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Air quality prediction is an important research issue due to the increasing impact of air pollution on the urban environment.
However, existing methods often fail to forecast high-polluting air conditions, which is precisely what should be highlighted. In
this paper, a novel multiple kernel learning (MKL) model that embodies the characteristics of ensemble learning, kernel learning,
and representative learning is proposed to forecast the near future air quality (AQ). ,e centered alignment approach is used for
learning kernels, and a boosting approach is used to determine the proper number of kernels. To demonstrate the performance of
the proposed MKL model, its performance is compared to that of classical autoregressive integrated moving average (ARIMA)
model; widely used parametric models like random forest (RF) and support vector machine (SVM); popular neural network
models like multiple layer perceptron (MLP); and long short-term memory neural network. Datasets acquired from a coastal city
Hong Kong and an inland city Beijing are used to train and validate all the models. Experiments show that the MKL model
outperforms the other models. Moreover, the MKL model has better forecast ability for high health risk category AQ.

1. Introduction

With the development of the economy and society all over
the world, most metropolitan cities are experiencing ele-
vated concentrations of ground-level air pollutants, espe-
cially in fast developing countries like India and China.
Exposure to air pollution can affect everyone, but it can be
particularly harmful to people with a heart disease or a lung
condition, elderly people, and children. Studies show that
long-term exposure to fine particulate air pollution or
traffic-related air pollution is associated with environmental-
cause mortality, even at concentration ranges well below the
standard annual mean limit value [1, 2]. ,erefore, building
an early warning system, which provides precise forecast and
also alerts health alarm to local inhabitants will provide
valuable information to protect humans from damage by air
pollution.

Currently, three major approaches are used to forecast
real-time air quality: simple empirical approaches, ad-
vanced physically based approaches, and machine learning
approaches.

Simple empirical approaches like persistence method
and climatology method are based on assumptions or hy-
pothesis; that is, thresholds of forecasted meteorological
variables can indicate future pollution level [3]. ,ey are
computationally fast but have low accuracy and are pri-
marily used as references by other methods. Advanced
physically based approaches like chemical transport models
(CTMs) simulate the formation and accumulation of air
pollutants by a solution of the conservation equations and
transformation relationships among the mass of various
chemical species and physical states. ,ey can provide
valuable insights for understanding pollutant diffusion
mechanisms. But they are computationally expensive, de-
manding reliable meteorological predictions, and highly
relevant to a high level of expertise [4].

Machine learning methods are computationally fast
and cost-effective and can provide promising prediction
accuracy. Various machine learning methods have been
applied to predict the air quality. Widely used methods
include classical autoregressive moving average (ARMA)
methods like the autoregressive integrated moving average
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(ARIMA) [5], support vector machine (SVM) methods like
the support vector classifier (SVC) [6, 7], ensemble
methods like the random forest (RF) [8, 9], artificial
neural network (ANN) methods like the multiple layer
perceptron (MLP) [10, 11], and deep learning methods like
the long short-term memory neural network (LSTM NN)
[12, 13].

Among the models mentioned above, ARIMA is a time
series model and is often used as a baseline model. ,e
performance of the SVM model is often hinged on the
appropriate choice of the kernel. A kernel in SVM in-
troduces nonlinearity into the problem by mapping
new input data implicitly into a Hilbert space where it
may then be linearly separable [14]. Neural network
models, especially deep neural networks, can automati-
cally learn the representations from raw data, but it takes
a long time and a large volume of data to train a well-
behaved network.

Multiple kernel learning (MKL) is proposed as an al-
ternative to cross validation, feature selection, metric
learning, and ensemble methods. MKL refers to using
multiple kernels instead of a single one; most of the algo-
rithms which make use of the kernel tricks can take the
advantage of MKL, such as SVM and kernel ridge regression
(KRR). In MKL, feature combination and classifier training
are done simultaneously, and different data formats can be
used in the same formulation. In addition, the inherent
kernel trick of combining linear kernels and nonlinear
kernels in MKL makes it more promising in solving fusing
information problems.,ere is a significant amount of work
in the literature for combining multiple kernels [15, 16].
Various applications indicate that performance gains can be
achieved by linear and nonlinear kernel combinations using
MKL methods [17–19].

In this paper, a novel multiple kernel learning-based
air quality prediction approach that can inherently capture
the characteristics of the heterogeneous time, meteorol-
ogy, and air pollutant data is proposed. Real datasets from
a coastal city Hong Kong and an inland city Beijing are
used to demonstrate the effectiveness the proposed ap-
proach. Comprehensive comparison experiments with
ARIMA, RF, SVCs, MLP, and LSTM are conducted.
,ough some of the algorithms can automatically learn the
representative features of the data, pretraining featuring
engineering is still necessary and will significantly affect
the models’ performance. In addition, hyperparameter
tuning is critical for all the parametric models. ,erefore,
in this paper, special attention is paid to the feature en-
gineering and parameter tuning process. ,e methodol-
ogies applied to Hong Kong and Beijing datasets are
similar. ,erefore, Hong Kong is used for demonstration
in most of the paper. ,e main contributions of this paper
are as follows:

(1) A multiple kernel learning approach is introduced
into the domain of air quality prediction for the first
time. Multiscale predictions over the next 1, 3, 6, 9,
and 12 hours’ air quality of an inland city Beijing and
a coastal city Hong Kong are presented.

(2) ,e proposed method can effectively capture the air
quality features from the hybrid time, meteorology,
and air pollutant data. ,e experimental results
demonstrated the advantages of this approach over
some of the widely used models, especially in the
prediction of severe air pollution conditions.

,e rest of the paper is organized as follows: Section 2
presents the methodology of the multiple kernel learning
algorithm; data preparation is introduced in Section 3; in
Section 4, extensive experimentation results and necessary
discussions are presented; and Section 5 concludes this
paper.

2. Methodology

While classical kernel-based classifiers such as SVCs are
based on a single kernel, in practice, it is often desirable to
base classifiers on combinations of multiple kernels since
data points typically can be due to multiple heterogeneous
sources. A kernel implicitly represents a notion of simi-
larity for the data, and different kernels will accommodate
different nonlinear mappings, and MKL provides a way to
combine different ideas of similarity. Using a specific
kernel may be a source of bias, and MKL provides a way to
select optimal kernels and parameters from a larger set of
kernels. In the air quality prediction case, the source data
are coming from different modalities. ,erefore, in the
paper, instead of using just a single kernel which is usually
more suitable for the homogeneous data source, multiple
kernels are combined, and the classical and empirically
successful support vector classifier is used as the base
learner. ,e detailed introduction of the kernel support
vector machine is given in Appendix A. In this section, the
multiple kernel learning approach is described first, and
then, the centered alignment method is introduced for
learning kernels.

2.1. Multiple Kernel Learning. MKL is conceptually similar
to single kernel learning. In other words, single kernel
leaning is a special case of MKL. In MKL, the final kernel is
learnt as a combination (linear or nonlinear) of many base
kernels from the data itself:

κη xi, xj( ) � fη κm xmi , x
m
j( ){ }P

m�1

∣∣∣∣∣∣η( ), (1)

where fη: R
P→R is the combination function, κm is the

kernel function, m is the dimensionality of the corre-
sponding feature representation, and η parameterizes the
combination function.

It is also possible to integrate η into the kernel functions
where it is optimized during training.

κη xi, xj( ) � fη κm xmi , x
m
j

∣∣∣∣∣η( ){ }P
m�1

( ). (2)

Most of the existing MKL algorithms fall into the first
category and try to combine predefined kernels in an op-
timal way. Commonly used kernels are linear, polynomial,
radial basis function (RBF), and sigmoid.
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κ x, xi( ) �
xT · xi( ) linear

xT · xi + 1( )d polynomial

exp −c x− xi
∣∣∣∣ ∣∣∣∣∣∣∣∣ ∣∣∣∣2( ) RBF

tan h cx · xi( ) sigmoidal.


(3)

,e kernels can be combined in different ways, and each
has its own combination parameter characteristics. Gener-
ally, linear combination methods are used, and they fall into
two basic categories: unweighted sum (i.e., using sum or
mean of the kernels as the combined kernel) and weighted
sum. In the weighted sum case, the combination function is
linearly parameterized:

κη xi, xj( ) � fη κm xmi , x
m
j( ){ }P

m�1

∣∣∣∣∣∣η( ) � ∑P
m�1

ηmκm xmi , x
m
j( ),
(4)

where η denotes the kernel weights. Different versions of this
approach differ in the way they put restrictions on η: the
linear sum has arbitrary real value ηm and the conic sum
requires ηm to be positive, while η sums to 1 for the convex
sum.

,e conic sum and convex sum are special cases of the
linear sum, but the former two are used more often because
the relative importance of the combined kernels can be
extracted by looking at the kernel weights. Furthermore, the
kernel weights of the conic and convex sum correspond to
scaling the feature spaces when they are nonnegative [20].

In this paper, the conic sum restriction used as the
convex sum is a special case of the conic sum. ,e resulting
decision function of the multiple kernel support vector
classifier (MKSVC) is defined as

f(x) �∑N
i�1

αiyi ∑P
m�1

ηmκm xmi , x
m
j( ) + b,

subject to η ∈ RP
+.

(5)

,ere are four important parameters: the number of
kernels (P), the inner kernel coefficients of each kernel,
features to use for each kernel (xmi ), and the weight (ηm) of
each kernel. In this paper, the inner kernel coefficients
are obtained by optimizing the single kernel-based learners.
η is obtained by the centered alignment approach proposed
in [32]. P is obtained through the boosting approach by

iteratively adding a new kernel until the performance stops
improving (the kernels are added based on the weights
learned by the centered alignment approach, kernel with
higher weight first). As with the features used by each kernel,
for simplicity, the canonical multiple kernel learning ap-
proach is used, namely, one kernel combination for all
feature representations. ,e pseudo code of the MKSVC is
described in Algorithm 1.

2.2. Centered Alignment Method for Learning Kernels.
Centered alignment is used as a similarity measure between
kernels or kernel matrices. Given p kernels matrices
Κ1,Κ2, . . . ,Κp, centered kernel alignment learns a linear
combination of kernels resulting in a combined kernel
matrix:

Κcμ � ∑p
q�1

μqΚcq, (6)

where p is the number of kernels, μq is the centered kernel
weight, and Κcq is the centered kernel:

Κcq � I− 11
T

m
( )Κq I− 11

T

m
( ), (7)

where I is the identity matrix, 1 ∈ Rm×1 denotes the vector
with all entries equal to one, and Κq is the original kernel
matrix.

,e alignment between two kernel functions Κ and Κ′ is
defined by

ρ̂ Κ,Κ′( ) � 〈Κc,Κc′〉FΚc
 F Κc′ F, (8)

where Κc and Κc′ are the centered kernels of Κ and Κ′ and
〈·, ·〉F denotes the Frobenius product and ‖ · ‖F the Fro-
benius norm defined by

∀A,B ∈ Rm×m,

〈A,B〉F � Tr A
T
B[ ],

‖A‖F �
��������
〈A,AF〉F

√
,

(9)

and ρ̂(Κ, Κ′) ∈ [0, 1] by definition.
Using the independent alignment-based algorithm

proposed in [32], the alignment between each kernel matrix
Κq and the target ΚY (ΚY � yyT, y is the labels) can be

Input: dataset: (x(1), y(1)), . . . , (x(n), y(n)), n samples
Output: decision function of MKSVC
Start First, get the kernel coefficients by optimizing the single kernel-base learners (κm(xi, xi))

Second, get the weight of each kernel by the centered kernel alignment algorithm (η)
,ird, get the number of kernels by boosting approach (P)
Fourth, get the combined optimized kernel κη(xi, xj) � ∑Pm�1 ηmκm(xi, xi)
,en, use SVC as the base learner and optimize it with a general optimizing algorithm
Return fm(x) � ∑Ni�1 αiyiκη(xi, xj) + b

Stop

ALGORITHM 1: MKSVC.
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computed independently by using the training samples
and the centered kernel weight can be chosen proportional
to that alignment. ,us, the resulting kernel matrix is de-
fined by

Κμ∝ ∑p
q�1

ρ̂ Κq,ΚY( )Κq � 1

ΚY
 F ∑

p

q�1

〈Κq,ΚY〉F
Κq
 F Κq. (10)

3. Data Preparation

In this paper, two datasets are used: one is from Hong Kong,
a coastal city, whose air condition is relatively good, and the
other is from an inland city, Beijing, whose air condition is
relatively poor. Dataset of HK contains two years’ hourly
meteorology data and pollutant data between 1 February
2013 and 31 January 2015 collected from HK’s Sha Tin air
quality monitoring station [21] and weather forecast station
[22]. Dataset of Beijing contains five years’ hourly PM2.5
data and meteorology data between 1 January 2010 and 31
December 2014 collected from UCI machine learning re-
pository [23].

3.1. Prediction Target and Performance Metric

3.1.1. Prediction Target. ,e prediction targets in this paper
are the air quality health index (AQHI) in Hong Kong and
the PM2.5 individual air quality level (IAQL) in Beijing.
AQHI and IAQL are scales designed to help understand the
impact of air quality on health. Unlike air quality concen-
trations, these air quality indices provide the public with
advice on how to protect their health during air quality levels
associated with low, moderate, high, and very high health
risks.,ey also provide advice on how to improve air quality
by proposing behavioral change to reduce the environmental
footprint [24, 25].

For any given hour, the AQHI is calculated from the sum
of the percentage excess risk of daily hospital admissions
attributing to the 3-hour moving average concentrations of
four criteria air pollutants: ozone (O3), nitrogen dioxide
(NO2), sulphur dioxide (SO2), and particulate matter (PM)
(respirable suspended particulates (RSP or PM10) or fine
suspended particulates (FSP or PM2.5), whichever poses
a higher health risk).

,e IAQL is classified based on the individual air quality
index (IAQI) which is calculated according to a formula
published by China’ Ministry of Environmental Protection
(MEP) [26]. ,e highest IAQI among pollutants SO2, NO2,
O3, carbon monoxide (CO), PM2.5, and PM10 at a given
time is called the primary or dominant pollutant and is
chosen for the overall AQI value. In China, PM2.5 is the
primary pollutant most of the time; therefore, its IAQI is
usually the overall AQI.

,e detailed information of calculating AQHI and IAQI
is given in Appendix B. ,ese indices are health protection
tools used to make decisions to reduce short-term exposure
to air pollution by adjusting activity levels during increased
levels of air pollution. Table 1 shows the health risks with
corresponding air quality classifications.

3.1.2. Performance Metric. In this paper, accuracy, mean
square error (mse), weighted precision (wp), weighted recall
(wr), and weighted f1-score (wf) are used to evaluate the
effectiveness of all the algorithms. ,e precision (P) is
calculated by the formula TP/(TP + FP) where TP is the
number of correct predictions and FP is the number of
incorrect predictions. Recall (R) is the proportion of in-
stances classified as a given class divided by the actual total in
that class. F1-score is a harmonic average of precision and
recall [27].

For accuracy and mse,

accuracy(y, ŷ) �
1

nsamples

∑nsamples

i�0

1 yi � ŷi( ),

mse(y, ŷ) �
1

nsamples

∑nsamples

i�0

yi − ŷi( )2,
(11)

where ŷi is the predicted value of the ith sample and yi is the
corresponding true value.

For wp, wr, and wf

wp �
1∑l∈L ŷl∣∣∣∣ ∣∣∣∣ ∑l∈L ŷl

∣∣∣∣ ∣∣∣∣P yl, ŷl( ),
wr �

1∑l∈L ŷl∣∣∣∣ ∣∣∣∣ ∑l∈L ŷl
∣∣∣∣ ∣∣∣∣R yl, ŷl( ),

wf �
1∑l∈L ŷl∣∣∣∣ ∣∣∣∣ ∑l∈L ŷl

∣∣∣∣ ∣∣∣∣F1 yl, ŷl( ),
(12)

where y is the set of predicted (sample, classes) pairs, ŷ is
the set of true (sample, classes) pairs, L is the set of classes,
and yl is the subset of ywith classes l; similarly, ŷl is the subset
of ŷ. P(yl, ŷl) � |yl ∩ ŷl|/|yl| and R(yl, ŷl) � |yl ∩ ŷl|/|ŷl|
(conventions vary on handling ŷl � ϕ; this implementation
uses R(yl, ŷl) � 0, and similar for P(yl, ŷl)). F1(yl, ŷl) �
(2 × (P × R))/(P + R).

3.2. Featured Data. Take dataset of HK for example. Fol-
lowing air pollutant data features are contained: FSP, NO2,
NOx, O3, RSP, and SO2 (unit of measurement of all the
air pollutants is μg/m3). Air pollutant data samples are
shown in Table 2.

Table 1: Air quality classifications and health risk.

Health risk Low Moderate High Very high Serious

Hong Kong (AQHI) 1–3 4–6 7 8–10 10+
Beijing (IAQL) 1–2 3 4 5 6

Table 2: Air pollutant samples.

Date Hour Station FSP NO2 NOx O3 RSP SO2

1/1/2014 1 SHATIN 91 131 266 N.A. 114 18
1/1/2014 2 SHATIN 88 124 262 3 110 14
1/1/2014 3 SHATIN 86 114 225 2 107 13
1/1/2014 4 SHATIN 85 107 197 3 104 15
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Following meteorology data features are contained:
T, P0, P1, δP,H, WD,WP, and dew. Meteorological samples
are shown in Table 3.

Following time stamp features are contained: month, the
day of the week (week), the day of the month (day), and the
hour of the day (hour).�ere may be a yearly trend of the air
quality, but we just have limited years of data, so “year” is not
included in the feature set.

3.3. Feature Engineering

3.3.1. Feature Transformation

(1) Encoding Wind Direction. Among the data obtained, the
wind direction is nonnumeric (i.e., “east,” “east-southeast”).
It has to be converted to numerical value so that the al-
gorithms can make use of. One-hot encoding (e.g., “east”
is encoded as [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]) and label
encoding (e.g., “east” is encoded as 1, “south” is encoded as
“2” etc.) were tried in this paper. Figure 1 shows the forecast
performances of RF, MLP, and SVC_linear (SVC with linear
kernel) algorithms when the wind direction was encoded by
one-hot encoding and label encoding, respectively, and the
parameters of the algorithms stayed unchanged. From the
figure, it is obvious that label encoding is superior over one-
hot encoding on the dataset. �erefore, in this paper, the
wind direction was label encoded.

(2) Missing Data Imputation. Linear interpolation was used in
the paper to interpolate the missing values in the two datasets.

Vt �
Vs + Ve −Vs( )

n + 1
, (13)

whereVt denotes themissing value at time t and n is the time
gap between interval (Vs, Ve).

(3) Data Normalization. Normalization or standardization
of either input or target variables tends to make the training
process better behaved. Normalization scales the feature
values in the range [0,1]:

V �
V−Vmin

Vmax −Vmin

. (14)

Standardization transforms the feature values to have
zero mean and unit variance:

V �
V− μ
σ

. (15)

To see whether normalization or standardization helps,
both of them were tried and compared with the one without
any processing. Again, RF,MLP, and SVC_linear were used as
the validation algorithms. Results are shown in Figure 2. �e
figure shows that, generally, models benefit from normali-
zation or standardization, especially for the neural network
model. Normalization is slightly better than standardization.
�erefore, in this paper, the data were normalized.

3.3.2. Feature Selection. Take Hong Kong for example. �e
source dataset contains 18 features, and they are as follows:
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Table 3: Meteorological samples.

Local time in Sha Tin T P0 P1 δP H WD WP dew

29.01.2015 02:00 15.2 763.4 764.5 1.0 73 Wind blowing from the east 3 10.3
29.01.2015 01:00 15.6 763.9 765.1 0.4 77 Calm, no wind 0 11.5

T, air temperature (degrees Celsius) at 2 meters height above the Earth’s surface; P0, atmospheric pressure at weather station level (millimeters of mercury);
P1, atmospheric pressure reduced tomean sea level (millimeters of mercury); δP, pressure tendency, changes in atmospheric in the last three hours;H, relative
humidity (%) at a height of 2 meters above the Earth’s surface; WD, mean wind direction (compass points) at a height of 10–12 meters above the Earth’s
surface over the 10-minute period immediately preceding the observation; WP, mean wind speed at a height of 10–12 meters above the Earth’s surface over
the 10-minute period immediately preceding the observation (meters per second); dew, dew point at 2 meters height above the Earth’s surface (degrees
Celsius).

Advances in Meteorology 5



Meteorological (M) data features: <T, P0, P1, δP, H,
WD, WP, dew>
Air pollutant (AP) data features: <FSP, NO2, NOx, O3,
RSP, SO2>
Time data features: <month, week, day, hour>

�e target is to forecast the near future AQHI. However,
not all the features above are related to the AQHI, finding
out the features which are correlated with the target would
be beneficial. �e historical pollutants and meteorology may
impact the future air quality as the simple empirical ap-
proaches assume, finding out the influential historical time
lag would be important as well.

(1) Feature Correlation Analysis. In this paper, Spearman’s
correlation analysis was used due to the possible nonlinear
relationships between variables. Spearman’s rank correlation
coefficient measures the monotonic association between two
variables and relies on the rank order of values [28]. �e
formula for Spearman’s coefficient is

ρrankx ,ranky �
cov rankx, ranky( )

σrankxσranky
, (16)

where rankx, ranky are the ranked (sorted) values of vari-
ables x and y, cov(·) is the covariance, and σ(·) is the
standard deviation. Figure 3 shows the Spearman correlation
coefficients between the features of HK dataset. Correlation

scores go from −1 to 1. Perfect positive correlation is 1.
Perfect negative correlation is −1. �e figure shows that FSP,
O3, RSP, SO2, P0, and P1 have strong positive correlations
with the AQHI, while T, H, and dew have strong negative
correlations with the AQHI. Cohen’s standard [29] was used
in this paper to select the correlated features. Features with
association smaller than 0.30 are discarded. �e picked
features are as follows:
<FSP, NO2, NOx, O3, RSP, SO2, T, P0, P1, δP, H, dew,

WP, WD, month, hour>

(2) Temporal Correlation Analysis. Intuitively, historical
data from different periods have different effects on future
time lags. More recent events have a stronger influence on
the current status, while earlier events have a weaker
influence. Denote current time as t, the historical time lag
as h, and the future time lag as f, and then the prediction
time is t + f (f � 1, 3, 6, 9, 12) and the influential historical
time is t− h (h � 1, 2, . . . , n). �e multiscale prediction
task is represented in Figure 4. In this paper, the LSTM
NN model which is capable of learning long time series
was used to select the appropriate influential historical
time lag [30].

�e network architecture of the LSTMmodel used in the
paper is shown in Figure 5, which is the same as the LSTM-
extended network proposed in [13].�emain input is the air
pollutant data, and the auxiliary input is the time and
meteorology data. �ere are two LSTM layers and one
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output layer which is a fully connected layer that has 11
neurons corresponding to the number of classes. �e
number of neurons in the LSTM layer has to be tuned. For
simplicity, the number of neurons in each LSTM layer was
set to an equivalent value chosen from a candidate set of {50,
100, 200, 500, 1000, 2000}. �e most appropriate setting was
chosen that yielded the best performance based on several
comparative experiments. When the number of neurons in
the LSTM was as 1000, the LSTM achieved the best per-
formance.�erefore, in this paper, the number of neurons in
the LSTM layers was set as 1000.

�e future 1, 3, 6, 9, and 12 hours’ AQHIs were predicted
in this paper. With each future time lag, the influences of
different historical time lags were examined. �e results are
given in Table 4. �e evaluation metric is weighted f1-score
(f1 in Table 4). �e corresponding curve graph is given
in Figure 6. �e result shows that different future time lag
(F-lag in Table 4) corresponds to slightly different optimal
historical time lag (H-lag in Table 4). �e general influential

time of historical data for a specific future time’s AQHI is
around 9 hours.

Notably, the result shows that the prediction perfor-
mances are poor for future time lag larger than 6, indicating
that long-term prediction tasks are instinctively more dif-
ficult. Small-time lag cannot guarantee enough long-term
memory inputs for the LSTM model, while large time lags
permit an increased number of unrelated inputs, which
increase the model’s complexity and the difficulty of learning
useful features. According to the above experiments, for
simplicity, 9 was selected as the most appropriate influential
historical time lag for different future time lag.

4. Results and Discussion

Algorithms used in the experiments are ARIMA, RF, MLP,
SVC_linear (SVC with the liner kernel), SVC_rbf (SVC with
the RBF kernel), SVC_sig (SVC with the sigmoid kernel),
SVC_poly (SVC with the polynomial kernel), LSTM, and
MKSVC. ARIMA was used as a baseline model, RF, MLP,

main_input:
InputLayer

Input: (samples, time_lag, AP_dimension)
Output: (samples, time_lag, AP_dimension)

lstm_1:
LSTmLayer

Input: (samples, time_lag, AP_dimension)
Output: (samples, time_lag, 1000)

lstm_2:
LSTmLayer

Input: (samples, time_lag, 1000)
Output: (samples, 1000)

aux_output:
DenseLayer

Input: (samples, 1000)
Output: (samples, 11)

aux_input:
InputLayer

Input: (samples, T&M_dimension)
Output: (samples, T&M_dimension)

concatenate:
Contatenate

Input: (samples, 1000), (samples, T&M_dimension)
Output: (samples, 1000+ T&M_dimension)

main_output:
DenseLayer

Input: (samples, 1000 1000+ T&M_dimension)
Output: (samples, 11)

Figure 5: �e LSTM network architecture used in this paper.
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Figure 6: Influences of different historical time lag over different
future time lag.

Table 4: Influences of different historical time lag over different
future time lag.

f1 F-lag

H-lag 1 3 6 9 12

0 0.659 0.543 0.452 0.409 0.388
1 0.647 0.488 0.483 0.446 0.408
2 0.603 0.573 0.443 0.417 0.395
3 0.606 0.528 0.467 0.434 0.431
4 0.642 0.465 0.439 0.452 0.417
5 0.706 0.654 0.511 0.454 0.413
6 0.739 0.504 0.574 0.486 0.423
7 0.711 0.700 0.682 0.508 0.436
8 0.736 0.705 0.713 0.447 0.481
9 0.763 0.721 0.733 0.676 0.512
10 0.674 0.729 0.693 0.557 0.495
11 0.630 0.702 0.632 0.631 0.541
12 0.728 0.656 0.584 0.607 0.587
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and SVC are widely used air quality forecast models, they
were fine-tuned in this paper in order to make a fair
comparison with MKSVC, and the LSTM in this paper has
the same structure as the LSTM extended model proposed in
[13]. Figure 7 shows the experimental flow. All algorithms
were designed and tested with the same operation envi-
ronment (Python 3.5.3,Windows 10, Intel®Core™ i7-5500U
CPU @2.40GHz, 16.0GB RAM).

4.1. Parameter Optimization. Parameter optimization re-
fers to the method of finding optimal parameters for
a machine-learning algorithm. �is is important since the
performance of any machine learning algorithm depends
to a huge extent on what the values of parameters are. For
each prediction time lag, the parameters are different for
each algorithm. It means an optimal model for each
prediction task and each algorithm need to be tuned. �e
ways to get the parameters of MKSVC are detailed in
Section 2 and Section 3.2.2 for LSTM. For the other al-
gorithms, the parameter tuning process of the one-hour
future time lag prediction task is presented in the following
part, and the multiscale prediction tasks have identical
fine-tuning processes.

First, the grid search interval of a parameter is narrowed
by analyzing the influence curve of a single parameter on the
training score and the validation score. For instance, by
varying the kernel coefficient c of the RBF kernel in
SVC_rbf, the c-score curve can be obtained as shown in
Figure 8. �e yellow line denotes the score over the training
set.�e purple line represents the score on the validation set,
and the shadow represents the variance.

�e figure shows that, at first, both the training and
validation scores rise with the increase of c. However, when
c reaches around 0.5, a further increase will result in the
increase of the training score but the decrease of the vali-
dation score; it signifies that the model is getting overfitting.
According to this influence curve, the grid search interval of
c in the next step can be narrowed between 0.0 and 1.0.

Based on the influence curve, the grid search intervals of
the main parameters of the ARIMA, RF, MLP, and SVCs are
shown in Table 5. RF, MLP, and SVCs used in this paper are
implemented in scientific toolbox scikit-learn [31] and
ARIMA implemented in statsmodels [32]. �e unlisted
parameters are set as default.

�en, a gird search with 5-fold cross validation was
applied to find the optimum parameter. By exhaustively
considering all parameter combinations in Table 5, the
optimal parameter settings of the ARIMA, RFC, MLP, and
SVCs are obtained as shown in Table 6. After getting the
inner kernel coefficients of all the base kernels, the centered
kernel alignment method described in Section 2.2. was used
to get the optimal weight for each kernel.

4.2. Comparison. For HK, one year’s data was used for
training, and the other year’s data was used for testing. For
Beijing, the first two years’ data was used for training, and
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the other three year’s data was used for testing. ,e com-
parisons of the predictions for the future 1, 3, 6, 9, and 12
hours are given below.

4.2.1. Predict the AQHI of Hong Kong. Tables 7–11 show the
performances of the algorithms for forecasting the future 1,

3, 6, 9, and 12 hours’ AQHI in Hong Kong. From the table,
the following conclusions can be drawn:

(1) MKSVC performs best on all the three prediction
tasks. SVC models with linear, RBF, and polynomial
kernels perform better than other models except for
the MKSVC. Sigmoid kernel SVC always makes the

Table 5: Main parameters and their tuning range of the used algorithms.

Algorithm Parameter Algorithm Parameter

ARIMA p: [0,3], d: [0,10], q: [0,3]

RF

n_estimators: [100, 1000; 50]
max_depth: [10, 20; 1]
max_features: [10, 30; 1]

min_samples_split: [2,100; 1]
min_samples_leaf: [1,100; 1]

SVC_linear C: [100, 5000; 100]

SVC_rbf
C: [100, 5000; 100]

gamma: [0.0, 1.0; 0.01]

MLP

hidden_layer_sizes:
{(50, 50), (100, 100), (10, 20, 10), (20, 40, 20)}
activation: {‘identity’, ‘logistic’,‘tanh’, ‘relu’}

solver: {‘lbfgs’, ‘sgd’, ‘adam’}

SVC_sig
C: [100, 5000; 100]

gamma: [0.0, 1.0; 0.01]
coef0: [0, 1000; 50]

SVC_poly

C: [100, 5000; 100]
degree: {2,3}

gamma: [0.0, 1.0; 0.01]
coef0: [0, 1000; 50]

p: AR specification; d: integration order; q: MA specification; C: regularization coefficient in SVC; n_estimators: number of trees in the forest; max_depth:
maximum depth of the tree; max_features: maximum number of features when looking for the best split; min_samples_split: the minimum number of
samples required to split an internal node; min_samples_leaf: the minimum number of samples required to be at a leaf node; solver: algorithm used in the
optimization problem; hidden_layer_sizes: hidden layer size; alpha: regularization term parameter in MLP; activation: activation function for the hidden
layer; gamma: kernel coefficient for ‘rbf’, ‘poly’, and ‘sigmoid’; degree: degree of the polynomial kernel function; coef0: independent term in kernel functions
for ‘poly’ and ‘sigmoid’; ∗[a, b; c] means within range [a, b], increase c every iteration; {} means set of values.

Table 6: ,e optimal parameter settings of the algorithms.

Algorithm Parameter Algorithm Parameter

ARIMA order (p,d,q): (2,0,2)

RFC

n_estimators: 400
max_depth: 9

max_features: 11
min_samples_split: 95
min_samples_leaf: 71

SVC_linear C: 400

SVC_rbf
C: 300,

gamma: 0.02

SVC_sig
C: 100,

gamma: 0.13,
coef0: 400

MLP
hidden_layer_sizes: (20, 40, 20)

activation: ‘relu’
solver: ‘adam’

SVC_poly

C: 100,
degree: 2,

gamma: 0.04,
coef0: 900

MKSVC Kernel weights of linear, rbf, poly and sig kernels: (0.999, 0.212, 0,134, 0.00009)

Table 7: Performance comparison for predicting the next hour’s
AQHI in HK.

Accuracy mse wr wf wp

ARIMA 0.608 0.795 0.608 0.605 0.605
RF 0.782 0.279 0.782 0.779 0.782
MLP 0.908 0.101 0.908 0.908 0.909
SVC_linear 0.960 0.041 0.96 0.961 0.963
SVC_rbf 0.937 0.065 0.937 0.937 0.938
SVC_poly 0.959 0.042 0.959 0.959 0.961
SVC_sigmoid 0.267 4.996 0.267 0.113 0.071
LSTM 0.763 0.265 0.763 0.763 0.773
MKSVC 0.972 0.030 0.972 0.971 0.972

Table 8: Performance comparison for predicting the future 3
hour’s AQHI in HK.

Accuracy Mse wr wf wp

ARIMA 0.525 0.945 0.525 0.525 0.529
RF 0.782 0.275 0.782 0.778 0.781
MLP 0.938 0.09 0.938 0.936 0.935
SVC_linear 0.961 0.04 0.961 0.962 0.963
SVC_rbf 0.937 0.065 0.937 0.937 0.938
SVC_poly 0.954 0.047 0.954 0.955 0.956
SVC_sigmoid 0.267 4.994 0.267 0.113 0.071
LSTM 0.723 0.220 0.723 0.721 0.729
MKSVC 0.974 0.028 0.974 0.975 0.974
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worst predictions which show that the sigmoid kernel
is unable to capture the characters of the dataset.

(2) Time series models like ARIMA and LSTM fail to
compete with the widely used parametric models
like RF, MLP, and SVCs, and as the future time lag

increases, the time series models’ performances
decrease, while the parametric models keep
achieving very satisfying results.

(3) Among the well-performed SVC models, linear
kernel model performs best, which demonstrates

Table 9: Performance comparison for predicting the future 6
hour’s AQHI in HK.

Accuracy mse wr wf wp

ARIMA 0.471 1.208 0.471 0.472 0.474
RF 0.785 0.27 0.785 0.781 0.783
MLP 0.942 0.086 0.942 0.939 0.938
SVC_linear 0.965 0.038 0.965 0.965 0.966
SVC_rbf 0.937 0.066 0.937 0.937 0.937
SVC_poly 0.959 0.043 0.959 0.960 0.960
SVC_sigmoid 0.267 4.992 0.267 0.113 0.071
LSTM 0.732 0.300 0.732 0.733 0.749
MKSVC 0.976 0.028 0.976 0.976 0.976

Table 10: Performance comparison for predicting the future 9
hour’s AQHI in HK.

Accuracy mse wr wf wp

ARIMA 0.467 2.020 0.467 0.433 0.436
RF 0.738 0.332 0.738 0.735 0.737
MLP 0.777 0.255 0.777 0.776 0.776
SVC_linear 0.799 0.231 0.799 0.798 0.799
SVC_rbf 0.787 0.244 0.787 0.786 0.786
SVC_poly 0.785 0.25 0.785 0.784 0.784
SVC_sigmoid 0.267 4.991 0.267 0.113 0.071
LSTM 0.681 0.393 0.692 0.676 0.645
MKSVC 0.817 0.203 0.821 0.815 0.820

Table 11: Performance comparison for predicting the future 12
hour’s AQHI in HK.

Accuracy mse wr wf wp

ARIMA 0.453 2.148 0.454 0.387 0.410
RF 0.559 0.806 0.559 0.554 0.551
MLP 0.597 0.66 0.597 0.598 0.603
SVC_linear 0.614 0.671 0.614 0.607 0.606
SVC_rbf 0.601 0.69 0.601 0.592 0.594
SVC_poly 0.59 0.716 0.590 0.585 0.583
SVC_sigmoid 0.267 4.992 0.267 0.113 0.071
LSTM 0.528 0.733 0.524 0.512 0.506
MKSVC 0.630 0.609 0.641 0.629 0.633

Table 12: Performance comparison for predicting the next hour’s
PM2.5 IAQL in Beijing.

Accuracy mse wr wf wp

ARIMA 0.482 1.153 0.482 0.481 0.52
RF 0.472 1.956 0.472 0.442 0.443
MLP 0.486 1.686 0.486 0.466 0.465
SVC_linear 0.515 1.212 0.515 0.525 0.519
SVC_rbf 0.525 0.945 0.525 0.526 0.529
SVC_poly 0.520 1.033 0.520 0.520 0.521
SVC_sigmoid 0.391 3.999 0.391 0.219 0.153
LSTM 0.395 3.648 0.395 0.296 0.247
MKSVC 0.605 0.806 0.605 0.605 0.620

Table 13: Performance comparison for predicting the future 3
hour’s PM2.5 IAQL in Beijing.

Accuracy mse wr wf wp

ARIMA 0.471 1.208 0.471 0.472 0.474
RF 0.477 1.858 0.477 0.454 0.451
MLP 0.491 1.678 0.491 0.482 0.477
SVC_linear 0.444 2.363 0.444 0.37 0.336
SVC_rbf 0.496 1.641 0.496 0.469 0.471
SVC_poly 0.489 1.760 0.489 0.462 0.464
SVC_sigmoid 0.391 3.999 0.391 0.219 0.153
LSTM 0.391 3.999 0.391 0.219 0.153
MKSVC 0.525 0.945 0.525 0.525 0.529

Table 14: Performance comparison for predicting the future 6
hour’s PM2.5 IAQL in Beijing.

Accuracy mse wr wf wp

ARIMA 0.442 2.381 0.442 0.367 0.332
RF 0.468 2.024 0.468 0.433 0.437
MLP 0.493 1.67 0.493 0.463 0.462
SVC_linear 0.451 2.207 0.451 0.385 0.408
SVC_rbf 0.500 1.595 0.500 0.477 0.478
SVC_poly 0.490 1.844 0.490 0.435 0.441
SVC_sigmoid 0.391 3.999 0.391 0.219 0.153
LSTM 0.397 3.701 0.396 0.253 0.167
MKSVC 0.513 1.275 0.513 0.520 0.519

Table 15: Performance comparison for predicting the future 9
hour’s PM2.5 IAQL in Beijing.

Accuracy mse wr wf wp

ARIMA 0.410 1.208 0.471 0.472 0.474
RF 0.457 1.909 0.457 0.446 0.439
MLP 0.48 1.706 0.48 0.457 0.456
SVC_linear 0.45 2.236 0.45 0.385 0.424
SVC_rbf 0.492 1.746 0.492 0.452 0.456
SVC_poly 0.482 1.813 0.482 0.453 0.45
SVC_sigmoid 0.39 4.000 0.39 0.219 0.152
LSTM 0.390 4.000 0.391 0.217 0.151
MKSVC 0.507 1.133 0.510 0.505 0.500

Table 16: Performance comparison for predicting the future 12
hour’s PM2.5 IAQL in Beijing.

Accuracy mse wr wf wp

ARIMA 0.386 4.290 0.391 0.355 0.318
RF 0.456 1.933 0.456 0.442 0.433
MLP 0.477 1.663 0.477 0.457 0.451
SVC_linear 0.451 2.204 0.451 0.386 0.400
SVC_rbf 0.489 1.858 0.489 0.431 0.425
SVC_poly 0.478 1.851 0.478 0.452 0.449
SVC_sigmoid 0.390 4.001 0.39 0.219 0.152
LSTM 0.383 4.360 0.387 0.202 0.147
MKSVC 0.501 1.536 0.500 0.498 0.491
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that the relation between the target and the input
information has a lot of linear components, but there
are also factors that influence the future air quality in
a nonlinear way as the RBF and polynomial kernels
also achieve promising performance.

(4) Models like MKSVC, MLP, and SVCs (except
SVC_sigmoid) present very satisfying performance
in the prediction for short-term air quality, larger
than 90% of accuracy for the future 1, 3, and 6 hours.
However, the performance for longer term pre-
dictions drops sharply from 0.976 of the 6 hour to
0.630 of the 12 hour (accuracy of MKSVC). It
demonstrates that long-term air quality prediction is
difficult.

4.2.2. Predict the PM2.5 IAQL of Beijing. Tables 12–16 show
the performances of the algorithms for forecasting the next 1,
3, 6, 9, 12 hours’ PM2.5 IAQL in Beijing. Similar conclusions
can be drawn as that of HK, MKSVC is superior to other
models, SVC_sigmoid and LSTM perform worst, SVCs be-
havior relatively better than other parametric models. But the
overall performance of all the models on this dataset is much
worse than that of HK. One possible reason is that there are
fewer features in the Beijing dataset and the features in the
dataset have a weaker correlation with the target. �e other

reason may be due to the generally worse air conditions in
Beijing because higher polluting air conditions are harder to
predict as demonstrated in the next part.

4.2.3. Comparison of Severe Air Pollution Prediction.
Severe pollution prediction is a difficult task; however, it is
critical as high-polluting air condition does way more
damage to human health. �erefore, even a small im-
provement in the prediction of severe pollution is more
meaningful than a large improvement in predicting good or
less polluting air conditions.

As SVCs performed better than other algorithms except
for the MKSVC, the best performing SVC was chosen to
compare with the MKSVC in terms of forecasting severe air
pollutions in the paper. AQHI greater than 6 is considered as
severe pollution in HK. IAQL greater than 4 is considered as
severe air pollution in Beijing. Figures 9 and 10 are the
confusion matrixes of MKSVC and SVC_linear when pre-
dicting the next hour’s AQHI of HK.

�e x-axis denotes the predicted value, the y-axis denotes
the true value, and the values on the diagonal of the matrix
denote the probability of the correct prediction. �e figures
show that linear kernel SVC performs well in forecasting less
polluting air conditions, so is the MKSVC. But MKSVC
performs far better than linear kernel SVC when AQHI is
larger than 8.
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Figure 9: AQHI confusion matrix of MKSVC.
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Figures 11 and 12 are the confusion matrixes of MKSVC
and SVC_rbf when forecasting the next hour’s PM2.5 IAQL
of Beijing. �e same conclusion can be drawn as that of HK.
Generally, all the models make better prediction for light
pollutions than severe ones due to the bias towards majority
classes. It demonstrates that the task for severe air pollution
prediction is challenging.

5. Conclusions

In this paper, a novel multiple kernel learning-based
approach with SVC as the base learner was proposed
for the near future’s air quality prediction. It was the
first time that multiple kernel learning method was
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applied to air quality forecasting. Special attention was
given to the feature engineering process. MKSVC is ca-
pable of learning the optimal combination of different
kernels with which information coming from multiple
sources can be captured simultaneously. Extensive ex-
periments were conducted to compare the performance of
MKSVC with the baseline model ARIMA, widely used
parametric air quality forecasting models RFC, MLP, and
SVCs, and a deep recurrent neural network model LSTM.
Historical air pollutant concentration data, meteoro-
logical data, and time stamp data of a coastal city Hong
Kong and an inland city Beijing were used to validate the
models. Based on the experiments, a number of conclu-
sions can be drawn:

(1) ,e proposed MKSVC algorithm offers a better
predictive ability than the other models.

(2) ,e proposed MKSVC algorithm is capable of
forecasting severe air pollution much better than the
other models.

(3) ,e widely used parametric models RF, MLP, and
SVC exhibit better prediction performance than the
time series models ARIMA and LSTM.

(4) Feature transformation and feature selection play
a significant role in making better air quality
forecasting.

As can be seen from the experiments, long-term pre-
diction task is difficult, so is the task to predict severe air
pollutions. ,ough the proposed multiple kernel learning-
based approach demonstrated relatively good performance
in terms of both long-term prediction and severe air pol-
lution prediction, more sophisticated methods need to be
explored in order to build a more comprehensive and ef-
fective air quality forecasting system.

Appendix

A. Kernel SVM

Given a dataset with training instances xi, yi{ }(i �
1, . . . , N) where xi is a vector in the input space RD and yi
denotes the class index taking a value +1 or −1. SVM aims at
minimizing an upper bound of the generalization error
through maximizing the margin between the separating
hyperplane and the data in the input space. In real-time
problems, it is often not possible to determine an exact
separating hyperplane dividing the data within the input
space and also we might get a curved decision boundary in
some cases. In such cases, the original input space can be
mapped to a higher-dimensional feature space (Hilbert
space) using nonlinear functions called feature functions
ϕ: R

D→R
s. ,e resulting discriminant function is

f(x) � 〈w, ϕ(x)〉 + b. (A.1)

,e classifier can be trained by solving the following
quadratic optimization problem:

minimize
1

2
||w||

2
2 + C∑N

i�1

ξi,

with respect to w ∈ Rs, ξ ∈ RN
+ , b ∈ R,

subject to yi w
Tϕ xi( ) + b( )≥ 1− ξi ∀i,

(A.2)

where w is the vector of weight coefficients, b is the bias term
of the separating hyperplane, C is a predefined positive
trade-off parameter between model simplicity and classifi-
cation error, ξ represents parameters for handling non-
separable data. Instead of solving this optimization problem
directly, the Lagrangian dual function enables us to obtain
the following dual formulation:

maximize ∑N
i�1

αi −
1

2
∑N
i�1

∑N
j�1

αiαjyiyj〈ϕ xi( ), ϕ xj( )〉,
with respect to α ∈ RN

+ ,

subject to ∑N
j�1

αiyj � 0,

C≥ αi ≥ 0 ∀i,
(A.3)

where α is the vector of dual variables corresponding to each
separation constraint. Even though feature space is high
dimensional, it could not be practically feasible to directly
use the feature functions ϕ for classification of the hyper-
plane. So in such cases, nonlinear mapping induced by the
feature functions is used for computation using special
nonlinear functions called kernels.

κ xi, xj( ) � 〈ϕ xi( ), ϕ xj( )〉, (A.4)

where κ: R
D ×R

D→R is named the kernel function. By
solving the above dual problem, we get w � ∑Ni�1 αiyiϕ(xi),
and the maximum margin separate hyperplane function can
be rewritten as

f(x) �∑N
i�1

αiyiκ xi, x( ) + b. (A.5)

,e multiclass support can be handled according to
a one-versus-one or one-versus-rest scheme.,e kernel trick
allows SVMs to form nonlinear boundaries [14].

B. Calculation of AQHI in Hong Kong and
IAQI in Mainland China

B.1. Calculation of AQHI. ,e AQHI of the current hour is
calculated from the sum of the percentage added health
risk (%AR) of daily hospital admissions attributable to the
3-hour moving average concentrations of four criteria air
pollutants: ozone (O3), nitrogen dioxide (NO2), sulphur
dioxide (SO2), and particulate matter (PM) (respirable
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suspended particulates (RSP or PM10) or fine suspended
particulates (FSP or PM2.5), whichever poses a higher health
risk).

,e %AR of each pollutant depends on its concentration
and a risk factor which was derived from local health sta-
tistics and air pollution data. ,e %AR is then compared to
a scale to obtain the appropriate banding of AQHI. ,e
equations are as follows:

%AR � %AR NO2( ) +%AR SO2( ) +%AR O3( )
+%AR(PM),

(B.1)

where %AR (PM)�%AR (PM10) or %AR (PM2.5),
whichever is higher.

%AR NO2( ) � exp β NO2( ) × C NO2( )( )− 1[ ] × 100%,

%AR SO2( ) � exp β SO2( ) × C SO2( )( )− 1[ ] × 100%,

%AR O3( ) � exp β O3( ) × C O3( )( )− 1[ ] × 100%,

%AR(PM10) �[exp(β(PM10) × C(PM10))− 1] × 100%,

%AR(PM2.5) �[exp(β(PM2.5) × C(PM2.5))− 1] × 100%,

(B.2)
where %AR (NO2), %AR (SO2), %AR (O3), %AR (PM),
%AR (PM10), and %AR (PM2.5) are the added health risk
of NO2, SO2, O3, PM, PM10, and PM2.5 respectively;

C(NO2), C(SO2), C(O3), C(PM10), and C(PM2.5) are the
3-hour moving average concentration of the respective pol-
lutants in microgram per cubic meter (µg/m3). β(NO2)�
0.0004462559, β(SO2)� 0.0001393235, β(O3)� 0.0005116328,
β(PM10)� 0.0002821751, and β(PM2.5)� 0.0002180567 are
added health risk factors (technically known as regression
coefficients) of the respective pollutants [24].

B.2. Calculation of IAQI. Each pollutant’s individual AQI is
called its IAQI. ,e highest IAQI among these six pollutants
at a given time is called the primary or dominant pollutant
and is chosen for the overall AQI value.

IAQIp �
IAQIHi
− IAQILo

BPHi
−BPLo

Cp −BPLo( ) + IAQILo,

AQI � max IAQI1, IAQI2, IAQI3, . . . , IAQIn{ },
(B.3)

where Cp is mass concentration value of the air pollutant p,
BPHi

is the high value of the concentration limit which can
be checked in the reference table from the paper [25], BPLo is
the low value of the concentration limit which can be

checked in the reference table from [25], IAQIHi
is the

corresponding value of BPHi
in the same reference table, and

IAQILo is also the corresponding value of BPLo in the ref-
erence table. ,e detailed break down of China AQI for
PM2.5 concentrations is shown in Table 17.
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“Urban air quality forecasting: a regression and a classification
approach,” in Proceedings of the Asian Conference on In-
telligent Information and Database Systems, vol. 2017,
pp. 539–548, Springer, Kanazawa, Japan, April 2017.

[12] E. Pardo and N. Malpica, “Air quality forecasting in Madrid
using long short-term memory networks,” in Proceedings of
the International Work-Conference on the Interplay between
Natural and Artificial Computation, vol. 2017, pp. 232–239,
Springer, Corunna, Spain, June 2017.

[13] X. Li, L. Peng, X. Yao et al., “Long short-term memory neural
network for air pollutant concentration predictions: method
development and evaluation,” Environmental Pollution,
vol. 231, pp. 997–1004, 2017.

[14] V. Vapnik, “,e support vector method of function estima-
tion,” in Nonlinear Modeling: Advanced Black-Box Tech-
niques, J. A. K. Suykens and J. P. L. Vandewalle, Eds., vol. 55,
p. 86, Springer, New York City, NY, USA, 1998.

[15] C. Cortes, M. Mohri, and A. Rostamizadeh, “Algorithms for
learning kernels based on centered alignment,” Journal of
Machine Learning Research, vol. 13, pp. 795–828, 2012.

[16] F. Aiolli and M. Donini, “EasyMKL: a scalable multiple kernel
learning algorithm,” Neurocomputing, vol. 169, pp. 215–224,
2015.

[17] S. Niazmardi, B. Demir, L. Bruzzone, A. Safari, and
S. Homayouni, “Multiple kernel learning for remote sensing
image classification,” IEEE Transactions on Geoscience and
Remote Sensing, vol. 56, no. 3, pp. 1425–1443, 2017.

[18] Y. Zhang, H.L. Yang, S. Prasad, E. Pasolli, J. Jung, and
M. Crawford, “Ensemble multiple kernel active learning for
classification of multisource remote sensing data,” IEEE
Journal of Selected Topics in Applied Earth Observations and
Remote Sensing, vol. 8, no. 2, pp. 845–858, 2015.

[19] H. Wen, Y. Liu, I. Rekik et al., “Multi-modal multiple kernel
learning for accurate identification of Tourette syndrome
children,” Pattern Recognition, vol. 63, pp. 601–611, 2017.

[20] M. Gönen and E Alpaydın, “Multiple kernel learning algo-
rithms,” Journal of Machine Learning Research, vol. 12,
pp. 2211–2268, 2011.

[21] Aqhi.gov.hk, Environmental Protection Department, July
2017, http://epic.epd.gov.hk.

[22] RP5.ru: Weather for 243 Countries of the World, July 2017,
http://rp5.ru.

[23] Uci.edu: Machine Learning Repository, Beijing PM2.5
Dataset, https://archive.ics.uci.edu.

[24] W. T. Wai, W. T. W. San, M. A. W. H. Shun et al., “A study of
the air pollution index reporting system,” Statistical Model-
ling, vol. 13, p. 15, 2012.

[25] F. Gao, “Evaluation of the Chinese new air quality index
(GB3095-2012): based on comparison with the US AQI
system and the WHO AQGs,” Bachelor’s thesis, Integrated
Coastal Zone Management, Raseborg, Finland, 2013.

[26] Q. W. Yan, “Environmental protection department issued
HJ633–2012 environmental air quality index (AQI) technical
requirements (trial),” CSG, vol. 4, p. 49, 2012.

[27] D. M. Powers, “Evaluation: from precision, recall and
F-measure to ROC, informedness, markedness and correla-
tion,” Journal of Machine Learning Technologies, vol. 2, no. 1,
pp. 37–63, 2011.

[28] J. H. McDonald, Handbook of Biological Statistics, Sparky
House Publishing, Baltimore, MD, USA, 2009.

[29] J. Cohen, P. Cohen, S. G. West et al., Applied Multiple
Regression/Correlation Analysis for the Behavioral Sciences,
Routledge, Abingdon, UK, 2013.

[30] S. Hochreiter and J. Schmidhuber, “Long short-term mem-
ory,” Neural Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[31] F. Pedregosa, G. Varoquaux, A. Gramfort et al., “Scikit-learn:
machine learning in Python,” Journal of Machine Learning
Research, vol. 12, pp. 2825–2830, 2011.

[32] S. Seabold and P. Josef, “Statsmodels: econometric and sta-
tistical modeling with Python,” in Proceedings of the 9th
Python in Science Conference, Austin, TX, USA, June 2010.

Advances in Meteorology 15

http://epic.epd.gov.hk
http://rp5.ru
https://archive.ics.uci.edu


Hindawi
www.hindawi.com Volume 2018

Journal of

ChemistryArchaea
Hindawi
www.hindawi.com Volume 2018

Marine Biology
Journal of

Hindawi
www.hindawi.com Volume 2018

Biodiversity
International Journal of

Hindawi
www.hindawi.com Volume 2018

Ecology
International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

Applied &
Environmental
Soil Science

Volume 2018

Forestry Research
International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi

www.hindawi.com Volume 2018

 International Journal of

Geophysics

Environmental and 
Public Health

Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

International Journal of

Microbiology

Hindawi
www.hindawi.com Volume 2018

Public Health  
Advances in

Agriculture
Advances in

Hindawi
www.hindawi.com Volume 2018

Agronomy

Hindawi
www.hindawi.com Volume 2018

International Journal of

Hindawi
www.hindawi.com Volume 2018

Meteorology
Advances in

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific 
World Journal

Volume 2018

Chemistry Scientifica
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Geological Research
Journal of

Analytical Chemistry
International Journal of

Submit your manuscripts at

www.hindawi.com

https://www.hindawi.com/journals/jchem/
https://www.hindawi.com/journals/archaea/
https://www.hindawi.com/journals/jmb/
https://www.hindawi.com/journals/ijbd/
https://www.hindawi.com/journals/ijecol/
https://www.hindawi.com/journals/aess/
https://www.hindawi.com/journals/ijfr/
https://www.hindawi.com/journals/ijge/
https://www.hindawi.com/journals/jeph/
https://www.hindawi.com/journals/ijmicro/
https://www.hindawi.com/journals/aph/
https://www.hindawi.com/journals/aag/
https://www.hindawi.com/journals/ija/
https://www.hindawi.com/journals/amete/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ac/
https://www.hindawi.com/journals/scientifica/
https://www.hindawi.com/journals/jgr/
https://www.hindawi.com/journals/ijac/
https://www.hindawi.com/
https://www.hindawi.com/

