring’ parts of the solution.

The paper reports the results of an empirical study

that show that the multiple hill climbing approach does

indeed guide the search to higher peaks in subsequent

executions. The paper also investigates the relationship

between the improved results and the system size.

1 Introduction

It is generally believed that good modularization of

software leads to systems that are easier to design, de-

velop, test, maintain and evolve [1]. Modularisation of

software (and the re-drawing of module boundaries) is

also of crucial importance in software maintenance and

evolution because it is well known that modular structure

tends to decay as systems age, inhibiting efficient further

maintenance and evolution.

The software module clustering problem consists of

automatically finding a good quality clustering of soft-

ware modules based on the relationships among the mod-

ules. These relationships typically take the form of de-

pendencies between modules. The approach adapted in

this paper for module clustering is to maximizes cohesion

within each cluster and to minimize coupling between

clusters. A clustering partitions the set of all modules

in the system. The set of modules in each partition of the

clustering is a cluster.

The problem of finding the best clustering for a given

set of modules is an NP hard search problem [8], mak-

ing it ideally suited to search-based software engineering

techniques.

Previous work, most notably by the Drexel group

[2, 6, 7, 8], has involved a hill climbing approach, which

has been shown to produce reasonable quality cluster-

ings. This work led to the development of the BUNCH
tool for software module clustering.

Several studies have shown that for module clustering

the results produced by hill climbing outperform standard

global search techniques such as simulated annealing and

genetic algorithms [2, 4, 9]. However, as is well known,

hill climbing suffers from the problem of premature con-

vergence to local optima and so it would be expected that

some improvement could be made by considering more

sophisticated search-based techniques.

In this paper we describe a multiple hill climbing ap-

proach. In this approach an initial set of hill climbs is

performed and from these, a set of best hill climbs is iden-

tified according to some ‘cut off’ threshold. Using these

1

Proceedings of the International Conference on Software Maintenance (ICSM’03)
1063-6773/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on June 8, 2009 at 10:43 from IEEE Xplore. Restrictions apply.

selected best hill climbs the common features of each so-

lution are identified. These common features form build-

ing blocks for a subsequent hill climb.

A building block contains one or more modules fixed

to be in a particular cluster, if and only if all the selected

initial hill climbs agree that these modules were to be lo-

cated within the same cluster. Since all the selected hill

climbs agree on these choices, it is likely (though not cer-

tain) that good solutions will also contain these choices,

hence the motivation for fixing them. In the nomenclature

of search-based techniques these fixed module choices

are ‘building blocks’ [10].

The implementation uses parallel computing tech-

niques to simultaneously execute an initial set of 23 hill

climbs. From these we experimented with various cut off

points ranging from selecting the best 10% of hill climbs

to the best 100% (effectively no cut off), in steps of 10%.

This allowed us to evaluate the effect on the results when

increasing and decreasing the selectivity.

The building blocks were fixed and a new set of 23 hill

climbs were performed using the reduced search space.

The principal research question is whether or not the

identification of building blocks improved the subsequent

search. We experimented with 19 programs, ranging

from small systems with about 20 modules to large ones

with over four hundred modules.

The results indicate that the subsequent search is nar-

rowed to focus on better solutions, that novel and bet-

ter clusterings are obtained and that the results tend to

improve when the selection cut off is higher. These ini-

tial results are encouraging because they suggest that the

multiple hill climbing technique is potentially a good way

of identifying building blocks. This result may open the

way for the successful application of more sophisticated

global search techniques, such as genetic algorithms, to

be applied in a hybrid approach which combines initial

hill climbing and subsequent genetic search, seeded with

the building blocks from the initial hill climbs. However

the extension of this work to consider hybrid genetic and

local search remains a problem for further study. The

principal contributions of this paper are in the provision

of empirical evidence that

• multiple hill climbs can be used to identify good

building blocks;

• subsequent hill climbs find new peaks using the

building blocks;

• selectivity appears to have a strong influence on the

quality of results.

The study also raised the question as to whether the

multiple hill climb technique would work better with

larger systems than with smaller ones. This seemed intu-

itive, since larger systems are likely to be more complex

and have more clustering choices, they would be likely to

have more peaks. More peaks, would entail more chances

to identify common features.

However, while we found that there was some corre-

lation between system size and various measures of the

improvement achieved with multiple hill climbing, none

of these correlations was statistically significant.

The remainder of this paper is as follows. The mul-

tiple hill climb algorithm is explained in Section 2 fol-

lowed by a description of how it was implemented in Sec-

tion 3. The experiment is explained in Section 4 with the

result and observations in Section 5. Sections 6 and 7

contain some conclusions drawn from the experimental

results and possible future work respectively.

2 Multiple hill climb algorithm

The overall algorithm consists of an initial set of hill

climbs, followed by the creation of building blocks which

are used in the final set of hill climbs. The following

explains these phases in more detail along with the fitness

metrics used for the hill climb section of the algorithm.

2.1 Multiple hill climb algorithm’s input

The algorithm uses Module Dependency Graphs

(MDG) to as input for the hill climbers. Each MDG con-

tains a list of from-to-weight information for the modules

within the system to be clustered. This information is

converted to a Vector of weighted connections between

nodes. The weight is set to one if the weight value of a

connection in the MDG is not specified.

2.2 Fitness metrics

The goal of module clustering is to arrive at a graph

partition in which each cluster maximizes the number

of internal edges and minimizes the number of external

edges. In software engineering terms, this corresponds to

maximal cohesion and minimal coupling [1].

In our approach, we use the ‘Basic MQ’ fitness func-

tion to capture this property as used by the Bunch team

[8]. Basic MQ essentially captures this ‘minimal cou-

pling/maximal cohesion’ metric. MQ is the sum of all

Modularization Factors (MF). Each MF is based on the

ratio of inner to outer edges within each module or group.

An inner edge is a weighted connection from one node to

another within the module. An outer edge is a weighted

connection between a node within the module and a node

outside of the module. This is demonstrated in the fol-

lowing.

i = 0 ⇒ MF = 0

2

Proceedings of the International Conference on Software Maintenance (ICSM’03)
1063-6773/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on June 8, 2009 at 10:43 from IEEE Xplore. Restrictions apply.

i > 0 ⇒ MF = i
i+ 1

2 j

Where i is the sum of inner edge weights

and j is the sum of outer edge weights.

The overall fitness MQ is calculated by:

MQ =
∑n

i=1 MFi

Where i is a cluster

and n is the total number of clusters.

2.3 Initial set of hill climbs

Initially each module is assigned to a single building

block. Since the MDG has N modules, there are can be

up to N possible initial clusters. The initial hill climbs

start by placing each building block at random in one of

the N clusters. They then evaluate the fitness of the clus-

tering resulting from this grouping by using MQ. Each

hill climber attempts a move to a nearest neighbor clus-

tering with a higher MQ at each stage of the algorithm.

The nearest neighbours from each clustering are formed

by moving a single building block from one module to

another module. As soon as a fitter neighbour (neighbour

with higher MQ) is found, the hill climber starts another

search for a fitter neighbour from the newly found Clus-

tering. The search ends when none of the nearest neigh-

bours from a clustering can yield a better MQ value. This

approach follows Mancoridis et al [6, 7].

2.4 Creating building blocks

Building blocks are the smallest units of change at

each stage of the hill climb. The introduction of larger

building blocks helps to reduce the search space for the

hill climb algorithm with the aim of improving the search.

The clusterings from the first stage of the process are

ranked by MQ and compared for similarity. The com-

parison identifies groups of nodes that are placed in the

same cluster across a selected section of the initial clus-

terings. These selections are made from a proportion of

the best hills climbed. The result is a set of building

blocks, constructed from the initial set of hills found in

the first phase.

2.5 Final set of hill climbs

Building blocks created from the initial set of hill

climb results are used as nodes for the final set of hill

climbs. The hill climb is identical to that used for the

initial hill climb in Section 2.3.

3 Multiple hill climb implementation

This section briefly describes the parallel processing

environment used and how the algorithm was imple-

mented across this architecture.

3.1 Multi processor environment

The algorithm was implemented in Java on a

Scalable Linux Systems (SCALI) at Brunel

University called GRIDS. GRIDS contains 23 process-

ing units (processing nodes) with a high speed processing

node interconnection, and is accessed through a Linux

Operating System interface.

3.2 Multi processor implementation

Each of the 23 processing nodes is set up as a server

which carries out hill climb requests. A selected process-

ing Node issues each server with a hill climb as necessary.

This processing node also collects the clusterings resulted

from the hill climbs carried out by the servers and iden-

tifies building blocks for further climbs. For simplicity

we chose to keep together any modules which are in the

same cluster across all the clusterings selected for simi-

larity measurement. So, for example, if the ‘cut off’ point

is 10%, then the modules are ‘glued’ together in the same

building block if they are in the same cluster for all of the

top 10% of hills found in the initial phase of hill climbs.

4 Experiment

The subject systems, information collected and the ex-

perimental procedure is described in this section.

4.1 Subjects

A variety of experimental subjects were used. Sys-

tems studied ranged in size from 20 modules to 413 mod-

ules. The MDGs representing the subjects were obtained

by software analysis courtesy of the Bunch group at

Drexel University. There are two types of MDG in this

experiment. The first MDG type contains non-weighted

edges while the second type contains weighted edges. Ta-

ble 1 contains the names and short descriptions of the

software used to create the MDGs and the number of

nodes and edges within each MDG.

In graphs without weighted edges, each connection

represents the existence of an unidirectional method or

a variable reference between two modules. The MDGs

containing specific values for weighted edges have the

weights calculated according to the number of these uni-

directional method and variable references between mod-

3

Proceedings of the International Conference on Software Maintenance (ICSM’03)
1063-6773/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on June 8, 2009 at 10:43 from IEEE Xplore. Restrictions apply.

ules. Larger edge weights indicate more dependency be-

tween modules and an increase in the likely hood that

they should be placed in the same cluster.

4.2 Procedure

Five experimental runs were carried out on each

MDG. Each experiment, as described in section 2, con-

sist of two stages. In the initial stage 23 initial hill climbs

were carried out, one on each of the 23 processing units.

The resultant clusterings were used to create the building

blocks for the final stage of the Process. Building blocks

were created based on the best 10% to 100% MQ values

for the initial clusterings (in steps of 10%). Second stage

is a final ten sets of hill climbs (for each top percentage

clusterings used for building blocks) on the 23 processing

units.

The first and second stage resultant clusterings along

with the MQ achieved from each processing unit were

collected. The MQ values achieved by the first and sec-

ond stage were then compared and analyzed for their

level of significant difference as well as other trends and

correlations.

5 Results and observations

This section contains a summery of the results from

the experiments and points to some of the trends and char-

acteristics observed within these results.

5.1 Results

Figure 1 displays the best results and Figure 2 displays

the worst results obtained by using the MDG’s that do not

have weighted edges. Figure 3 contains the best results

and Figure 4 displays the worst results from MDGs with

weighted edges.

These figures are represented as boxplots. The details

on the axis of the boxplots is too small to read. How-

ever, the collection of distribution illustrated by boxplots

gives an overall visual impression for the effects of the

approach on the results. The right most boxplot shows the

MQ values achieved by the initial hill climb. The other

box plots from right to left show the MQ values achieved

by using 100% to 10% of the initial climb results to create

building blocks.

The boxplots have the following structure: The

solid black, horizontal line represents the Median

(50thpercentile). The top area within the box represents

the upper quartile (75thpercentile) and the bottom area

the lower quartile (25thpercentile). Circles represent

outlier values, which are more than 1.5 box lengths above

or below the box. Stars show Extreme values which are

more than three box lengths above or below the box. Fi-

nally the horizontal thin lines above and below represent

largest and smallest MQ values that are not outliers or

extreme values.

In addition Wilcoxen signed ranked tests were used

to check for significant differences between initial hill

climbs and following hill climbs results (see Tables 2 and

3). It was also possible to use T-test to measure signifi-

cant difference. In this case however due to the presence

of outliers and the lack of evidence for normal distribu-

tion in some of the results the Wilcoxen test was used,

since this test assumes neither normality or homogeneity

of variance.

Table 4 contains the MQ increase from the best fit-

ness achieved in the initial stage compared to the best

fitness achieved at each final stage for weighted and non-

weighted MDGs. Table 5 contains the same information

as Table 4, represented as increased percentages to help

achieve a fairer comparison of results. The range of val-

ues in Table 4 is better demonstrated by Figures 5 and

6 for MDGs with no weighted edges and 9 and 10 for

MDGs with weighted edges, displayed against number

of edges and nodes respectively. Similarly Figures 7, 8,

11 and 12 represent the range of percentage increase in

MQ from Table 5.

5.2 Observations

The Wilcoxen signed ranked test provides some evi-

dence towards the premise that the improvement in MQ

values is less likely to be a random occurrence due to the

nature of the hill climb algorithm. In general lower val-

ues demonstrate a higher level of certainty of a significant

difference. For example 0.01% is statistically highly sig-

nificant. Significant improvement in all hill climbs using

building blocks at 10% and 20% is apparent (Tables 2, 3,

4 and 5). This improvement is observed for MDGs with

and without weighted edges and for all size MDGs.

Larger size MDGs show more substantial improve-

ment when the best initial fitness is compared with the

best final fitness values. This improvement is even more

apparent in very large MDGs such as the one for swing
(best and worst performance for swing in Figures 1 and

2) and nmh (best and worst performance for nmh in Fig-

ures 3 and 4). On the other hand, for small MDG’s of

20 to 30 nodes we observed less improvement in the final

runs. One possible explanation is the less complex solu-

tion landscape of smaller systems. The initial hill climbs

are more likely to find good peaks or sometimes the best

peaks in the landscape resulting in less likelihood of im-

provement in following runs of the hill climb. However

the reduction in variance helps the search to achieve con-

sistently better results (for example best and worst per-

formance for ispell shown in Figures 3 and 4). In ad-

4

Proceedings of the International Conference on Software Maintenance (ICSM’03)
1063-6773/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on June 8, 2009 at 10:43 from IEEE Xplore. Restrictions apply.

Name nodes edges Description
Not Weighted mtunis 20 57 An operating system for educational purposes written in the Turing language.

ispell 24 103 Software for spelling and typographical error correction in files.
rcs 29 163 Revision Control System used to manages multiple revisions of files.
bison 37 179 General-purpose parser generator for converting grammar descriptions into C programs.
grappa 86 295 Genome Rearrangements Analyzer under Parsimony and other Phylogenetic Algorithms.
bunch 116 365 Software Clustering tool(Essential java classes only).
incl 174 360 Graph drawing tool.
bunchall 324 1344 Software Clustering tool(bunch + all related Java classes).
swing 413 1513 Integration software for Lotus notes and Microsoft office.

Weighted exim 23 1255 Message transfer agent for use on Unix systems connected to the Internet.
bitchx 23 1653 Open source IRC client.
lynx 23 1745 Web browser for users on UNIX and VMS platforms.
icecast 60 650 Streaming media server based on the MP3 audio codec.
gnupg 88 601 Complete implementation of the OpenPGP Internet standard.
inn 90 624 Unix news group software.
xntp 111 729 Time synchronization tool.
mod ssl 135 1095 Apache SSL/TLS Interface.
ncurses 138 682 Software for Display and update of text on text-only terminals.
nmh 198 3262 Mail client software.

Table 1. MDG’s with and without weighted edges

Name nodes edges Significant difference with initial at %
100 90 80 70 60 50 40 30 20 10

Best mtunis 20 57 .412 .420 .626 .821 .961 .006 .005 .000 .000 .000
ispell 24 103 .033 .023 .168 .013 .003 .010 .009 .000 .000 .000
rcs 29 163 .033 .023 .168 .013 .003 .010 .009 .000 .000 .000
bison 37 179 .465 .346 .153 .627 .715 .107 .248 .006 .001 .000
grappa 86 295 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
bunch 116 365 .951 .784 .394 .563 .976 .394 .000 .000 .000 .000
incl 174 360 .378 .484 .903 .394 .605 .000 .000 .000 .000 .000
bunchall 324 1344 .007 .018 .007 .001 .000 .002 .000 .000 .000 .000
swing 413 1513 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

Worst mtunis 20 57 .370 .783 .140 .144 .144 .236 .079 .121 .000 .000
ispell 24 103 .068 .201 .091 .023 .362 .017 .224 .010 .002 .000
rcs 29 163 .171 .010 .013 .083 .004 .003 .073 .019 .009 .000
bison 37 179 .693 .927 .879 .394 .447 .808 .927 .018 .000 .000
grappa 86 295 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
bunch 116 365 .670 .007 .563 .201 .260 .584 .465 1.000 .000 .000
incl 174 360 .715 .181 .855 .114 .506 .301 .484 .784 .000 .000
bunchall 324 1344 .003 .003 .007 .001 .001 .001 .001 .001 .004 .000
swing 413 1513 .000 .000 .000 .000 .003 .000 .000 .000 .000 .000

Table 2. Wilcoxon signed ranked test results of significant difference against initial hill climb results for MDGs with no

weighted edges

Name nodes edges % of initial clustering used for building blocks
100 90 80 70 60 50 40 30 20 10

Best exim 23 1255 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
bitchx 23 1653 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
lynx 23 1745 .001 .011 .001 .000 .000 .000 .000 .000 .000 .000
icecast 60 650 .000 .000 .000 .001 .000 .000 .000 .000 .000 .000
gnupg 88 601 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
inn 90 624 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
xntp 111 729 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
mod ssl 135 1095 .287 .171 .024 .007 .412 .260 .000 .000 .000 .000
ncurses 138 682 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
nmh 198 3262 .879 .808 .201 .023 .083 .000 .000 .000 .000 .000

Worst exim 23 1255 .001 .000 .002 .002 .001 .004 .004 .005 .000 .000
bitchx 23 1653 .000 .000 .001 .000 .000 .000 .000 .000 .000 .000
lynx 23 1745 .026 .007 .002 .002 .004 .002 .001 .000 .000 .000
icecast 60 650 .001 .000 .000 .002 .000 .001 .000 .000 .000 .000
gnupg 88 601 .001 .000 .003 .001 .000 .002 .000 .000 .000 .000
inn 90 624 .000 .001 .002 .001 .001 .001 .001 .001 .001 .000
xntp 111 729 .000 .000 .000 .002 .001 .002 .000 .000 .000 .000
mod ssl 135 1095 .078 .083 .024 .002 .039 .012 .013 .029 .033 .000
ncurses 138 682 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
nmh 198 3262 .761 .976 .484 .465 .362 .670 .005 .003 .000 .000

Table 3. Wilcoxon signed ranked test results of significant difference against initial hill climb results for MDGs with weighted

edges

5

Proceedings of the International Conference on Software Maintenance (ICSM’03)
1063-6773/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on June 8, 2009 at 10:43 from IEEE Xplore. Restrictions apply.

Name 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Not Weighted mtunis 0.0279 0.0279 0.0279 0.0279 0.0279 0.0279 0.0279 0.0279 0.0279 0.0279

ispell 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0 0.0006 0.0006
rcs 0.0023 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0013 0.0033
bison 0.0256 0.0379 0.0236 0.0175 0.0379 0.0070 0.0072 0.0062 0.0010 0.0214
grappa 0.0453 0.1924 0.1729 0.1924 0.1924 0.1842 0.1924 0.1842 0.1842 0.1729
bunch 0.1803 0.2940 0.0688 0.2422 0.0627 0.3197 0.0405 0.0578 0.0371 0.2565
incl 0.1156 0.1468 0.1218 0.1186 0.1223 0.0629 0.1084 0.0568 0.1049 0.1218
bunchall 0.1035 0.0885 0.0781 0.1033 0.0930 0.0695 0.0693 0.1312 0.0766 0.0570
swing 1.1051 0.5117 0.5381 0.4811 0.5688 0.5787 0.7095 0.3641 0.7104 0.4653

Weighted exim 0.0825 0.1235 0.1056 0.1189 0.1124 0.1148 0.1079 0.1041 0.0725 0.1099
bitchx 0.0668 0.0668 0.0548 0.0550 0.0538 0.0615 0.0562 0.0489 0.0470 0.0500
lynx 0.0241 0.0315 0.0316 0.0282 0.0466 0.0409 0.0312 0.0219 0.0363 0.0207
icecast 0.0092 0.0177 0.0177 0.0176 0.0176 0.0177 0.0155 0.0176 0.0176 0.0155
gnupg 0.0611 0.0744 0.0672 0.0824 0.0733 0.0596 0.0744 0.0676 0.0686 0.0733
inn 0.3066 0.3049 0.2754 0.5772 0.7500 0.3049 0.7397 0.4193 0.3137 0.5544
xntp 0.0630 0.0630 0.0564 0.0523 0.0617 0.0557 0.0612 0.0600 0.0483 0.0575
mod ssl 0.3140 0.3300 0.3179 0.3256 0.1211 0.0713 0.1558 0.2076 0.1361 0.1910
ncurses 0.2068 0.2371 0.2270 0.2292 0.2202 0.2112 0.2218 0.2324 0.2444 0.2271
nmh 0.0997 0.1838 0.1216 0.1270 0.0997 0.1018 0.1132 0.1273 0.1249 0.0910

Table 4. Increase in fitness from the best final stage’s MQ value compared to best initial stage’s MQ value.

Name 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Not Weighted mtunis 0.0122 0.0122 0.0122 0.0122 0.0122 0.0122 0.0122 0.0122 0.0122 0.0122

ispell 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0 0.0002 0.0002
rcs 0.0010 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0006 0.0014
bison 0.0095 0.0142 0.0088 0.0065 0.0142 0.0026 0.0027 0.0023 0.0003 0.0080
grappa 0.0035 0.0153 0.0138 0.0153 0.0153 0.0147 0.0153 0.0147 0.0147 0.0138
bunch 0.0138 0.0228 0.0053 0.0188 0.0048 0.0248 0.0030 0.0045 0.0028 0.0199
incl 0.0088 0.0111 0.0092 0.0090 0.0093 0.0047 0.0082 0.0043 0.0079 0.0092
bunchall 0.0061 0.0052 0.0046 0.0061 0.0055 0.0041 0.0041 0.0078 0.0045 0.0033
swing 0.0252 0.0117 0.0122 0.0109 0.0130 0.0132 0.0162 0.0083 0.0162 0.0106

Weighted exim 0.0127 0.0190 0.0162 0.0183 0.0172 0.0176 0.0166 0.0160 0.0111 0.0169
bitchx 0.0154 0.0154 0.0127 0.0127 0.0124 0.0142 0.0130 0.0113 0.0108 0.0115
lynx 0.0048 0.0063 0.0064 0.0057 0.0094 0.0082 0.0063 0.0044 0.0073 0.0041
icecast 0.0033 0.0065 0.0065 0.0064 0.0064 0.0065 0.0056 0.0064 0.0064 0.0056
gnupg 0.0086 0.0105 0.0095 0.0116 0.0103 0.0084 0.0105 0.0095 0.0096 0.0103
inn 0.0442 0.0424 0.0383 0.0835 0.1086 0.0424 0.1071 0.0607 0.0436 0.0802
xntp 0.0076 0.0076 0.0068 0.0063 0.0074 0.0067 0.0073 0.0072 0.0058 0.0069
mod ssl 0.0324 0.0341 0.0329 0.0336 0.0125 0.0073 0.0162 0.0216 0.0141 0.0198
ncurses 0.0178 0.0204 0.0196 0.0197 0.0190 0.0181 0.0191 0.0200 0.0211 0.0196
nmh 0.0107 0.0199 0.0132 0.0138 0.0107 0.0110 0.0122 0.0138 0.0135 0.0098

Table 5. Percentage increase in the best final stage MQ fitness compared to best initial stage fitness value.

2323232323232323232323N =

INITIALPC100PC90PC80PC70PC60PC50PC40PC30PC20PC10

2.8

2.7

2.6

2.5

2.4

2.3

17

bison

2323232323232323232323N =

INITIALPC100PC90PC80PC70PC60PC50PC40PC30PC20PC10

4.5

4.4

4.3

4.2

4.1

4.0

3.9

3.8

7

52

219
10

4
7

21

21

bitchx

2323232323232323232323N =

INITIALPC100PC90PC80PC70PC60PC50PC40PC30PC20PC10

17.0

16.9

16.8

16.7

16.6

16.5

16.4

16.3

16.2

22

22822

18

22

4

23
15

9

6
2112

bunchall

2323232323232323232323N =

INITIALPC100PC90PC80PC70PC60PC50PC40PC30PC20PC10

13.4

13.2

13.0

12.8

12.6

12.4

12.2

12.0

1
19

196

115

19

19

612

8

19

6

bunch

2323232323232323232323N =

INITIALPC100PC90PC80PC70PC60PC50PC40PC30PC20PC10

6.7

6.6

6.5

6.4

6.3

6.2

6.1

6.0

23

21
7

193213

exim

2323232323232323232323N =

INITIALPC100PC90PC80PC70PC60PC50PC40PC30PC20PC10

7.2

7.1

7.0

6.9

6.8

6.7

6.6

6.5

2

20

gnupg

2323232323232323232323N =

INITIALPC100PC90PC80PC70PC60PC50PC40PC30PC20PC10

12.8

12.6

12.4

12.2

12.0

11.8

11.6

11.4

11.2

grappa

2323232323232323232323N =

INITIALPC100PC90PC80PC70PC60PC50PC40PC30PC20PC10

2.8

2.7

2.6

2.5

2.4

2.3

18

16

1

18

2214

icecast

2323232323232323232323N =

INITIALPC100PC90PC80PC70PC60PC50PC40PC30PC20PC10

2.4

2.3

2.2

2.1

ispell

2323232323232323232323N =

INITIALPC100PC90PC80PC70PC60PC50PC40PC30PC20PC10

5.1

5.0

4.9

4.8

4.7

4.6

4.5

4.4

17

22613
11

22
16

5
7

lynx

Figure 1. Best results obtained by using MDGs without weighted edges.

6

Proceedings of the International Conference on Software Maintenance (ICSM’03)
1063-6773/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on June 8, 2009 at 10:43 from IEEE Xplore. Restrictions apply.

2323232323232323232323N =

INITIALPC100PC90PC80PC70PC60PC50PC40PC30PC20PC10

2.8

2.7

2.6

2.5

2.4

22
17

2

21

18

18

141517

bison

2323232323232323232323N =

INITIALPC100PC90PC80PC70PC60PC50PC40PC30PC20PC10

4.5

4.4

4.3

4.2

4.1

4.0

3.9

1512
1

6519

418238

1922

bitchx

2323232323232323232323N =

INITIALPC100PC90PC80PC70PC60PC50PC40PC30PC20PC10

17.0

16.8

16.6

16.4

16.2

16.0

5

10

7

5

3

2

16

4

bunchall

2323232323232323232323N =

INITIALPC100PC90PC80PC70PC60PC50PC40PC30PC20PC10

13.4

13.2

13.0

12.8

12.6

12.4

12.2

12.0

11.8

2

2146

13

16

11

4
20
19

4

19

21

22

4

3

21

10

19

bunch

2323232323232323232323N =

INITIALPC100PC90PC80PC70PC60PC50PC40PC30PC20PC10

6.7

6.6

6.5

6.4

6.3

6.2

6.1

exim

2323232323232323232323N =

INITIALPC100PC90PC80PC70PC60PC50PC40PC30PC20PC10

7.2

7.1

7.0

6.9

6.8

6.7

6.6

6.5

23

20
1715

gnupg

2323232323232323232323N =

INITIALPC100PC90PC80PC70PC60PC50PC40PC30PC20PC10

12.8

12.6

12.4

12.2

12.0

11.8

11.6

grappa

2323232323232323232323N =

INITIALPC100PC90PC80PC70PC60PC50PC40PC30PC20PC10

2.8

2.7

2.6

2.5

2.4

2.3

1

1514

2

12
3

icecast

2323232323232323232323N =

INITIALPC100PC90PC80PC70PC60PC50PC40PC30PC20PC10

2.38

2.36

2.34

2.32

2.30

2.28

2.26

2.24

1819

20

15

8
10

20

7
616185

ispell

2323232323232323232323N =

INITIALPC100PC90PC80PC70PC60PC50PC40PC30PC20PC10

5.1

5.0

4.9

4.8

4.7

4.6

4.5

4.4

18

9

1418

1014

23

4

lynx

Figure 2. Worst results obtained by using MDGs without weighted edges.

2323232323232323232323N =

INITIALPC100PC90PC80PC70PC60PC50PC40PC30PC20PC10

12.0

11.5

11.0

10.5

10.0

9.5

4
16

8

4
20

ncurses

2323232323232323232323N =

INITIALPC100PC90PC80PC70PC60PC50PC40PC30PC20PC10

9.5

9.4

9.3

9.2

9.1

9.0

8.9

8.8

8.7

2

19

15
23

15

nmh

2323232323232323232323N =

INITIALPC100PC90PC80PC70PC60PC50PC40PC30PC20PC10

13.4

13.2

13.0

12.8

12.6

12.4

12.2

12.0

11.8

919

188

4

20

414

incl

2323232323232323232323N =

INITIALPC100PC90PC80PC70PC60PC50PC40PC30PC20PC10

7.4

7.2

7.0

6.8

6.6

6.4

6.2

6.0

5.8

1

1019

7

19

10

21

15

inn

2323232323232323232323N =

INITIALPC100PC90PC80PC70PC60PC50PC40PC30PC20PC10

10.2

10.0

9.8

9.6

9.4

9.2

9.0

8.8

8.6

8.4

21

1517

7

9
21

9

23

11
21

22

21

19

8

19

16
818

modssl

2323232323232323232323N =

INITIALPC100PC90PC80PC70PC60PC50PC40PC30PC20PC10

2.4

2.3

2.2

2.1

2.0

12
17

10

3

711

9

7

mtunis

2323232323232323232323N =

INITIALPC100PC90PC80PC70PC60PC50PC40PC30PC20PC10

2.30

2.28

2.26

2.24

2.22

2.20

2.18

2.16

2.14

2.12

12

1

16
15

9

10

16
4

311
19

7
14
2

19

3

10
4

17198
2

17

19

rcs

2323232323232323232323N =

INITIALPC100PC90PC80PC70PC60PC50PC40PC30PC20PC10

46

45

44

43

42

41

17
17

15

9

18
15

1

swing

2323232323232323232323N =

INITIALPC100PC90PC80PC70PC60PC50PC40PC30PC20PC10

8.6

8.4

8.2

8.0

7.8

7.6

7.4

7.2

9201418
221611

16

2

6

38
5

xntp

Figure 3. Best results obtained by using MDGs with weighted edges.

7

Proceedings of the International Conference on Software Maintenance (ICSM’03)
1063-6773/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on June 8, 2009 at 10:43 from IEEE Xplore. Restrictions apply.

2323232323232323232323N =

INITIALPC100PC90PC80PC70PC60PC50PC40PC30PC20PC10

12.0

11.8

11.6

11.4

11.2

11.0

10.8

10.6

10.4

1
6

20

ncurses

2323232323232323232323N =

INITIALPC100PC90PC80PC70PC60PC50PC40PC30PC20PC10

9.5

9.4

9.3

9.2

9.1

9.0

8.9

8.8

8.7

22

15

3

19

14

10

nmh

2323232323232323232323N =

INITIALPC100PC90PC80PC70PC60PC50PC40PC30PC20PC10

13.4

13.2

13.0

12.8

12.6

12.4

12.2

12.0

11.8

5

23

1312
1

20

14

10

23
59

14

11

18146

12
18

21
9
14

20

1113

510

8
12
1

21
13

172218

17

incl

2323232323232323232323N =

INITIALPC100PC90PC80PC70PC60PC50PC40PC30PC20PC10

8.0

7.5

7.0

6.5

6.0

5.5

7

10

13

18

19
18
15

3

10

19

6

7

715

23

312948

inn

2323232323232323232323N =

INITIALPC100PC90PC80PC70PC60PC50PC40PC30PC20PC10

10.0

9.8

9.6

9.4

9.2

9.0

8.8

8.6

8.4

19
23

6

10

4

5

19

15
216

68

1

19

16
9

17118

3
5

7

19

9

19

5

224
16

5

modssl

2323232323232323232323N =

INITIALPC100PC90PC80PC70PC60PC50PC40PC30PC20PC10

2.4

2.3

2.2

2.1

2.0

14

32

21128

mtunis

2323232323232323232323N =

INITIALPC100PC90PC80PC70PC60PC50PC40PC30PC20PC10

2.3

2.2

2.1

15

8

22

20

18
91

1

7

8

12
22

13

16

21

7

9
22

3

rcs

2323232323232323232323N =

INITIALPC100PC90PC80PC70PC60PC50PC40PC30PC20PC10

45.5

45.0

44.5

44.0

43.5

43.0

42.5

42.0

41.5

20

9

swing

2323232323232323232323N =

INITIALPC100PC90PC80PC70PC60PC50PC40PC30PC20PC10

8.6

8.4

8.2

8.0

7.8

7.6

7.4

7.2

15
12

23

23

15

712
20

1

1213

xntp

Figure 4. Worst results obtained by using MDGs with weighted edges.

dition, weak results from the initial hill climb can also

achieve consistently better values (for example best and

worst performance for mtunis shown in Figures 1 and

2).

One reason for observing more substantial improve-

ment in larger MDGs may be attributed to the nature

of the MQ fitness measure. Unfortunately the MQ fit-

ness measure is not normalized, for example a double

increase of MQ does not signify a doubling of modular-

ization quality. At best, we can only claim that MQ is

an ordinal metric [11]. To overcome this, the percent-

age MQ improvement of the final runs over the initial

runs is also measured (see Table 5). Using these values,

tests were carried out to determine any improvement cor-

relating with the MDG complexity. The number of nodes

and the number of connections in each MDG were tested

for correlation against largest percentage improvement of

each of the final runs against the initial run. These sta-

tistical tests show no significant correlation between size

and improvement in fitness irrelevant of weighted or non-

weighted MDGs.

Improvements are always achieved for selection cut

off values of 10% and 20%, in most cases there are im-

provements across all final hill climbs. However there are

exceptions. A dramatic example of this is in bunch (Fig-

ures 1 and 2), where results only show an increase for the

cases where 10% and 20% of the initial climbs are used

for building blocks.

5.3 Experimental concerns

Due to inherent randomness in any hill climbing

search technique, it is hard to identify any trends by look-

ing at individual hill climbs. For this reason multiple runs

of the algorithm were used. Furthermore this technique

was used on MDGs with weighted and without weighted

edges of different sizes to improve the strength of the re-

sults for more general cases.

Employing the Wilcoxen signed ranked test helped to

show that the improvements are significant enough to be

an unlikely chance occurrence. The reduction in vari-

ance caused by the selection mechanism may mislead

the Wilcoxen ranked test to find significant difference be-

tween the initial and final runs. Therefore actual improve-

ment in the fitness over the initial runs were measured to

determine whether the search is capable of discovering

better peaks in the landscape.

6 Conclusions

The multiple hill climb technique proposed here has

produced improved results across all MDGs, weighted

and non-weighted. There is some evidence that the tech-

nique works better for larger MDGs but this could be due

to the ordinal nature of the MQ metric used to assess

modularisation quality.

This difficulty aside, larger MDGs tend to achieve rel-

atively earlier benefits across the final hill climb runs

from this technique. For example MDGs with small num-

ber of nodes and edges tend to show little or no improve-

ment until building blocks used for the final hill climb are

selected at 10% and 20%. On the other hand MDGs with

a large number of nodes and edges tend to show signifi-

cant improvement on the initial search across most or all

of the final runs (Tables 2 and 3).

The increase in fitness, regardless of number of nodes

or edges, tends to be more apparent as the building blocks

are created from a smaller selection of individuals. This

8

Proceedings of the International Conference on Software Maintenance (ICSM’03)
1063-6773/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on June 8, 2009 at 10:43 from IEEE Xplore. Restrictions apply.

Figure 5. MQ increase against

number of edges for MDGs with

no weighted edges

Figure 6. MQ increase against

number Of nodes for MDGs with

no weighted edges

Figure 7. Percentage MQ in-

crease against number Of edges

for MDGs with no weighted

edges

Figure 8. Percentage MQ in-

crease against number Of nodes

for MDGs with no weighted

edges

Figure 9. MQ increase against

number Of edges for MDGs with

weighted edges

Figure 10. MQ increase against

number Of nodes for MDGs with

weighted edges

Figure 11. Percentage MQ in-

crease against number Of edges

for MDGs with weighted edges

Figure 12. Percentage MQ in-

crease against number Of nodes

for MDGs with weighted edges

9

Proceedings of the International Conference on Software Maintenance (ICSM’03)
1063-6773/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on June 8, 2009 at 10:43 from IEEE Xplore. Restrictions apply.

may signify some degree of importance for the selection

process. Perhaps the less fit solutions in the initial pop-

ulation are more likely to represent the same peak in the

solution space and removing them by a more elite selec-

tion process may reduce the noise or bias this may intro-

duce and increase the likelihood of a more concentrated

search.

7 Future work

The selection techniques used in building block cre-

ation may be extended. This may well be achieved by

ensuring that all hill climbs in the initial stage are unique.

For very small MDGs this may cover all peaks in the

landscape, also some sections of the landscape may be

harder to search in the initial stage. Another possible

method to ensure improved selection would be to include

an attribute which determines the importance of each ini-

tial result in construction of the building blocks. This

attribute could be related to frequency or distribution of

the initial solutions.

In addition, other techniques to measure complexity of

the MDGs and use of a normalised fitness measure could

help in the recognition of any relationship between MDG

complexity and the improvement achieved by using this

technique.

Finally, once an improved selection technique is iden-

tified, multiple iterations of building block creation/ hill

climbs can be used to focus the search further. Alterna-

tively this technique could be used to improve genetic al-

gorithms (GAs). GAs have already been used for cluster-

ing but with generally worse results than pure hill climb-

ing [2, 4, 8]. The less than ideal results might be a

consequence of the crossover operator in GAs, which is

deemed to be more effective when the structure of the

chromosomes aids the transmission of useful information

between generations [5]. The use of the building blocks

created using this technique to seed a GA could help to

preserve this information and improve the GA’s perfor-

mance without resorting to complicated evolutionary re-

pair operators [3].

8 Acknowledgements

We would like to thank Spiros Mancoridis and Brian

Mitchell at Drexel university for their help with software

clustering and Simon Taylor at Brunel university for al-

lowing the work to be conducted on the GRIDS parallel

processing system. We would also like to thank the mem-

bers of the EPSRC Software Engineering Using Meta-

heuristic Algorithms Network and the Brunel Intelligent

Data Analysis group for many helpful discussions about

clustering.

This work is supported, in part, by EPSRC Grants

GR/R98938, GR/M58719, GR/M78083 and GR/R43150

and by the Brunel Research Initiative and Enterprise

Fund.

References

[1] CONSTANTINE, L. L., AND YOURDON, E. Structured

Design. Prentice Hall, 1979.

[2] DOVAL, D., MANCORIDIS, S., AND MITCHELL, B. S.

Automatic clustering of software systems using a genetic

algorithm. In International Conference on Software Tools

and Engineering Practice (STEP’99) (Pittsburgh, PA, 30

August - 2 September 1999).

[3] FALKENAUER, E. A new representation and operators for

genetic algorithms applied to grouping problems. Evolu-

tionary Computation 2, 2 (1994), 123–144.

[4] HARMAN, M., HIERONS, R., AND PROCTOR, M. A new

representation and crossover operator for search-based op-

timization of software modularization. In GECCO 2002:

Proceedings of the Genetic and Evolutionary Computa-

tion Conference (New York, 9-13 July 2002), Morgan

Kaufmann Publishers, pp. 1351–1358.

[5] JONES, T. Crossover, macromutation, and population-

based search. In Proceedings of the 6th International Con-

ference on Genetic Algorithms (San Francisco, July 15–19

1995), L. J. Eshelman, Ed., Morgan kaufmann Publishers,

pp. 73–80.

[6] MANCORIDIS, S., MITCHELL, B. S., CHEN, Y.-F., AND

GANSNER, E. R. Bunch: A clustering tool for the re-

covery and maintenance of software system structures.

In Proceedings; IEEE International Conference on Soft-

ware Maintenance (1999), IEEE Computer Society Press,

pp. 50–59.

[7] MANCORIDIS, S., MITCHELL, B. S., RORRES, C.,

CHEN, Y.-F., AND GANSNER, E. R. Using automatic

clustering to produce high-level system organizations of

source code. In International Workshop on Program

Comprehension (IWPC’98) (Ischia, Italy, 1998), IEEE

Computer Society Press, Los Alamitos, California, USA,

pp. 45–53.

[8] MITCHELL, B. S. A Heuristic Search Approach to Solv-

ing the Software Clustering Problem. PhD Thesis, Drexel

University, Philadelphia, PA, Jan. 2002.

[9] MITCHELL, B. S., AND MANCORIDIS, S. Using heuris-

tic search techniques to extract design abstractions from

source code. In GECCO 2002: Proceedings of the Genetic

and Evolutionary Computation Conference (New York, 9-

13 July 2002), Morgan Kaufmann Publishers, pp. 1375–

1382.

[10] MITCHELL, M. An Introduction to Genetic Algorithms.

MIT Press, 1996.

[11] SHEPPERD, M. J. Foundations of software measurement.

Prentice Hall, 1995.

10

Proceedings of the International Conference on Software Maintenance (ICSM’03)
1063-6773/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on June 8, 2009 at 10:43 from IEEE Xplore. Restrictions apply.

