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Abstract
This paperdescribesa probabilistic multiple-hypothesis
framework for trackinghighly articulatedobjects. In this
framework, the probability densityof the tracker stateis
representedas a set of modeswith piecewise Gaussians
characterizingtheneighborhoodaroundthesemodes.The
temporalevolution of the probability density is achieved
through sampling from the prior distribution, followed
by local optimization of the samplepositionsto obtain
updatedmodes. This methodof generatinghypotheses
from state-spacesearchdoesnot require the useof dis-
crete featuresunlike classicalmultiple-hypothesistrack-
ing. The parametricform of the modelis suitedfor high-
dimensionalstate-spaceswhich cannotbeefficiently mod-
eledusingnon-parametricapproaches.Resultsareshown
for trackingFredAstairein a movie dancesequence.

1 Introduction
Visualtrackingof humanmotionis akey technologyin

a largenumberof areas.It hasapplicationsrangingfrom
3D mouseinput [1] to content-basedvideo editing [2].
Thispaperaddressesthevisualtrackingproblemfor anar-
ticulatedobjectsuchasthe humanfigure, usinga known
kinematicmodel[3, 4, 5, 6]. The kinematicsof an artic-
ulatedobjectprovide the most fundamentalconstrainton
its motion. Kinematicmodelsplay two roles in tracking.
First, they definethedesiredoutput—astatevectorof joint
anglesthat encodesthe degreesof freedomof the model.
Second,they specifythe mappingbetweenstatesandim-
agefeaturesthatmakesregistrationpossible.

A key attribute of any tracking schemeis the choice
of probabilisticrepresentationfor thestateestimates.The
Kalmanfilter [7] is a classicalchoicewhich hasbeenem-
ployed in earlier figure tracking work (see[8, 9, 10] for
examples).UnfortunatelytheKalmanfilter is restrictedto
representingunimodalprobabilitydistributions.Thepres-
enceof backgroundclutter, self-occlusions,andcomplex
dynamicsduring figure tracking results in a statespace
densityfunction(pdf) which is multi-modal.

Multiple hypothesis tracking (MHT) is a classical
approachto representingmultimodal distributions with

Kalmanfilters [11]. It hasbeenusedwith greateffective-
nessin radartrackingsystems,for example. This method
maintainsabankof Kalmanfilters,whereeachfilter corre-
spondsto a specifichypothesisaboutthetargetset. In the
usualapproach,eachhypothesiscorrespondto apostulated
associationbetweenthetargetandameasuredfeature.The
multiple hypothesesarisewhentherearetwo or morefea-
turesfor which thecorrectassociationis notknown. These
methodshoweverassumethatasetof discretefeaturescan
beobtainedateachtimestep,whichpresupposesthatsuch
a sensorexists. This is oftennot truewhentrackingcom-
plex objects– for example,thereis no simpledetectorfor
the humanfigure which takesan input imageandexplic-
itly returns‘figure features’whereeachfeaturespecifiesa
differentskeletalconfiguration.

One alternative is to use Monte Carlo methodssuch
as Isard and Blake’s CONDENSATION algorithm [12].
While nonparametricmodelscanrepresentarbitrarypdfs,
their computationalcostsareprohibitivefor thelargestate
spacesrequiredin figuretracking.

This paperdescribesa novel formulationof MHT for
figure tracking. The key idea is to explicitly model and
trackthemodesin thestatepdf. We usea sampling-based
statespacesearchprocessto generatea setof hypotheses
correspondingto the local maximain the likelihood. By
generatinghypothesesthroughstatespacesearchweavoid
the needfor a complex figure detectornecessaryto apply
classicalMHT methods. By explicitly focusingour rep-
resentationon the modesof the distribution we avoid the
explosion in the numberof samplesthat a Monte-Carlo-
basedschemerequires. A moredetailedcomparisonbe-
tweenourproposedformulationandthesemethodsismade
in section5.1. Our approachis basedon the observation
thatcomplex targetssuchasthehumanfigureusuallyhave
only small numberof well-definedminima in their poste-
rior density.

This work is thefirst applicationof multiple hypothesis
techniquesto figure tracking. An earlier versionof this
papermay be found in [13]. A moredetailedanalysisis



alsoprovidedin [14].

1.1 The 2D Scaled Prismatic Model
Much of the previouswork on figure trackinghasem-

ployed3D kinematicmodelsandfocusedon detailedesti-
mationof 3D motion. Theseapproachesrequiremultiple
cameraviewpointsfor accurateestimationandrarely op-
erateon-line. In contrast,perceptualuserinterfaceappli-
cationsaremorelikely to benefitfrom reliable2D figure
trackingthatcanoperatein real-timeusingasinglecamera
input. For example,it’s likely that many usefulgestures
canbe recognizedfrom a purely image-baseddescription
of figuremotion,without recourseto 3D motionestimates.

This paperfocuseson figure registration,which is the
estimationof 2D imageplanefiguremotionacrossavideo
sequence.Figuresare describedby a novel classof 2D
kinematicmodelscalledScaled Prismatic Models (SPM),
introducedin [2]. Thesemodelsenforce2D constraints
onfiguremotionthatareconsistentwith anunderlying3D
kinematicmodel.Unlike 3D kinematicmodels,SPM’s do
not requiredetailedprior knowledgeof figure geometry
anddo not suffer from singularityproblemswhenthey are
usedwith a singlevideosource.

Eachlink in a scaledprismaticmodeldescribestheim-
ageplaneappearanceof anassociatedrigid link in anun-
derlying 3D kinematicchain. EachSPM link can rotate
andtranslatein theimageplane,asillustratedin Figure1.
The link rotatesat its joint centeraroundan axis which
is perpendicularto the imageplane. This capturestheef-
fect on link orientationof anarbitrarynumberof revolute
joints in the 3D model. The translationaldegreeof free-
dom(DOF) modelsthedistancebetweenthe joint centers
of adjacentlinks. It capturestheforeshorteningthatoccurs
when3D links rotateinto andout of theimageplane.This
DOF is calleda scaledprismaticjoint becausein addition
to translatingthejoint centersit alsoscalesa templaterep-
resentationof thelink appearance.
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Figure 1: The effect of revolute (
�
) and prismatic ( � )

DOF’sononelink from a2D SPMchain.Thearrowsshow
theinstantaneousvelocityof pointsalongthelink dueto an
instantaneousstatechange.

A completediscussionof SPM models, including a
derivationof theSPMJacobianandananalysisof its sin-
gularities,canbefoundin [2]. In this reportwe modelthe
figure asa branchedSPM chain. Eachlink in the arms,

legs,andheadis modeledasan SPM link. Eachlink has
two degreesof freedom,leadingto atotalbodymodelwith
19 DOF’s. The trackingproblemconsistsof estimatinga
vectorof SPMparametersfor thefigurein eachframeof a
videosequence,givensomeinitial state.

2 Probability Density Representation
The choice of representationfor the probability den-

sity of a tracker stateis largely dominatedby two con-
cerns. The unimodality constraintimposedwhen using
a Gaussian-basedparametricrepresentationsuch as the
Kalman Filter is inaccuratewhen tracking in a cluttered
environment,while asample-basedrepresentation(suchas
usedin the CONDENSATION algorithm)requiresa pro-
hibitive numberof samplesfor encodingthe probability
distribution of a high-DOFSPMmodel. Insteadwe adopt
a hybrid representationwhich supportsa multimodalde-
scriptionbut requiresfewersamplesfor modeling.

Our selectedrepresentationis basedon retainingonly
themodes(or peaks)of theprobabilitydensityandmodel-
ing the local neighborhoodsurroundingeachmodewith a
Gaussian.This addressesthemultimodality issuedirectly,
while theuseof Gaussianseliminatestheneedfor a large
numberof samplesto non-parametricallyshapethedistri-
butionaroundeachmode.

3 Mode-based Multiple-Hypothesis Track-
ing

The basicidea in a probabilisticframework for track-
ing involvesmaintaininga time-evolving probability dis-
tribution of thetracker state.In orderto generatea mode-
basedrepresentationfor theprobabilitydistribution of the
tracker state,the algorithmhasto recover thesemodesin
eachtime-frame.

The algorithmproposedheremay be modularizedin a
mannercompatiblewith BayesRule:�������
	 ����
�������������	 ����
���������	 ������� 
 (1)

where ��� is the tracker stateat time ! , �"� is the observed
data, ��� is theaggregationof pastimageobservations(ie.�$# for % �'&)(
*"*
* ( ! ), and � is a normalizationconstant.
Furthermore��� is assumedto beconditionallyindependent
of �����+� given ��� .

Thestagesof thealgorithmateachtime-frameare

1. Generatingthenew prior density��������	 ������� 
 by pass-
ing the modesof ���������+�,	 �����+� 
 throughthe Kalman
filter predictionstep.

2. Likelihoodcomputation,involving:

(a) Creating initial hypothesisseedsby sampling
thedistributionof �������
	 �����+�

 .



(b) Refining the hypothesesthrough differential
state-spacesearchto obtain the modes of the
likelihood���-� � 	 � � 
 .

(c) Measurethelocalstatisticsassociatedwith each
likelihoodmodeusingperturbationanalysis.

3. Computingtheposteriordensity���-��� 	 ����
 via Baye’s
Rule(1), thenupdatingandselectingthesetof modes.

3.1 Multiple Modes as Piecewise Gaussians
Given a setof . modesfor which the / th modehasa

state0�1 , anestimatedcovariance231 anda probability � 1 ,
an accurateconstructionof the probability density func-
tion requiresa local maximaof value � 1 locatedat each0�1 , with the local neighborhoodsurrounding0�1 being
approximatelyGaussianwith covariance231 .

In situationswhenthemodescanoccurin clusters(asis
oftenthecase),it is erroneousto usetheindividual modes
directly ascomponentsin a Gaussian sum representation.
Considerthesimplifiedexamplefor four hypothesesin 1D
state-spaceas shown in fig. 2(a). If the hypothesesare
directly consideredthe componentsin a Gaussiansum,
the combinedpdf hasonly two modes. This is shown in
fig. 2(b). This resultsin a clusterof weaker modesbe-
ing over-representedat the expenseof strongbut isolated
modes.Insteadwe proposea Piecewise Gaussian(PWG)
representationwheretheprobabilitydensity���-4�
 atapoint4 in thestate-spaceis determinedby theGaussiancompo-
nentproviding thelargestcontributionat 4 , ie.57698;:�<>=@?3ACBD9E�FHG G I J 5 D;K B"LNMPONQR 698SOUT D :�V+W�X FD 698UOST D :�Y[Z (2)

where � is a normalizationconstant.
If for the previous examplea PWG representationis

usedinsteadasin figure2(c), the strengthsof eachof the
modesare preserved. This is preferablesincethe repre-
sentationwould thenbeconsistentwith thelocal statistics
determinedfor eachhypothesis.
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(a) (b) (c)

Figure2: (a) shows four recoveredmodesof a probability
distribution togetherwith local statistics. Using a Gaus-
sian sum approximationwith componentslocatedat the
hypotheseswould producethe distribution shown in (b),
which hasonly two modes,andalso the dominantmode
is formedfrom the clusterof weaker modes. The modes
and local variancesarehowever preserved if a piecewise
Gaussianapproximationis used(c).

While it is possiblethata goodGaussiansumapproxi-
mationmaybeobtainedvia a complex fitting process(eg.
via the EM algorithm[15]), the PWG representationpro-
videssatisfactoryapproximationat negligible costof fit-
ting, althoughsamplingfrom the PWG representationis
notasstraightforward(discussedlaterin section3.3.2).
3.2 Generating Prior Distributions

Obtainingtheprior density�������
	 �����+� 
 in thenext time
frameis similar to theKalmanfilter predictionstep.A dy-
namicalmodelis appliedto themodesof theposteriordis-
tribution ���-�������\	 ������� 
 of the previoustime frameto pre-
dict thenew locationsof themodes,followedby increasing
the covariancesof the Gaussiancomponentsaccordingto
theprocessnoise.Thisamountof processnoiseis dictated
by the accuracy of the dynamicalmodel. This may also
beviewedasanapproximationto theresult���-� � 	 � ���+� 
]�^�_�` ����� � 	 � ���+� 
a���-� ����� 	 � ����� 
 , where���-� � 	 � ���+� 
 is a Gaus-
sian centeredon the new modewith covarianceequalto
the processnoisecovariance. Here � � is assumedto be
conditionallyindependentof �����+� .

In theexperimentscarriedout for thispaper, wedid not
useatrainedor complex dynamicalmodel.Thedynamical
modelemployed is simply a naive constantvelocity pre-
dictor, andconsequentlytheprocessnoiseappliedis very
highsincethepredictionis oftengrosslyinaccurate.
3.3 Likelihood Computation
3.3.1 State Probabilities from Image Measurements

In order to model the likelihood ���-��� 	 4���
 , we needto be
ableto computetheprobabilitythatthetargetfigure,when
correctlyrepresentedby anSPMmodelwith state4 , gen-
eratesthe imageobservation � � in thecurrentframe. This
is estimatedvia���-����	 4���
[bdcfehg ikjml+n �-o;� e 
�nqpU� e (C4 � 
r
�stPu s v (3)

where

e
representimagepixel coordinates,o;� e 
 are the

imagepixel valuesat

e
, pU� e (r4�
 aretheoverlappingtem-

platepixel valuesat

e
whenthe SPM modelhasstate 4 ,

and
u s is the pixel noisevariance(this hasto be known

apriori or experimentallyobtained). The productis then
evaluatedfor all pixels locatedwithin the boundariesof
thefigure.

Basedon(3), it maybeobservedthatthelikelihoodcan
bemaximizedby minimizing �-o;� e 
�nwpx� e (C4��H
r
�s . This is
achievedthroughtemplateregistration,whichmaybecon-
sideredequivalentto recoveringthelocalmaximumlikeli-
hoodsolution.

3.3.2 Hypothesis Sampling

We first considerthecaseof samplingfrom a singletrun-
catedGaussian.This involvesobtainingsamplesfrom the



original Gaussiandistribution, followedby discardingthe
sampleswhich fall outsidethe truncationboundary. This
maybecontinueduntil asatisfactorynumberof valid sam-
pleshavebeenobtained.

ThePWGdistributionmaybeequivalentlyexpressedas
a unionof separatetruncatedGaussianswith alignedbor-
ders,wherethebordersdenotepointsfor which theproba-
bility valuescomputedfrom eitherGaussiancomponenton
oppositesidesof theborderarethe same(ie. thereareno
probabilitydiscontinuitiesat theborders).Samplingfrom
thePWGdistributionmaythereforebecarriedoutwith the
following steps:

1. Selectthe / th modewith probability � 1 from thesetof. modes.

2. Obtaina singlesampley from the original Gaussian
distributionassociatedwith the / th mode.

3. If y lieswithin theboundariesof the / th mode(ie. ����z$

satisfies(2)), acceptthesample;otherwiserejectit.

4. Returnto step1 until therequirednumberof accepted
sampleshavebeenobtained.

3.3.3 State-Space Search for Likelihood Modes

Startingwith the initial SPM modelstatesobtainedfrom
samplingthe prior distribution ����� � 	 � ����� 
 , the statesare
optimizedlocally in orderto convergeon themodesof the
likelihood ���-� � 	 � � 
 . This achievedby maximizing(3), or
equivalentlyby obtaining{P|C}�~��f�4���� e �-o;� e 
�nwpx� e (C4�
r
 s��
This is in factidenticalto differentialtemplateregistration
of the 2D SPM modelwherebythe sumof squaredpixel
residualsis minimized. For this we employ the iterative
Gauss-Newton method,which hasanadvantageof simul-
taneouslyrecoveringthelocal variancesof eachmode.
3.4 Deriving Posterior Distributions

Computingthe posteriordensity via (1) involves the
multiplication of the prior density ���-4�� 	 �����+�

 and likeli-
hood ���-��� 	 4���
 functions,whereboth functionsarerepre-
sentedin PWGformsasdescribedin theprevioussections.
Theposteriordensitymaybeapproximatedby takingpairs
of modesfrom the prior and likelihooddistributionsand
multiplying the Gaussiansindependently. This may be
further trimmedby selectingonly the dominantposterior
modes.

To prevent an exponential increasein modesin our
experiments,eachlikelihood modegeneratesa posterior
modeby combiningwith themostcompatibleprior mode.
This is acceptableas the modesof the likelihoodare the

dominantfactorswhena constantvelocity predictorwith
high processnoiseis used.If a superiorpredictoris avail-
able,greateremphasismaybeplacedon theprior modes.

4 Experimental Results
Thealgorithmwastestedon threesequencesinvolving

FredAstairefrom themovie ‘Shall We Dance’.A 2D 19-
DOF SPMmodelis manuallyinitialized in thefirst image
frame,after which tracking is fully automatic. The aug-
mentedstate-spacein this casehas38 dimensionsbecause
the predictorusedis a secondorderauto-regressive (AR)
model. Typically the joint probability distribution in the
state-spaceis describedvia 10 modesin a PWGrepresen-
tation.

In fig. 3, threekey framesfrom anoriginal sequenceof
eighteenframesare shown, togetherwith the resultsob-
tainedfrom using a single modetracker. Here the stick
figure denotesthe currentstateof the tracker. It can be
observed that the tracker fails to copewith the ambigu-
ity resultingfrom self-occlusionwhenFredAstaire’s legs
cross.

In fig. 4, themultiple modesof thetrackerareshown in
the top row. The bottom row shows the dominantmode
at eachframe, which is solely determined via minimum
pixel squared residual error. This shows the ability of
the tracker to handlethe ambiguitiesof self-occlusionby
maintainingmultiple modes,without even the needfor a
complex dynamicalmodel.

However, the computationalcost of using multiple
modesincreasesatleastlinearlywith thenumberof modes.
In the above case,the single-modetracker completedthe
trackingsequenceof 18 framesin about18 seconds.The
10-modetracker requiredapproximately2 minutes.Nev-
erthelessthe advantagegainedfrom the stability of the
tracker is significantlymorecritical.

5 Previous Work
The first works on articulated3D trackingwere[3, 4].

Yamamotoand Koshikawa [5] were the first to apply
modernkinematicmodelsandgradient-basedoptimization
techniques,but their resultswere limited to 2D motion.
Other3D trackingworksinclude[6, 16, 17, 18]. Thework
of Juandet. al. [19] is perhapstheclosestto our2D SPM.
Other2D figuretrackingresultscanbefoundin [20].

Early applicationsof Kalmanfilters (KF) to rigid body
trackingappearin [21, 22, 23]. Figure trackingschemes
which usethe Kalman filter are discussedin [8, 9]. All
of theseworksemploy theconventionalunimodalKF. One
exceptionis Shimadaet. al. [10], in which a simplemulti-
ple hypothesisapproachis usedto handlereflective ambi-
guity underorthographicprojection.

The first applicationsof classicalmultiple hypothesis
trackingtechniquesto computervision problemsappeared



Figure3: SingleMode TrackingResults. Top row: threeframesfrom the original sequence.Bottom row: the single-
hypothesistracker fails to handletheself-occlusioncausedby FredAstaire’s legscrossing.

in [24, 25]. An early survey of thesetechniquescan be
found in [26]. Recently, RasmussenandHager[27] used
the joint probabilisticdataassociationfilter (JPDAF) [11]
to trackmulti-partobjects,suchasafaceandhand.In con-
trastto our MHT framework, the JPDAF approachusesa
correspondence-basedframework for generatinghypothe-
ses. Eachtarget is influencedby a linear combinationof
theresultingmeasurements.

5.1 Comparisons to Classical MHT and Monte
Carlo Methods

Multiple hypothesistrackingwasoriginally developed
for radartrackingsystemswherethemeasuredfeaturesare
a setof discrete‘blips’. Themultiple hypothesesaregen-
eratedby postulatingassociationsbetweena singletarget
and eachof the different features. In the caseof figure
tracking thereis however no detectorfor the humanfig-
urewhich explicitly returnsfeaturesgiving differentprob-
ableskeletalconfigurationsin eachimageframe.Onepos-
sible solution would be to considerall combinationsof
lower-level features,eg. edgesobtainedfrom an edgede-
tector, which form high-level ‘figure features’.Howeverin
sceneswith significantclutter, this rapidly leadsto an al-
mostintractablenumberof hypotheses[24, 25]. More im-
portantly, discretefeaturesarenot suitableto a largeclass
of problems. For examplewhen using modelsbasedon
appearanceor optic-flow, thedataassociationbetweenthe
modelandimagepixels is bothprobabilisticandcontinu-
ous– everydifferentsetof pixelsis aseparatefeaturewith
acorrespondingprobabilityof associationto themodel.In
theseinstances,classicalMHT methodsarenotapplicable.

Insteadof using a separatefeature-detectionprocess
basedon imagecorrespondences,our formulationof hy-

pothesissamplingand local state-spacesearchrecovers
MH statesas part of the tracking process. This method
is alsocapableof copingwith theabove-mentionedprob-
lemsfor which thefeaturesetin continuous.Themultiple
hypothesesin our methodarenot simply data-association
hypothesesbetweentargetandfeatures,but state-spacehy-
potheseswhich locally maximizethelikelihoodof theob-
servedimage.

Alternatively MonteCarlo methods,suchastheCON-
DENSATION algorithm [12], canbe used. Thesemeth-
odsexpressthepdf of thetracker statenon-parametrically
with a fair setof samples.Thenumberof samplesrequired
for accuratelymodelingthepdf increaseswith boththedi-
mensionalityof thestatespaceandthevarianceof thepdf,
which in thecaseof trackingis inverselyrelatedto theac-
curacy of thepredictor. In our casewith 38 state-spacedi-
mensionsanda weakconstantvelocity dynamicalmodel,
a prohibitive numberof sampleswill be requiredfor reli-
abletrackingwith CONDENSATION. A further problem
with the sample-basedpdf representationis that only the
momentsof thepdf canberecoveredeasily. Hencefor ex-
amplewhile it may be simpleto computethe meanstate,
themaximumlikelihood(ML) estimatemaynot befound
accurately, andmoresignificantlythe maximumaposteri-
ori (MAP) estimateis difficult to compute.

Experimentscarriedout using the authors’implemen-
tation of the CONDENSATION algorithmbearout these
observations. Tracking was attemptedon sequencesof
a personwalking using a 26-dimensionaltracker based
on templates(insteadof contoursas in [12]). When a
second-order autoregressive (AR) model trainedon walk-
ing dynamicswasapplied,trackingwassuccessfulwhen



Figure 4: Mode-basedMultiple HypothesisTracking Results. Top row: the multiple modesof the tracker are shown.
Bottomrow: thedominantmodeis shown, which demonstratetheability of thetracker to handleambiguoussituationsand
thussurvive theocclusionevent.

at least 50 sampleswere used. However tracking with
this AR modelcanbe carriedout moreefficiently by us-
ing our single-hypothesistracker, with runningspeedsof
6fpsversus0.4fps.To compareperformanceswhena con-
stantvelocity dynamicalmodel was applied instead,we
used200 samplesin our CONDENSATION implementa-
tion to settherunningspeedto beapproximatelyequalto
our multiple-hypothesistracker. While the former failed
to trackafter thefourth imageframe,our MH tracker was
successfulfor theentire48 frames.

Our approachcopeswith weakdynamicalmodelsand
high-dimensionalstatespacesby carryingout samplere-
finement. This allows successfultrackingto be achieved
with only tensamples.Furthermorebecausea parametric
representationis usedthroughoutthe entireprocess,both
theMAP andML estimatescanberecoveredeasily.

6 Conclusions and Future Work
We have introduceda novel multiple hypothesistrack-

ing algorithm for complex targetswith high dimensional
statespaces.Thekey insight is to representandtrack the
modesin theposteriorstatedensityfunction.Thesemodes
are likely to be sparseand separatedfor visually com-
plex targetssuchas the humanfigure. Experimentalre-
sultsfrom trackingoneof FredAstaire’s dancesequences
demonstratesthe superiorperformanceof our MHT ap-
proachovera standardKalmanfilter.

In the nearfuture we will presentcomparative experi-
mentalresultsto thatof theCONDENSATION algorithm.
Wealsoplanto extendourMHT framework to handleself-
occlusionsandmotion discontinuitiesin an explicit man-
ner. We will also be investigatingthe integrationof fig-

ure trackingwith backgroundmodelingaswell asfigure-
backgroundsegmentation.
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