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Abstract

Background: Drug-target networks are receiving a lot of attention in late years, given its relevance for

pharmaceutical innovation and drug lead discovery. Different in silico approaches have been proposed for the

identification of new drug-target interactions, many of which are based on kernel methods. Despite technical

advances in the latest years, these methods are not able to cope with large drug-target interaction spaces and to

integrate multiple sources of biological information.

Results: We propose KronRLS-MKL, which models the drug-target interaction problem as a link prediction task on

bipartite networks. This method allows the integration of multiple heterogeneous information sources for the

identification of new interactions, and can also work with networks of arbitrary size. Moreover, it automatically selects

the more relevant kernels by returning weights indicating their importance in the drug-target prediction at hand.

Empirical analysis on four data sets using twenty distinct kernels indicates that our method has higher or comparable

predictive performance than 18 competing methods in all prediction tasks. Moreover, the predicted weights reflect

the predictive quality of each kernel on exhaustive pairwise experiments, which indicates the success of the method

to automatically reveal relevant biological sources.

Conclusions: Our analysis show that the proposed data integration strategy is able to improve the quality of the

predicted interactions, and can speed up the identification of new drug-target interactions as well as identify relevant

information for the task.

Availability: The source code and data sets are available at www.cin.ufpe.br/~acan/kronrlsmkl/.

Keywords: Artificial intelligence, Supervised machine learning, Kernel methods, Multiple kernel learning,

Drug discovery

Background
Drug-target networks are receiving a lot of attention in

late years, given their relevance for pharmaceutical inno-

vation and drug repositioning purposes [1–3]. Although

the amount of known interactions between drugs and

target proteins has been increasing, the number of tar-

gets for approved drugs is still only a small proportion

(< 10 %) from the human proteome [1]. Recent advances

on high-throughput methods provide ways for the pro-

duction of large data sets about molecular entities as

drugs and proteins. There is also an increase in the avail-

ability of reliable databases integrating information about
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interactions between these entities. Nevertheless, as the

experimental verification of such interactions does not

scale with the demand for innovation, the use of computa-

tional methods for the large scale prediction is mandatory.

There is also a clear need for systems-based approaches to

integrate these data for drug discovery and repositioning

applications [1].

Recently, an increasing number of methods have been

proposed for drug-target interaction (DTI) prediction.

They can be categorized in ligand-based, docking-based,

or network-based methods [4]. The docking approach,

which can provide accurate estimates to DTIs, is com-

putationally demanding and requires a 3D model of the

target protein. Ligand-based methods, such as the quan-

titative structure activity relationship (QSAR), are based
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on a comparison of a candidate ligand to the known lig-

ands of a biological target [5]. However, the utility of these

ligand-based methods is limited when there are few lig-

ands for a given target [2, 4, 6]. Alternatively, network

based approaches use computational methods and known

DTIs to predict new interactions [4, 5]. Even though

ligand-based and docking-based methods are more pre-

cise when compared to network based approaches, the

latter are more adequate for the estimation of new inter-

actions from complete proteomes and drugs catalogs [1].

Therefore, it can indicate novel candidates to be evaluated

by more accurate methods.

Most network approaches are based on bipartite graphs,

in which the nodes are composed of drugs (small

molecules) and biological targets (proteins) [3, 7, 8]. Edges

between drugs and targets indicate a known DTI (Fig.1).

Given a known interaction network, kernel based meth-

ods can be used to predict unknown drug-target inter-

actions [2, 9–11]. A kernel can be seen as a similarity

matrix estimated on all pairs of instances. The main

assumption behind network kernel methods is that simi-

lar ligands tend to bind to similar targets and vice versa.

These approaches use base kernels to measure the sim-

ilarity between drugs (or targets) using distinct sources

of information (e.g., structural, pharmacophore, sequence

and function similarity). A pairwise kernel function, which

measures the similarity between drug-target pairs, is

obtained by combining a drug and a protein base kernel

via kernel product.

The majority of previous network approaches use clas-

sification methods, as Support Vector Machines (SVM),

to perform predictions over the drug-target interaction

space [2, 4]. However, such techniques have major limi-

tations. First, they can only incorporate one pair of base

kernels at a time (one for drugs and one for proteins)

to perform predictions. Second, the computation of the

pairwise kernel matrix for the whole interaction space (all

possible drug-target pairs) is computationally unfeasible

even for a moderate number of drugs and targets. More-

over, most drug target interaction databases provide no

true negative interaction examples. The common solution

for these issues is to randomly sample a small proportion

of unknown interactions to be used as negative examples.

While this approach provides a computationally trackable
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Fig. 1 Overview of the proposed method. a The drug-target is a bipartite graph with drugs (left) and proteins (right). Edges between drugs and

proteins (solid line) indicates a known drug-protein interaction. The drug-protein interaction problem is defined as finding unknown edges (dashed

lines) with the assumption that similar drugs (or proteins) should share the same edges. b KronRLS-MKL uses several drugs (and protein) kernels to

solve the drug-target interaction problem. Distinct Kernels are obtained by measuring similarities of drugs (or proteins) using distinct information

sources. c KronRLS-MKL provides not only novel predicted interactions as it indicates the relevance (weights) of each kernel used in the predictions
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small drug-target pairwise kernel, it generates an easier

but unreal classification task with balanced class size [12].

An emerging machine learning (ML) discipline focused

on the search for an optimal combination of kernels,

called Multiple Kernel Learning (MKL) [13]. MKL-like

methods have been previously proposed to the prob-

lem of DTI prediction [14–16] and the closely related

protein-protein interaction (PPI) prediction problem [17,

18]. This is extremely relevant, as it allows the use of

distinct sources of biological information to define sim-

ilarities between molecular entities. However, since tra-

ditional MKL methods are SVM-based [13, 19], they are

subject to memory limitations imposed by the pairwise

kernel, and are not able to perform predictions in the com-

plete drugs vs. protein space. Moreover, MKL approaches

used in PPI prediction problem [17, 18] and protein

function prediction [20, 21] can not be applied to bipar-

tite graphs, as the problem at hand. Currently, we are

only aware of two recent works [19, 22] proposing MKL

approach to integrate similarity measures for drugs and

targets.

Drug-target prediction fits a link prediction problem

[4], which can be solved by a Kronecker regularized least

squares approach (KronRLS) [10]. A single kernel version

of this method has been recently applied to drug-target

prediction problem [10, 11]. A recent survey indicated

that KronRLS outperforms SVM based methods in DTI

prediction [2]. KronRLS uses Kronecker product algebraic

properties to be able to perform predictions on the whole

drug-target space, without the explicit calculation of the

pairwise kernels. Therefore, it can cope with problems on

large drugs vs. proteins spaces. However, KronRLS can

not be used on a MKL context.

In this work, we propose a new MKL algorithm to

automatically select and combine kernels on a bipar-

tite drug-protein prediction problem, the KronRLS-MKL

algorithm (Fig 1). For this, we extend the KronRLSmethod

to a MKL scenario. Our method uses L2 regularization

to produce a non-sparse combination of base kernels.

The proposed method can cope with large drug vs. target

interaction matrices; does not requires sub-sampling of

the drug-target network; and is also able to combine and

select relevant kernels. We perform an empirical analysis

using drug-target datasets previously described [23] and a

diverse set of drug kernels (10) and protein kernels (10).

In our experiments, we considered three different sce-

narios in the DTI prediction [2, 11, 24]: pair prediction,

where every drug and target in the training set have

at least one known interaction; or the ‘new drug’ and

‘new target’ setting, where some drugs and targets are

present only in the test set, respectively. A comparative

analysis with top performance single kernel approaches

[2, 8, 10, 25–27] and all competing integrative approaches

[14, 15, 22] demonstrates that our method is better or

competitive in the majority of evaluated scenarios. More-

over, KronRLS-MKL was able to select and also indicate

the relevance of kernels, in the form of weights, for each

problem.

Methods
In this work, we propose an extension of the Kron-

RLS algorithm under recent developments of the MKL

framework [28] to address the problem of link predic-

tion on bipartite networks with multiple kernels. Before

introducing our method, we will describe the RLS and

the KronRLS algorithms (for further information, see

[10, 11]).

RLS and KronRLS

Given a set of drugs D = {d1, . . . , dnd }, targets T =
{t1, . . . , tnt }, and the set of training inputs xi (drug-target

pairs) and their binary labels yi ∈ R (where 1 stands for a

known interaction and 0 otherwise), with 1 < i ≤ n, n =
|D||T | (number of drug-target pairs). The RLS approach

minimizes the following function [29]:

J(f ) =
1

2n

n
∑

i=1

(yi − f (xi))
2 +

λ

2
‖ f ‖2K , (1)

where ‖ f ‖K is the norm of the prediction function f on

the Hilbert space associated to the kernel K, and λ > 0

is a regularization parameter which determines the com-

promise between the prediction error and the complexity

of the model. According to the representer theorem [30],

a minimizer of the above objective function admits a dual

representation of the following form

f (x) =
n

∑

i=1

aiK(x, xi) , (2)

where K : |D||T | × |D||T | → R is named the pair-

wise kernel function and a is the vector of dual variables

corresponding to each separation constraint. The RLS

algorithm obtains the minimizer of Eq. 1 solving a sys-

tem of linear equations defined by (K + λI)a = y, where

a and y are both n-dimensional vectors consisting of the

parameters ai and labels yi.

One can construct such pairwise kernel as the prod-

uct of two base kernels, namely K((d, t), (d′, t′)) =
KD(d, d′)KT (t, t′), where KD and KT are the base kernels

for drugs and targets, respectively. This is equivalent to

the Kronecker product of the two base kernels [4, 31]:

K = KD ⊗ KT . The size of the kernel matrix makes

the model training computationally unfeasible even for

moderate number of drugs and targets [4].

The KronRLS algorithm is a modification of RLS, and

takes advantage of two specific algebraic properties of the

Kronecker product to speed up model training: the so
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called vec trick [31] and the relation of the eigendecom-

position of the Kronecker product to the eigendecompo-

sition of its factors [11, 32].

Let KD = QD�DQ
T
D and KT = QT�TQ

T
T be the

eigendecomposition of the kernel matrices KD e KT . The

solution a can be given by solving the following equation

[11]:

a = vec(QTCQ
T
D) , (3)

where vec(·) is the vectorization operator that stacks the

columns of a matrix into a vector, and C is a matrix

defined as:

C = (�D ⊗ �T + λI)−1vec(QT
TY

TQD) . (4)

The KronRLS algorithm is well suited for the large pair-

wise space involved on the DTI prediction problem, since

the estimation of vector a using Eqs. 3 and 4 is a much

faster solution compared to the original RLS estimation

process in such scenario. However, it does not support the

use of multiple kernels.

KronRLS MKL

In this work, a vector of different kernels is considered,

i.e., kD = (K1
D,K

2
D, . . . ,K

PD
D ) and kT = (K1

T ,K
2
T , . . . ,K

PT
T ),

PD and PT indicate the number of base kernels defined

over the drugs and target set, respectively. In this section,

we propose an extension of KronRLS to handle multiple

kernels.

The kernels can be combined by a linear function, i.e.,

the weighted sum of base kernels, corresponding to the

optimal kernels K∗
D and K∗

T :

K∗
D =

PD
∑

i=1

β i
DK

i
D , K∗

T =
PT
∑

j=1

β
j
TK

j
T ,

where βD =
{

β1
D, . . . ,β

PD
D

}

and βT =
{

β1
T , . . . ,β

PT
T

}

,

correspond to the weights of drug and protein kernels,

respectively.

In [28], the author demonstrated that MKL can be inter-

preted as a particular instance of a kernel machine with

two layers, in which the second layer is a linear function.

His work provides the theoretical basis for the develop-

ment of a MKL extension for the closely related KronRLS

algorithm in our work.

The classification function of Eq. 2 can be written in

matricial form, fa = Ka [29] and applying the well known

property of the Kronecker product, (A ⊗ B)vec(X) =
vec

(

BXAT
)

[32], we have:

fa(X) = Ka

=
(

K∗
D ⊗ K∗

T

)

vec
(

QTCQ
T
D

)

=
(

K∗
T

(

QTCQ
T
D

)

(

K∗
D

)T
)

.

This way, we can rewrite the classification function as
(

K∗
TA

(

K∗
D

)T
)

, where A = unvec(a). Using the same itera-

tive approach considered in previous MKL strategies [13],

we propose the use of a two step optimization process, in

which the optimization of the vector a is interleaved with

the optimization of the kernel weights. Given two initial

weight vectors, β0
D and β0

T , an optimal value for the vec-

tor a, using Eq. 3 is found, and with such optimal a, we

can proceed to find optimal βD and βT . More specifically,

Eq. 1 can be redefined when a is fixed, and knowing that

‖ f ‖2F = aTKa [28], we have:

u =
(

y −
λa

2

)

,

then,

J(fa) =
1

2λn
‖ u − Ka‖22 +

1

2
aT (y − λa). (5)

Since the second term does not depend on K (and thus

does not depend on the kernel weights), and, as y and a

are fixed, it can be discarded from the weights optimiza-

tion procedure. Note that we are not interested in a sparse

selection of base kernels as in [28], therefore we intro-

duce a L2 regularization term to control sparsity [33] of

the kernel weights, also known as a ball constraint. This

term is parameterized by the σ regularization coefficient.

Additionally, we can convert u to its matrix form by the

application of the unvec operator, i.e., U = unvec(u),

and also use a more appropriate matrix norm (Frobenius,

‖ A ‖2≤‖ A ‖F [32]). In this way, for any fixed values of

a and βT , the optimal value for the combination vector is

obtained by solving the optimization problem defined as:

min
βD

1

2λn
‖ U − mDβD ‖F + σ ‖ βD‖22 (6)

mD =
(

K∗
TA

(

K1
D

)T
,K∗

TA
(

K2
D

)T
, . . . ,K∗

TA
(

K
PA
D

)T
)

(7)

while the optimal βT can be found fixing the values of a

and βD, according to:

min
βT

1

2λn
‖ U − βTmT ‖F + σ ‖ βT‖22 (8)

mT =
(

K1
TA

(

K∗
D

)T
,K2

TA
(

K∗
D

)T
, ...,K

PT
T A

(

K∗
D

)T
)

.

(9)

The optimizationmethod used here is the interior-point

optimization algorithm [34] implemented in MATLAB

[35].

Data

The datasets considered were first proposed by [23] and

used by most competing methods [2, 10, 11, 15, 25].

Each dataset consists of a binary matrix, containing the
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known interactions of a determined set of drug targets,

namely Enzyme (E), Ion Channel (IC), GPCR and Nuclear

Receptors (NR), based on information extracted from the

KEGG BRITE [36], BRENDA [37], SuperTarget [38] and

DrugBank databases [39]. All four datasets are extremely

unbalanced, if we consider the whole drug-target inter-

action space, i.e., the number of known interactions is

extremely lower than the number of unknown interac-

tions, as presented in Table 1.

In order to analyze each type of entity from differ-

ent points of view, we extracted 20 (10 for targets and

10 for drugs) distinct kernels from chemical structures,

side-effects, amino acid sequence, biological function, PPI

interactions and network topology (a summary of base

kernels is presented in Table 2).

Protein kernels

Here we use the following information sources about tar-

get proteins: amino acid sequence, functional annotation

and proximity in the protein-protein network. Concern-

ing sequence information, we consider the normalized

score of the Smith-Waterman alignment of the amino acid

sequence (SW) [23], as well as different parametrizations

of theMismatch (MIS) [40] and the Spectrum (SPEC) [41]

kernels. For the Mismatch kernel, we evaluated four com-

binations of distinct values for the k-mers length (k = 3

and k = 4) and the number of maximal mismatches

per k-mer (m = 1 and m = 2), namely MIS-k3m1,

MIS-k3m2, MIS-k4m1 and MIS-k4m2; for the Spec-

trum kernel, we varied the k-mers length (k = 3 and k =
4, SPEC-k3 and SPEC-k4, respectively). Both Mismatch

and Spectrum kernels were calculated using the R package

KeBABS [42].

The Gene Ontology semantic similarity kernel (GO)

was used to encode functional information. GO terms

were extracted from the BioMART database [43], and

the semantic similarity scores between the GO annota-

tion terms were calculated using the csbl.go R package

Table 1 Number drugs, targets and positive instances (known

interactions) vs. the number of negative (or unknown)

interactions on each dataset

Datasets

Nuclear receptors GPCR Ion channel Enzyme

Interactions

Known 90 635 1476 2926

(6.41 %) (3 %) (3.45 %) (1 %)

Unknown 1314 20550 41364 292554

(93.59 %) (97 %) (96.55 %) (99 %)

Entity

Drugs 54 223 210 445

Targets 26 95 204 664

Table 2 Network entities and respective kernels considered for

combination purposes

Entity Kernels Information

source

Drugs AERS-bit - AERS bit Side-effects

AERS-freq - AERS freq Side-effects

GIP - Gaussian Interaction Profile Network

LAMBDA - Lambda-k Kernel Chem. Struct.

MARG - Marginalized Kernel Chem. Struct.

MINMAX - MinMax Kernel Chem. Struct.

SIMCOMP - Graph kernel Chem. Struct.

SIDER - Side-effects Similarity Side-effects

SPEC - Spectrum Kernel Chem. Struct.

TAN - Tanimoto Kernel Chem. Struct.

Proteins GIP - Gaussian Interaction Profile Network

GO - Gene Ontology Semantic Similarity Func. Annot.

MIS-k3m1 - Mismatch kernel
(k = 3,m = 1)

Sequences

MIS-k4m1 - Mismatch kernel
(k = 4,m = 1)

Sequences

MIS-k3m2 - Mismatch kernel
(k = 3,m = 2)

Sequences

MIS-k4m2 - Mismatch kernel
(k = 3,m = 2)

Sequences

PPI - Proximity in protein-protein
network

Protein-protein
Interactions

SPEC-k3 - Spectrum kernel (k = 3) Sequences

SPEC-k4 - Spectrum kernel (k = 4) Sequences

SW - Smith-Waterman aligment score Sequences

[44], with the Resnik algorithm [45]. We also extracted a

similarity measure from the human protein-protein net-

work (PPI), obtained from the BioGRID database [46].

The similarity between each pair of targets was calculated

based on the shortest distance on the corresponding PPI

network, according to:

S(p, p′) = AebD(p,p′),

where A and b parameters were set as in [14] (A =
0.9, b = 1), and D(p, p′) is the shortest hop distance

between proteins p and p′.

Drug kernels

As drug information sources, we consider 6 distinct chem-

ical structure and 3 side-effects kernels. Chemical struc-

ture similarity between drugs was achieved by the applica-

tion of the SIMCOMP algorithm [47] (obtained from [23]),

defined as the ratio of common substructures between

two drugs based on the chemical graph alignment. We

also computed the Lambda-k kernel (LAMBDA) [48], the

Marginalized kernel [49] (MARG), the MINMAX kernel [50],
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the Spectrum kernel [48] (SPEC) and the Tanimoto kernel

[50] (TAN). These later kernels were calculated with the R

Package Rchemcpp [48] with default parameters.

Two distinct side-effects data sources were also consid-

ered. The FDA adverse event reporting system (AERS),

fromwhich side effect keywords (adverse event keywords)

similarities for drugs were first retrieved by [51]. The

authors introduced two types of pharmacological profiles

for drugs, one based on the frequency information of side

effect keywords in adverse event reports (AERS-freq)

and another based on the binary information (presence

or absence) of a particular side-effect in adverse event

reports (AERS-bit). Since not every drug in the Nuclear

Receptors, Ion Channel, GPCR and Enzyme datasets is

also present on AERS-based data, we extracted the simi-

larities of the drugs in AERS, and assigned zero similarity

to drugs not present.

The second side-effect resource was the SIDER

database1 [52]. This database contains information about

commercial drugs and their recorded side effects or

adverse drug reactions. Each drug is represented by a

binary profile, in which the presence or absence of each

side effect keyword is coded 1 or 0, respectively. Both

AERS and SIDER based profile similarities were obtained

by the weighted cosine correlation coefficient between

each pair of drug profiles [51].

Network topology information

We also use drug-target network structure in the form of

a network interaction profile as a similarity measure for

both proteins and drugs. The idea is to encode the con-

nectivity behavior of each node in the subjacent network.

The Gaussian Interaction Profile kernel (GIP) [10] was

calculated for both drugs and targets.

Competing methods

We compare the predictive performance of the KronRLS-

MKL algorithm against other MKL approaches, as well as

in a single kernel context (one kernel for drugs, and one for

targets). In the latter, we evaluate the performance of each

possible combination of base kernels (Table 2) with the

KronRLS algorithm, recently reported as the best method

for predicting drug-target pairs with single paired kernels

[2]. This resulted in a total of 10 × 10 = 100 different

combinations. The best performing pairs were then used

as baselines in our method evaluation, selected according

to two distinct criteria: the kernel pair that achieved the

largest area under the precision recall curve (AUPR) on

the training set, and, a more optimistic approach, which

considered the largest AUPR on the testing set.

Besides the combination of single kernels for drugs and

targets, two different kinds of methods were adopted to

integrate multiple kernels: (1) standard non-MKL ker-

nel methods for DTI prediction, trained on the average

of multiple kernels (respectively for drugs and targets);

(2) actual MKL methods specifically proposed for DTI

prediction.

Non-MKL approaches

We extend state-of-the-art methods [8, 10, 25–27] for the

DTI prediction problem for a multiple kernel context. For

this, initially we average multiple kernels to produce a sin-

gle kernel (respectively for drugs and targets). Once we

have a single average kernel (one for drug and one for

target), we adopt a standard kernel method for DTI pre-

diction, i.e., the base learner. In our experiments, two dis-

tinct previous combinations strategies are used: the mean

of base kernels and the kernel alignment (KA) heuristic,

previously proposed by [53]. We will briefly describe the

base learners, followed by a short overview of the two

combination strategies considered.

The Bipartite Local Model (BLM) [26] is a machine

learning based algorithm, where drug-target pairs are pre-

dicted by the construction of the so called ‘local models’,

i.e., a SVM classifier is trained for each drug in the training

set, and the same is done for targets. Then, the maxi-

mum scores for drugs and targets are used to predict new

drug-target interactions. Since BLM demonstrated supe-

rior performance than Kernel Regression Method (KRM)

[23] in previous studies [2, 26], we did not consider KRM

in our experiments.

The Network-based Random Walk with Restart on the

Heterogeneous network (NRWRH) [8] algorithm predicts

new interactions between drugs and targets by the simu-

lation of a random walk in the network of known drug-

target predictions as well as in the drug-drug and protein-

protein similarity networks. LapRLS and NetLapRLS are

both proposed in [25]. Both are based on the RLS learn-

ing algorithm, and perform similarity normalization by

the application of the Laplacian operator. Predictions are

done for drugs and targets separately, and the final predic-

tion scores are obtained by averaging the prediction result

from drug and target spaces.

As said previously, most previous SVM-based methods

found on the literature can be reduced to the Pairwise Ker-

nel Method (PKM) [27], with the distinction being made

by the kernels used and the adopted combination strat-

egy. PKM starts with the construction of a pairwise kernel,

computed from the drug and target similarities. Given two

drug-target pairs, (d, p) and (d′, p′), and the respective

drug and target similarities, KD and KP, the pairwise ker-

nel is given by K((d, p), (d′, p′) = KD(d, d′) × KP(p, p
′).

Once the pairwise matrix is computed, it is then used to

train a SVM classifier.

The PKM [27], KronRLS, BLM, NRWRH, LapRLS and

NetLapRLS algorithms cannot cope withmultiple kernels.

For this reason, we consider two simple methods avail-

able for kernel combination: the mean of base kernels and
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the kernel alignment (KA) heuristic [53]. The mean drug

kernel is computed as K∗
D = 1/PD

∑PD
i=1 K

i
D, and the same

can be done for targets, analogously. KA is a heuristic for

the estimation of kernel weights based on the notion of

kernel alignment [54].More specifically, the weight vector,

βD for instance, can be obtained by:

β i
D =

A
(

K i
D, yy

T
)

PD
∑

h=1

A
(

Kh
D, yy

T
)

, (10)

where yyT stands for the ideal kernel and y being the label

vector. The alignment A
(

K , yyT
)

of a given kernel K and

the ideal kernel yyT is defined as:

A
(

K , yyT
)

=
〈

K , yyT
〉

F

n
√

〈K ,K〉F
, (11)

where
〈

K , yyT
〉

F
=

n
∑

i=1

n
∑

j=1
(K)ij

(

yyT
)

ij
. Once such com-

binations are performed, the resulting drug and protein

kernels are then used as input to the learning algorithm.

We refer to the mean and KA heuristics appending the

-MEAN and -KA, respectively, to each base learner.

Multiple kernel approaches

Similarity-based Inference of drug-TARgets (SITAR) [14]

constructs a feature vector with the similarity values,

where each feature is based on one drug-drug and one

gene-gene similarity measure, resulting in a total of PD ×
PT features. Each one is calculated by combining the drug-

drug similarities between the query drug and other drugs

and the gene-gene similarities between the query gene and

other target genes across all true drug-target associations.

The method also performs a feature selection procedure

and yields the final classification scores using a logistic

regression classifier.

Gönen and Kaski [22] proposed the Kernelized Bayesian

Matrix Factorization with Twin Multiple Kernel Learn-

ing (KBMF2MKL) algorithm, extending a previous work

[55] to handle multiple kernels. The KBMF2MKL factor-

izes the drug-target interaction matrix by projecting the

drugs and the targets into a common subspace, where the

projected drug and target kernels aremultiplied. Normally

distributed Kernel weights for each subspace projected

kernel are then estimated without any constraints. The

product of the final combined matrices is then used to

make predictions.

Wang et al. [15] proposes to use a simple heuristic to

previously combine the drug and target similarities, and

then use a SVM classifier to perform the predictions.

Only the maximum similarity values of drug and target

kernel matrices are selected, resulting in two distinct ker-

nels. They are then used to construct a pairwise kernel,

computed from the drug and target similarities. Once the

pairwisematrix is computed, it is then used to train a SVM

classifier. This procedure is also known as the Pairwise

Kernel Method (PKM) [27]. For this reason, we refer to the

approach proposed by [15] by PKM-MAX.

The authors in [15] suggest as further work a weighted

sum approach. They suggest to learn the optimal convex

combination of data sources maximizing the correlation

of the obtained kernel matrix with the topology of drug-

protein network. This objective can be achieved by solving

a linear programming problem, as follows:

max
βD

∣

∣corr(K∗
D, dist)

∣

∣ ,

where K∗
D correspond to the optimal combination of drug

kernel matrices with weight vector βD, dist is the drug-

drug distance matrix in the DTI network, and corr rep-

resents the correlation coefficient. Analogously, the same

can be done for targets. We call this method WANG-MKL.

Experimental setup

Previous work [2, 11, 24] suggest that, in the context of

paired input problems, one should consider separately

the experiments where the training and test sets share

common drugs or proteins. In order to achieve a clear

notion of the performance of each method, all competing

approaches were evaluated under 5 runs of three distinct

5-fold cross-validation (CV) procedures:

1. ‘new drug’ scenario: it simulates the task of

predicting targets for new drugs. In this scenario, the

drugs in a dataset were divided in 5 disjoint subsets

(folds). Then the pairs associated to 4 folds of drugs

were used to train the classifier and the remaining

pairs are used to test;

2. ‘new target’ scenario: it corresponds in turn to

predicting interacting drugs for new targets. This is

analogous to the above scenario, however

considering 5 folds of targets;

3. pair prediction: is consists of predicting unknown

interactions between known drugs and targets. All

drug-target interactionswere split in five folds, from

which 4 were used for training and 1 for testing.

Some of the competing methods (PKM-based,

WANG-MKL and SITAR) were trained with

sub-sampled datasets, i.e., we randomly selected the

same number of known interactions among the

unknown interaction set, since these methods cannot

be executed in large networks [2, 4, 14, 15]. Although

balanced classes are unlikely in real scenarios, we also

performed experiments in context (3), using a

sub-sampled test set, obtained by sampling as many

negative examples as positive examples [14, 15] from

the test fold. This experiment is relevant for

comparison to previous work, since most previous

studies on drug-target prediction performed
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under-sampling to evaluate predictive performance

(see Additional file 1: Table S1).2

The hyperparameters of each competing methods were

optimized under a nested CV procedure, using the fol-

lowing values: for the SVM-based methods (PKM, BLM

and WANG-MKL), the SVM cost parameter was evaluated

under the interval {2−1, . . . , 23}; for the KronRLS-based

methods, the λ parameter was evaluated in the inter-

val {2−15, 2−10, . . . , 230}. The σ regularization coefficient

of the KRONRLS-MKL algorithm was also optimized in

the interval {0, 0.25, 0.5, 0.75, 1}. The number of com-

ponents in KBMF2MKL was varied in the interval R ∈
{5, 10, . . . , 40}, and for the LapRLS and NetLapRLS

we varied βd,βt ∈ {0.25, 0.50, . . . , 1}. In NetLapRLS

we also considered two distinct values for γd2, γt2 ∈
{0.01, 0.1}. For NRWRH the restart probability was eval-

uated in the set {0.1, 0.2, . . . , 0.9}. After the hyperpa-

rameters were selected for each method, the outer

loop evaluated the predictive performance for the test

set partition with the model built using the selected

hyperparameters.

Fig. 2 Average performance of each single kernel with the KronRLS algorithm as base learner. The boxplots shows the AUPR performance of drug

and protein kernels across different kernel combinations
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Table 3 Results on MKL Experiments on 5 × 5 cross-validation experiments

Dataset Combination Pairs Targets Drugs

NR [SPEC-k4]-[AERS-freq] † 0.4630 (±0.0215) 0.3851 (±0.0254) 0.2341 (±0.0054)

[SPEC-k4]-[GIP] ∗ 0.5187 (±0.0255) 0.3725 (±0.0247) 0.0949 (±0.0068)

BLM-KA 0.0709 (±0.0048) 0.3441 (±0.0264) 0.3130 (±0.0224)

BLM-MEAN 0.0685 (±0.0062) 0.3453 (±0.0264) 0.2934 (±0.0154)

KBMF2MKL 0.2041 (±0.0150) 0.2059 (±0.0388) 0.1459 (±0.0272)

KRONRLS-KA 0.4321 (±0.0147) 0.3489 (±0.0337) 0.2850 (±0.0126)

KRONRLS-MEAN 0.4078 (±0.0211) 0.3482 (±0.0341) 0.2665 (±0.0109)

KRONRLS-MKL 0.5368 (±0.0137) 0.3541 (±0.0321) 0.3383 (±0.0224)

LAPRLS-KA 0.1989 (±0.0207) 0.2120 (±0.0277) 0.1841 (±0.0044)

LAPRLS-MEAN 0.1870 (±0.0196) 0.2008 (±0.0251) 0.1832 (±0.0022)

NETLAPRLS-KA 0.2310 (±0.0277) 0.2091 (±0.0288) 0.1841 (±0.0044)

NETLAPRLS-MEAN 0.2195 (±0.0273) 0.1989 (±0.0263) 0.1831 (±0.0023)

NRWRH-KA – – 0.1776 (±0.0380) 0.1911 (±0.0116)

NRWRH-MEAN – – 0.1755 (±0.0364) 0.1881 (±0.0109)

PKM-KA 0.1830 (±0.0114) 0.2363 (±0.0387) 0.1741 (±0.0158)

PKM-MAX 0.0946 (±0.0188) 0.0774 (±0.0108) 0.1174 (±0.0080)

PKM-MEAN 0.1702 (±0.0099) 0.2163 (±0.0400) 0.1672 (±0.0152)

SITAR 0.4477 (±0.0658) 0.1396 (±0.0505) 0.0694 (±0.0189)

WANG-MKL 0.3293 (±0.0175) 0.2238 (±0.0300) 0.2628 (±0.0225)

GPCR [SPEC-k4]-[MINMAX] † 0.3246 (±0.0093) 0.5053 (±0.0322) 0.0924 (±0.0055)

[SW]-[GIP] ∗ 0.6188 (±0.0075) 0.4561 (±0.0201) 0.0419 (±0.0014)

BLM-KA 0.0633 (±0.0071) 0.5508 (±0.0123) 0.3000 (±0.0198)

BLM-MEAN 0.0519 (±0.0032) 0.5353 (±0.0135) 0.2526 (±0.0188)

KBMF2MKL 0.4960 (±0.0124) 0.0963 (±0.0346) 0.1408 (±0.0120)

KRONRLS-KA 0.6208 (±0.0081) 0.4727 (±0.0101) 0.3005 (±0.0148)

KRONRLS-MEAN 0.6213 (±0.0085) 0.4461 (±0.0086) 0.2731 (±0.0155)

KRONRLS-MKL 0.6440 (±0.0052) 0.4127 (±0.0126) 0.3161 (±0.0112)

LAPRLS-KA 0.2183 (±0.0067) 0.1458 (±0.0050) 0.1210 (±0.0058)

LAPRLS-MEAN 0.2169 (±0.0066) 0.1369 (±0.0049) 0.1215 (±0.0061)

NETLAPRLS-KA 0.3763 (±0.0096) 0.1451 (±0.0041) 0.1211 (±0.0062)

NETLAPRLS-MEAN 0.3841 (±0.0088) 0.1357 (±0.0039) 0.1221 (±0.0061)

NRWRH-KA – – 0.0762 (±0.0041) 0.1201 (±0.0088)

NRWRH-MEAN – – 0.0704 (±0.0036) 0.1176 (±0.0099)

PKM-KA 0.2625 (±0.0133) 0.2327 (±0.0175) 0.1424 (±0.0146)

PKM-MAX 0.1230 (±0.0106) 0.0652 (±0.0071) 0.0935 (±0.0044)

PKM-MEAN 0.2613 (±0.0178) 0.1632 (±0.0186) 0.1254 (±0.0107)

SITAR 0.5324 (±0.0267) 0.1151 (±0.0538) 0.0283 (±0.0110)

WANG-MKL 0.4240 (±0.0071) 0.3521 (±0.0111) 0.2686 (±0.0274)
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Table 3 Results on MKL Experiments on 5 × 5 cross-validation experiments (Continued)

IC [PPI]-[GIP] † 0.6789 (±0.0078) 0.1548 (±0.0020) 0.0467 (±0.0009)

[SW]-[GIP] ∗ 0.8679 (±0.0056) 0.7301 (±0.0140) 0.0476 (±0.0008)

BLM-KA 0.1169 (±0.0127) 0.7944 (±0.0047) 0.2516 (±0.0304)

BLM-MEAN 0.1106 (±0.0088) 0.7798 (±0.0040) 0.2152 (±0.0257)

KBMF2MKL 0.7671 (±0.0033) 0.4420 (±0.0141) 0.0856 (±0.0044)

KRONRLS-KA 0.8553 (±0.0017) 0.7246 (±0.0071) 0.2039 (±0.0190)

KRONRLS-MEAN 0.8693 (±0.0011) 0.6885 (±0.0067) 0.1887 (±0.0186)

KRONRLS-MKL 0.8769 (±0.0011) 0.6894 (±0.0056) 0.2406 (±0.0259)

LAPRLS-KA 0.3088 (±0.0021) 0.2747 (±0.0031) 0.0942 (±0.0022)

LAPRLS-MEAN 0.3187 (±0.0024) 0.2760 (±0.0032) 0.0939 (±0.0021)

NETLAPRLS-KA 0.5359 (±0.0065) 0.2750 (±0.0032) 0.0931 (±0.0022)

NETLAPRLS-MEAN 0.5560 (±0.0073) 0.2766 (±0.0034) 0.0928 (±0.0023)

NRWRH-KA – – 0.2371 (±0.0046) 0.0720 (±0.0026)

NRWRH-MEAN – – 0.2363 (±0.0042) 0.0712 (±0.0024)

PKM-KA 0.5133 (±0.0235) 0.4151 (±0.0092) 0.1156 (±0.0041)

PKM-MAX 0.1608 (±0.0132) 0.1673 (±0.0038) 0.0660 (±0.0031)

PKM-MEAN 0.5474 (±0.0261) 0.3840 (±0.0062) 0.0998 (±0.0019)

SITAR 0.7505 (±0.0153) 0.1717 (±0.0633) 0.0174 (±0.0046)

WANG-MKL 0.7116 (±0.0214) 0.6009 (±0.0158) 0.2217 (±0.0124)

E [GO]-[GIP] † 0.6900 (±0.0032) 0.2371 (± 0.0025) 0.0124 (±0.0004)

[SW]-[GIP] ∗ 0.8429 (±0.00540) 0.7438 (± 0.0189) 0.0159 (±0.0003)

BLM-KA 0.0471 (±0.0045) 0.8201 (±0.0070) 0.2506 (±0.0060)

BLM-MEAN 0.0374 (±0.0032) 0.8099 (±0.0063) 0.2079 (±0.0051)

KBMF2MKL 0.6722 (±0.0051) 0.0757 (±0.0049) 0.0213 (±0.0004)

KRONRLS-KA 0.8630 (±0.0127) 0.7274 (±0.0071) 0.1829 (±0.0034)

KRONRLS-MEAN 0.8667 (±0.0098) 0.6917 (±0.0062) 0.1655 (±0.0030)

KRONRLS-MKL 0.8818 (±0.0128) 0.7384 (±0.0063) 0.2168 (±0.0050)

LAPRLS-KA 0.1920 (±0.0014) 0.1677 (±0.0072) 0.0682 (±0.0012)

LAPRLS-MEAN 0.1750 (±0.0015) 0.1402 (±0.0055) 0.0646 (±0.0013)

NETLAPRLS-KA 0.2853 (±0.0024) 0.1669 (±0.0042) 0.0670 (±0.0018)

NETLAPRLS-MEAN 0.2548 (±0.0019) 0.1402 (±0.0046) 0.0636 (±0.0016)

NRWRH-KA – – 0.0886 (±0.0011) 0.0403 (±0.0024)

NRWRH-MEAN – – 0.0816 (±0.0006) 0.0383 (±0.0018)

PKM-KA 0.2383 (±0.0069) 0.1905 (±0.0047) 0.0480 (±0.0037)

PKM-MAX 0.0762 (±0.0011) 0.0597 (±0.0007) 0.0323 (±0.0007)

PKM-MEAN 0.2161 (±0.0072) 0.1239 (±0.0032) 0.0382 (±0.0031)

SITAR 0.7558 (±0.0160) 0.0232 (±0.0151) 0.0097 (±0.0111)

WANG-MKL 0.7286 (±0.0046) 0.6663 (±0.0069) 0.1648 (±0.0042)

Best performing methods are indicated in bold. Standart deviation is indicated in brackets. Training of the PKM, SITAR and WANG algorithms was done with the balanced

training set
†best on training
∗
best on testing

The evaluation metric considered was the AUPR, as it

allows a good quantitative estimate of the ability to sep-

arate the positive interactions from the negative ones.

According to [56], this metric provides a better qual-

ity estimate for highly unbalanced data, since it punishes

more heavily the existence of false positives (FP). This
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is specially true for the datasets considered, as demon-

strated on Table 1, in which all datasets are extremely

unbalanced.

Results and discussion

Paired kernel experiments

As a base study, we evaluate the performance of KronRLS

on all pairs of kernels (10×10 pairs). The AUPR results of

all pairs of kernels for the Nuclear Receptors, GPCR, Ion

Channel and Enzyme datasets are show in more detail in

the supplementary material (see Additional file 1).

The performance of KronRLS varies drastically with

the kernel choice, as clearly demonstrated by the average

performance of each kernel on the single kernel experi-

ments (Fig. 2). For Nuclear Receptors, the best kernel pair

combination was SPEC-k4 and GIP, while GIP and SW

performed best in all other data sets. It is also important

to notice the impact of different parametrizations of the

Mismatch sequence kernel. Its performance decreases as

moremismatches are allowed inside a k-mer. Overall, both

versions of AERS, SIMCOMP, GIP, MINIMAX and SIDER

drug kernels showed better performance, while LAMBDA,

MARG, SPEC and TAN performed worse. For targets, GIP,

GO, MIS-k4m1, SPEC and SW kernels performed better

than other target kernels.

Comparative analysis

In this section, we compare the competing methods in

terms of AUPR for all datasets. Concerning KronRLS,

we will use the best kernel pair (Best Pair) with largest

AUPR as described in the previous section. This will serve

as a baseline to evaluate the MKL approaches. Results

are presented in Table 3. In the pair prediction scenario,

KRONRLS-MKL obtained highest AUPR in all datasets. Its

results are even superior than the performance in compar-

ison to the best kernel pair under the optimistic selection.

The results of KRONRLS-MKL in pair prediction are statis-

tically significant against all other methods (at α = 0.05),

except from KRONRLS-KA and KRONRLS-MEAN, accord-

ing to theWilcoxon rank sum test (Additional file 2). Con-

cerning the subsampled pair prediction, KRONRLS-MKL

achieved highest AUPR in the NR and IC data sets,

and SITAR performed best in the GPCR and Enzyme

data. There it performed second, just after SITAR (see

Additional file 3: Table S1). The highest AUPR values

obtained in the subsampled data sets in comparison to

the unbalanced data sets clearly indicate that performing

predictions in the complete data is a more difficult task.

Moreover, the number of positive examples was negatively

correlated to the dataset size for the complete datasets.

In the ’new target’ scenario, BLM-KA performed best

in 3 of 4 datasets, followed closely by BLM-mean and

KRONRLS-MKL, demonstrating that the local SVMmodel

is more effective in such scenario. BLM-KA performed

better than all evaluated methods with the exception of

BLM-Mean, KBMF-MKL, KRONRLS-KA, KRONRL-MEAN

and KRONRLS-MKL (α = 0.05 Additional file 2). In

the ’new drug’ problem, KRONRLS-MKL obtained higher

AUPR in the NR and GPCR datasets, while BLM-KA had

higher AUPR values in the IC and Enzyme data. Both

KRONRLS-MKL and BLM-KA had statistically significant

higher AUPR (at α = 0.05; Additional file 2) than all other

competing methods. In order to give an overview of the

performance of the evaluated methods, an average rank-

ing of the AUPR values obtained by all methods across the

four datasets is presented in Table 4.

Methods also displayed distinct computational require-

ments. Memory usage was stable accross all methods,

except from the SVM-based algorithms, which demon-

strated quadratic growth of the memory used in relation

to the size of the dataset (BLM, PKM, WANG-MKL). This

is in part due to the construction of the explicit pairwise

kernel (see Additional file 3: Table S3). This fact turns such

methods inadequate for contexts in which subsampling of

pairs is undesirable.

We now discuss about computational time in the pair

prediction scenario. The precomputed kernels approaches

(MEAN and KA) were overall the fastest on average,

with PKM-based methods requiring less time to train and

Table 4 Average ranking over all four datasets

Prediction task

Method Pair Targets Drugs

SINGLE† 7.0 7.8 15.0

SINGLE∗ 3.3 3.3 17.5

BLM-KA 16.0 2.5 1.8

BLM-MEAN 17.0 3.0 4.0

KBMF2MKL 7.3 13.5 13.3

KRONRLS-KA 3.8 4.3 3.8

KRONRLS-MEAN 3.0 5.8 5.0

KRONRLS-MKL 1.0 4.8 1.5

LAPRLS-KA 12.8 11.5 9.8

LAPRLS-MEAN 13.3 12.8 10.5

NETLAPRLS-KA 9.3 12.0 10.3

NETLAPRLS-MEAN 9.0 13.0 11.3

NRWRH-KA – 15.8 12.0

NRWRH-MEAN – 16.8 13.0

PKM-KA 11.8 8.8 9.8

PKM-MAX 15.0 18.5 16.0

PKM-MEAN 12.0 11.0 11.5

SITAR 5.0 17.3 19.0

WANG-MKL 6.8 7.8 5.0

†

best on training
∗
best on testing
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test the models (∼1 min), followed by KronRLS-based

and LapRLS-based algorithms(∼20 and 27 min, respec-

tively). KBMF2MKL and BLMwere the slowest, requiring

more than 100 min on average at the same task. The

lower computation time of the heuristic-based methods is

explained by the absence of complex optimization proce-

dures to find the kernel weights. KronRLS-MKL took a lit-

tle less time than KBMF2MKL, taking an average over the

four datasets of 74 min. (see Additional file 3: Table S4).

Predictions on new drug-target interactions

In order to evaluate the quality of final predictions in

a more realistic scenario, we performed an experiment

similar to that described by [10, 26]. We estimate the

most highly ranked drug–target pairs as most likely true

interactions, and performed a search on the current

release of four major databases (DrugBank [39], MATA-

DOR [38], KEGG [57]) and ChEMBL [58]. As the training

datasets were generated almost eight years ago, new

interactions included in these databases will serve as a

external validation set. We exclude interactions already

present in the training data.

We trained all methods with all interactions present

in the original datasets. In the specific case of BLM

and NRWRH, one model for drugs and another for tar-

gets was trained, and then the maximum score for each

DT pair was considered for prediction. Then, we cal-

culated the AUPR for each dataset separately, discard-

ing already known interactions (see Additional file 3:

Table S2). The low AUPR values of all methods indi-

cate the difficulty in performing predictions in such large

search space. An average ranking (Fig. 3) of each method

across all databases indicates that KronRLS methods as

best performing algorithms followed by single kernel

approaches. It is also important to highlight the poor

performance of BLM-KA and BLM-MEAN in this task.

Fig. 3Mean AUPR ranking of each method when compared to the new interactions found on updated databases. The KronRLS-based methods

achieved superior performance when compared to other integration strategies



Nascimento et al. BMC Bioinformatics  (2016) 17:46 Page 13 of 16

This indicates a poor generalization capacity of the BLM

framework to the drug-target prediction problem (see

Table 3).

Next, a more practical assessment of the predicting

power of KRONRLS-MKL is done, by looking to the top

5 ranked interactions predicted by our method (Table 5).

We observe that the great majority of interactions (14 out

of 20) have been already described in ChEMBL, Drug-

Bank or Matador. We focus our discussion in selected

novel interactions. For example, in the Nuclear Receptor

database, the 5th ranked prediction indicates the asso-

ciation of Tretinoin with the nuclear factor RAR-related

orphan receptor A (RORa). Tretinoin is a drug currently

used to treatment of acnes [59]. Interestingly, its molec-

ular activity is associated with the activation of nuclear

receptors of the closelly related RAR family.

This is also a good example to illustrate the benefits for

incorporation of multiple sources of data. Both RORa and

Tretinoin do not share nodes in the training set. All tar-

gets of Tretinoin have a highGO similarity to RORa (mean

value of 0.8368) despite of theirr low sequence similarity

(SW mean value is 0.1563). In addition, one of the targets

RORa is NR0B1 (nuclear receptor subfamily 0, group B,

member 1). This protein is very close to RORa in the PPI

network (similarity score of 0.90).

Concerning Ion Channel models, prediction ranked 2

and 3 indicate the interaction of Verapamil and Diazox-

ide with ATP-binding cassete sub-family C (ABBCC8).

ABBCC8 is one of the proteins encoding the sulfonylurea

receptor (SUR1) and is associated to calcium regulation

and diabetes type I [60]. Interestingly, there are positive

reports of Diazoxide treatments to prevent diabetes in rats

[61].

Evaluation of kernel weigths

The kernel weights given by KBMF2MKL, KRONRLS-MKL

and WANG-MKL, as well as the KA heuristic, can be

used to analyze the ability of such methods to identify

the most relevant information sources. As there is no

guideline or gold standard for this, we resort to a sim-

ple approach: compare the kernel weights (Fig. 4) with

the average performance of each kernel on the single

Table 5 Top five predicted interactions by KRONRLS-MKL

Drug Target

Nuclear Receptors

D00951 Medroxyprogesterone acetate hsa2099 estrogen receptor 1 (D,C)

D00585 Mifepristone hsa2099 estrogen receptor 1 (C)

D00182 Norethisterone hsa2099 estrogen receptor 1 (C)

D00105 Estradiol hsa5241 progesterone receptor (C)

D00094 Tretinoin hsa6095 RAR-related orphan receptor A

GPCR

D02358 Metoprolol hsa154 adrenoceptor beta 2, surface (D,C)

D00283 Clozapine hsa1814 dopamine receptor D3 (D,C,M)

D00371 Theophylline hsa135 adenosine A2a receptor (K,D,C)

D00371 Theophylline hsa134 adenosine A1 receptor (K,D,C)

D00095 Adrenaline hsa155 adrenoceptor beta 3 (K,D,C)

Ion Channel

D00775 Riluzole hsa2898 glutamate receptor, ionotropic, kainate 2 (M)

D02356 Verapamil hsa6833 ATP-binding cassette, sub-family C (CFTR

D00294 Diazoxide hsa10060 ATP-binding cassette, sub-family C (CFTR

D02356 Verapamil hsa56660 potassium channel, two pore domain subfamily K, member 12

D00524 Carbachol hsa1134 cholinergic receptor, nicotinic, alpha 1 (muscle)

Enzyme

D00542 Halothane hsa1571 cytochrome P450, family 2, subfamily E, polypeptide 1 (D,C,M)

D00437 Nifedipine hsa1559 cytochrome P450, family 2, subfamily C, polypeptide 9 (D,C,M)

D00528 Anhydrous caffeine hsa1549 cytochrome P450, family 2, subfamily A, polypeptide 7 (M)

D03670 Deferoxamine hsa1579 cytochrome P450, family 4, subfamily A, polypeptide 11

D00139 Methoxsalen hsa1543 cytochrome P450, family 1, subfamily A, polypeptide 1 (D,M)

Interactions found in KEGG, DrugBank, ChEMBL and Matador are marked as K, D, C and M respectively
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Fig. 4 Comparison of the average final weights obtained by the Kernel Alignment (KA) heuristic, KBMF2MKL, KronRLS-MKL and WANG-MKL

algorithms. As one can note, the KA heuristic demonstrated close to mean weights, while KRONRLS-MKL and WANG-MKL effectively discarded

the most irrelevant kernels

kernel experiments (Fig. 2). First, it is noticeable that

the KA weights are very similar to the average selec-

tion (0.10). This indicates that no clear kernel selection

is performed. WANG-MKL and KRONRLS-MKL give low

weights to drug kernels LAMBDA, MARG, MINIMAX, SPEC

and TAN and protein kernel MIS-k3m2. These kernels

have overall worst AUPR in the single kernel experiments,

which indicates an agreement with both selection pro-

cedures. Although the weights assigned by KBMF2MKL

are not subject to convex constraints, as indicated by

the larger weights assigned to all kernels, they also pro-

vide a notion of quality of base kernels. We can observe

a stronger preference to the GIP kernel, in all datasets,

even though the algorithm assigned a high weight

for the lower quality MIS-k3m2 in three of the four

datasets.

Conclusions
We have presented a new Multiple Kernel Learning algo-

rithm for the bipartite link prediction problem, which is

able to identify and select the most relevant information

sources for DTI prediction. Most previous MKL methods

mainly solve the problem of MKL when kernels are built

over the same set of entities, which is not the case for

the bipartite link prediction problem, e.g. drug-target net-

works. Regarding predictions in drug-target networks, the

sampling of negative/unknown examples, as a way to cope

with large data sets, is a clear limitation [2]. Our method
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takes advantage of the KronRLS framework to efficiently

perform link prediction on data with arbitrary size.

In our experiments, the KronRLS-MKL algorithm

demonstrated an interesting balance between accuracy

and computational cost in relation to other approaches.

It performed best in the “pair” prediciton problem and

the “new target” problem. In the ’new drug’ and ’new tar-

get’ prediction tasks, BLM-KA was also top ranked. This

method has a high computational cost. This arises from

the fact it requires a classifier for each DT pair [2]. More-

over, it obtained poor results in the evaluation scenario to

predict novel drug-protein pairs interactions.

The convex constraint estimation of kernel weights cor-

related well with the accuracy of a brute force pair kernel

search. This non-sparse combination of kernels possibly

increased the generalization of the model by reducing the

bias for a specific type of kernel. This usually leads to

better performance, since the model can benefit from dif-

ferent heterogeneous information sources in a systematic

way [33]. Finally, the algorithm performance was not sen-

sitive to class unbalance and can be trained over the whole

interaction space without sacrificing performance.

Endnotes
1http://sideeffects.embl.de/.
2NRWRH cannot be applied to the pair prediction [8],

by which this method was not considered in such context.
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