
This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg)Nanyang Technological University, Singapore.

A multiple pattern complex event detection
scheme based on decomposition and merge
sharing for massive event streams
Wang, Jianhua; Ji, Bang; Lin, Feng; Lu, Shilei; Lan, Yubin; Cheng, Lianglun
2020
Wang, J., Ji, B., Lin, F., Lu, S., Lan, Y. & Cheng, L. (2020). A multiple pattern complex event
detection scheme based on decomposition and merge sharing for massive event streams.
International Journal of Distributed Sensor Networks, 16(10).
https://dx.doi.org/10.1177/1550147720961336
https://hdl.handle.net/10356/146856
https://doi.org/10.1177/1550147720961336

© 2020 The Author(s). This article is distributed under the terms of the Creative Commons
Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/) which permits any
use, reproduction and distribution of the work without further permission provided the
original work is attributed as specified on the SAGE and Open Access
pages(https://us.sagepub.com/en‑us/nam/open‑access‑at‑sage).
Downloaded on 27 Aug 2022 18:08:08 SGT



Research Article

International Journal of Distributed

Sensor Networks

2020, Vol. 16(10)

� The Author(s) 2020

DOI: 10.1177/1550147720961336

journals.sagepub.com/home/dsn

A multiple pattern complex event
detection scheme based on
decomposition and merge sharing
for massive event streams

Jianhua Wang1,2,3* , Bang Ji1*, Feng Lin3, Shilei Lu1,

Yubin Lan1 and Lianglun Cheng4

Abstract

Quickly detecting related primitive events for multiple complex events from massive event stream usually faces with a

great challenge due to their single pattern characteristic of the existing complex event detection methods. Aiming to
solve the problem, a multiple pattern complex event detection scheme based on decomposition and merge sharing is

proposed in this article. The achievement of this article lies that we successfully use decomposition and merge sharing

technology to realize the high-efficient detection for multiple complex events from massive event streams. Specially, in
our scheme, we first use decomposition sharing technology to decompose pattern expressions into multiple subexpres-

sions, which can provide many sharing opportunities for subexpressions. We then use merge sharing technology to con-

struct a multiple pattern complex events by merging sharing all the same prefix, suffix, or subpattern into one based on
the above decomposition results. As a result, our proposed detection method in this article can effectively solve the

above problem. The experimental results show that the proposed detection method in this article outperforms some

general detection methods in detection model and detection algorithm in multiple pattern complex event detection as a
whole.

Keywords

Complex event detection, multiple pattern, decomposition sharing, merge sharing, massive event streams

Date received: 12 March 2020; accepted: 4 September 2020

Handling Editor: Yanjiao Chen

Introduction

Internet of Manufacturing Things (IOMT)1 is an

important technology to enhance perception, control

and management ability of manufacturing and service

process, promote enterprise’s production and manage-

ment innovation, and drive manufacturing transforma-

tion and upgrading. In the realistic environment of

IOMT, a great number of sensing equipment—such as

radio-frequency identification (RFID) tags and sensor

nodes—are deployed in the manufacturing fields to

monitor various manufacturing objects, such as people,

materials, equipment, production process, products

1College of Electronic Engineering, South China Agricultural University,

Guangzhou, China
2School of Computer Science and Engineering, Nanyang Technological

University, Singapore
3National Center for International Collaboration Research on Precision

Agricultural Aviation, Guangzhou, China
4College of Automation, Guangdong University of Technology,

Guangzhou, China
*These authors contributed equally to this work and should be consid-

ered co-first authors.

Corresponding author:

Jianhua Wang, College of Electronic Engineering, South China Agricultural

University, No. 483, Wushan Load, Guangzhou 510642, China.

Email: wangjianhua655@163.com

Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License

(https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work

without further permission provided the original work is attributed as specified on the SAGE and Open Access pages

(https://us.sagepub.com/en-us/nam/open-access-at-sage).

https://doi.org/10.1177/1550147720961336
http://journals.sagepub.com/home/dsn
http://crossmark.crossref.org/dialog/?doi=10.1177%2F1550147720961336&domain=pdf&date_stamp=2020-10-17


and environmental changes due to its increasingly large

manufacturing scale, more and more complex manu-

facturing process, temporal and spatial distribution of

production process, and multi-source interference of

manufacturing environment.2 These sensing devices

generate massive manufacturing event streams.

Since the generated massive manufacturing event

streams have the following event characteristics: large

volume, high velocity, many varieties, and small value,

that make it difficult to quickly pick up some valuable

information from it, thus influencing its extensive appli-

cations.3,4 Therefore, how to quickly pick up some

valuable information from massive manufacturing

event streams has become a very important problem.

Since CED (Complex Event Detection)5 technology can

quickly pick up some valuable information from mas-

sive event stream using the association between event

attributes, detection rules, and algebraic operations;

therefore, it has become a research hotspot recently. So

how to use CED technology to rapidly detect some

related information from massive event stream has

become an important issue in this article.

At present, many CED methods have been devel-

oped to detect a complex event from event stream. For

example, a Petri net–based CED method,6 a diagram-

based CED method,7 a tree-based CED method,8 and

a nondeterministic finite automaton (NFA)–based

CED method,9 and some of their improved detection

methods—for example, a CED method based on timed

Petri net,10 a CED method based on optimized directed

graph,6 a CED method based on compressed composi-

tion tree,11 and a CED method based on pushdown

automata12—have been proposed to detect related

complex events from event streams. However, all of

these detection methods above are based on single pat-

tern, and they can only detect a single complex event at

one time and cannot realize the simultaneous sharing

detection for multiple complex events at the same time

due to its unsharing characteristics. Detecting multiple

complex events usually needs to construct multiple dif-

ferent detection models, thus leading to long detection

time, high memory consumption, and low event

throughput.

However, in real environment of IOMT, a large

number of pattern expressions of complex event are

registered in detection system to detect various produc-

tion activities of manufacturing, and we need to rapidly

detect multiple different complex events from massive

even streams at the same time because its high respon-

siveness of detection result in IOMT. Under these cir-

cumstances, if we still use the above existing CED

methods to detect multiple complex events from mas-

sive manufacturing event streams, there will be a long

detection time, high memory consumption, and low

detection efficiency due to its single pattern detection

characteristic.

In order to address the above problem, some multi-

ple pattern CED methods have proposed to simultane-

ously detect multiple different complex events. For

example, a multiple pattern CED method based on

hierarchical pattern sharing,13 a multiple pattern CED

method based on time event correlation sharing,14 a

multiple pattern CED method based on pattern sharing

and pattern reordering,15 and a multiple pattern CED

method based on multi-core processor sharing16 have

been presented to detect multiple pattern complex

events. Although these schemes above are well

designed, but these methods do not completely explore

the sharing relationships existed in pattern expressions

and consider the sharing detection among these multi-

ple pattern expressions. Therefore, there is still a need

to further develop more efficient multiple pattern CED

method to improve their whole detection efficiency.

To solve the problem, a multiple pattern CED

scheme based on decomposition and merge sharing is

proposed in this article. The achievements of this article

include the following:

1. Decomposition sharing technology is used to

decompose pattern expressions into multiple

subexpressions, which can provide many shar-

ing opportunities for the subexpressions.

2. Merging sharing technology is used to construct

a multiple pattern detection model of complex

event by merging sharing all the same prefix,

suffix, or subpattern into one based on the

decomposition results of subexpressions above.

3. A series of experiments is performed to verify

the effectiveness of our proposed method in this

article. And the experimental results show that

our proposed detection scheme has a great

improvement in detection model and detection

algorithm compared with some general detec-

tion methods in detecting multiple pattern com-

plex events.

The rest of this article is organized as follows. In sec-

tion ‘‘Related works,’’ the related works of CED are

introduced. Our proposed CED method is presented in

section ‘‘Proposed scheme.’’ The experimental results

and analysis with our proposed scheme are shown in

section ‘‘Experimental results and analysis.’’ In section

‘‘Conclusion,’’ we give our conclusions.

Related works

In recent, a lot of research works have been taken for

the detection of complex events. There are four general

CED methods, for example, Wang et al.6 presented a

CED method based on Petri net, Bai et al.7 proposed a

CED method based on graph, Sun et al.8 suggested a

2 International Journal of Distributed Sensor Networks



CED method based on tree, and Mei et al.9 developed

a CED method based on finite automaton, and some

of their improved detection methods—for example, Jin

et al.10 proposed a CED method based on timed Petri

net, Wang et al.6 presented a CED method based on

optimized directed graph, Li et al.11 proposed a CED

method based on condensed composition tree, and Cao

et al.12 proposed a CED method based on pushdown

automata structure—have been developed to detect a

complex event from various event streams. Besides

some other detection methods—including probability

graph methods, deep learning methods, representation

learning methods, and so on—are applied to perform

event detection. For example, Chen et al.17 proposed a

nonparametric model for online topic discovery with

word embeddings, where they mainly exploited auxili-

ary word embeddings to infer the topic number and

employed a ‘‘spike and slab’’ function to alleviate the

sparsity problem of topic-word distributions in

online short text analyses. Hu et al.18 presented a

transformation-gated long short-term memory (LSTM)

to enhance the ability of capturing short-term mutation

information, where the function of transformation

gate, input gate information, and the value range of the

partial derivative corresponding to the transformation

gate were studied. Chen et al.19 developed a Dirichlet

process biterm-based mixture model for short text

stream clustering in their study, where the topic drift

problem and the sparsity problem can be dealt with in

short text stream clustering. Hu and Zheng20 designed

a multistage attention network to capture the different

influence for multivariate time series prediction, where

they mainly exploited the influential attention mechan-

ism, temporal attention mechanism of model, and the

prediction performance on two different real-world

multivariate time series data sets. Wang et al.21 devel-

oped a trust-enhanced collaborative filtering for perso-

nalized point-of-interest (POI) recommendation, where

the trust-enhanced user similarity in user-based colla-

borative filtering based on network representation

learning is calculated, and these two factors into POI

recommendation are integrated by a fusion model.

However, the above existing detection methods can

only detect a single complex event from event streams

once a time, and they cannot realize the sharing detec-

tion for multiple complex events at the same time due

to its unsharing characteristic. Detecting multiple dif-

ferent complex events usually needs to construct multi-

ple different CED models; therefore, they cause long

detection time, high memory consumption, and low

event throughput due to their unsharing of the same

prefix, suffix, or subpattern among them, thus affecting

their whole detection performance.

In order to solve the above problem, some detection

schemes about multiple query or detection on complex

event processing (CEP) have been proposed recently.

Liu et al.13 presented a multi-dimensional event

sequence analysis based on hierarchical pattern shar-

ing, namely, E-Cube for huge massive high-speed

streams. In their method, sharing results of hierarchical

pattern from one level query to another was used to

reduce their redundant computation among pattern

queries. Ray et al.14 developed a multiple detection

optimizer of CEP called SPASS for real-time event

streams, where the time-based event correlations shar-

ing among detection expressions was used to identify

opportunities for the effective sharing detection. Zhang

et al.15 presented a multi-query optimizer of CEP called

MOTTO for real-time event streams, where they used

three sharing technologies to realize the sharing oppor-

tunities in complex query workloads of SAP ESP. In

Kolchinsky and Schuster,16 a novel real-time multi-pat-

tern CEP based on pattern sharing and pattern reorder-

ing was proposed for event streams. In their method,

they mainly used the combination of sharing and pat-

tern reordering techniques to construct an optimal

plan. In Suhothayan et al.,22 multiple pattern CEP

architectures based on multi-core processors sharing

were developed for event processing. In their architec-

ture, they mainly used multi-threading to construct a

pipeline-based event inference model, and then improve

the performance of CEP. In Mayer et al.,23 a predict-

able low-latency event detection with parallel CEP was

proposed for data streams, in which pattern-sensitive

partitioning pattern is used to achieve a high degree of

parallelism in detecting event patterns with a sequential

manner and a low parallelization degree. Kalyvianaki

et al.24 proposed a query planner of CEP called SQPR

to exploit sharing opportunity between queries and

partial sharing results in massive event stream, in which

the relationships between SEQ (Sequence) operators in

different queries were studied and used. Ray et al.25

proposed a multiple pattern query processing and opti-

mization system based on temporal patterns sharing

called SPASS system for massive event stream, in

which shared temporal patterns were used to identify

the opportunities for the effective sharing processing of

CEP. In Liu et al.,26 a high-performance nested CEP

query processing based on rewriting rules and subex-

pressions sharing was proposed for event streams. In

their method, they mainly used rewriting rules to flat-

ten a nested complex event expression and used sharing

subexpressions to share the same nested complex event.

However, the method cannot process other temporal

relationship between events. Ma et al.27 proposed an

efficient multiple pattern event processing method

based on multiple pattern state transition, failure tran-

sition, and state output for high-speed train data

streams. In their method, they mainly used multiple

pattern state transition, failure transition, and state

output to realize the detection of complex event, and

then improve their throughput. Ma and Wang28

Wang et al. 3



developed a high-efficiency joint event inference model

based on patterns sharing, failure transitions, and con-

ditional output for real-time context awareness and

decision-making in the Internet of things (IoT) edge

systems. In their work, they mainly used the patterns

sharing, failure transitions, and conditional output of

the joint inference model to eliminate the redundancies

of inter-model. Giannikis et al.29 proposed a shared

workload optimization for shared work systems, in

which common subexpressions were searched and a

global plan is calculated using the branch-and-bound

method. Zervakis et al.30 presented an efficient continu-

ous multi-query processing based on shared query sets

for graph streams, in which a novel algorithmic solu-

tion was presented for efficient multi-query evaluation

against graph stream by leveraging the shared query

sets. Schultz-Møller et al.31 proposed a distributed CEP

based on query rewriting for massive event stream,

where a cost to every candidate plan was assigned and

a search algorithm is utilized to select the lowest cost

evaluation scheme. In Xiao et al.,32 a new paralleliza-

tion model and three parallel processing strategies were

proposed to address the difficulties of implementing

parallel processing for distributed CEP systems. In

Yuan et al.,33 a distributed query plan of CEP structure

and algorithm based on directed acyclic graph was

developed to solve the problem of single complex event

or small quantity of events. In Xiao,34 an intelligent

CEP method with D numbers under fuzzy environment

was proposed to address the issues of intrinsic uncer-

tainty in pattern rules. In Abbasnejad et al.,35 a novel

CED based on joint max margin and semantic was pre-

sented to address the limitations of semantic and tem-

poral features. In Zhang et al.,36 a series of optimized

algorithms based on nondeterministic automata models

was used to reduce its bottlenecks and to realize the

detection of complex event after analyzing its complex-

ity of expensive queries of complex event. In Wang

et al.,37 a multi-pattern sharing method based on multi-

pattern sharing technology was used to share their

same prefix, suffix, or subpattern in all pattern expres-

sions. However, this method cannot share subexpres-

sions in its decomposable pattern expressions. In

addition, Scanagatta et al.38 presented approximate

structure learning algorithms for Bayesian networks,

where they improved on state-of-the-art methods that

rely on an ordering-based search by sampling more

effectively the space of the orders, including parent set

identification, structure optimization, and structure

optimization under bounded treewidth. Liu and Liu39

proposed a maximum relevance minimum common

redundancy (mRMCR) algorithm based on the infor-

mation theory and feature selection, where they estab-

lished a mutual information solution formula on the

preference database and designed a formula for calcu-

lating mRMCR. Jiang et al.40 developed a fast and

effective method, called CatchSync, where they mainly

exploited two of the tell-tale signs left in graphs by

fraudsters: synchronized behavior and rare behavior.

However, these methods do not completely explore

the sharing relations between multiple pattern expres-

sions and consider the sharing detection among multi-

ple pattern expressions. Therefore, there is still a need

to further develop more efficient multiple pattern CED

methods to improve its whole detection efficiency.

Different from these above methods, a multiple pat-

tern CED method based on decomposition and merge

sharing is proposed for massive event stream on the

basis of the analyzing and studying single pattern detec-

tion methods in this article. In our proposed scheme,

we mainly use decomposition sharing technology to

decompose pattern expressions into multiple subexpres-

sions, which can provide many sharing opportunities

for the subexpressions and use merging sharing technol-

ogy to construct a multiple pattern CED model based

on the above decomposition results by merging sharing

all the same prefix, suffix, or subpattern into one, thus

improving the detection efficiency of multiple pattern

complex events.

Proposed scheme

In this section, a multiple pattern complex detection

scheme based on decomposition and merge sharing is

proposed for massive event streams.

Motivation resource

During the constructing processing of single pattern

detection models from pattern expressions of complex

event, there are a large number of the same subexpres-

sions in their pattern expressions. Those same subex-

pressions cannot realize the sharing detection with each

other before decomposition. Detecting these complex

events usually needs to independently construct multi-

ple different detection models of complex event, which

leads to many repetitive building, storing, searching,

and computing operations for them, thus influencing its

whole detection efficiency. However, the existing multi-

ple pattern CED methods can only achieve the detec-

tion sharing for the same prefix, suffix, or subpattern

among pattern expressions, and they cannot realize the

sharing detection for subexpressions in decomposable

pattern expressions. Figures 1 and 2 show the same sub-

expressions existed in single pattern detection models

constructed by pattern expressions SEQ1(A,B,D) and

SEQ2(G,A,B), SEQ3(A,B,C,D) and SEQ4(B,C,D,E),

respectively.

Aiming to solve the above problem, in this article, a

multiple pattern CED method based on decomposition

and merge sharing is proposed. In our scheme, we first

use decomposition sharing technology to decompose

4 International Journal of Distributed Sensor Networks



the pattern expressions into multiple subexpressions,

which can provide many sharing opportunities for the

subexpressions. We then use merging sharing technol-

ogy to construct a multiple pattern complex event

model by merging sharing all the same prefix, suffix, or

subpattern into one based on the above decomposition

results. As a result, our proposed detection method can

effectively solve the above problem. And the experi-

mental results show that our proposed detection scheme

has a great improvement in detection model and detec-

tion algorithm compared with some general detection

methods in multiple pattern complex events.

Working principle

The working principle for our proposed detection scheme

in this article is that, first, we study and analyze the rela-

tionship between single pattern detection expressions; sec-

ond, we set up two important decomposition rules for the

pattern expressions; third, we decompose the pattern

expression using the above decomposition rules; fourth,

we merge sharing all the same prefix, suffix, or subpattern

into one based on the above decomposition results; fifth,

we construct a multiple pattern detection model using

merging sharing technology; finally, we use the detection

model to quickly detect multiple pattern complex events.

As a result, our proposed detection model in this article

can effectively solve the above problem, which can save

many repetitive building, storing, searching, and calculat-

ing operations for them, thereby improving its overall

detection performance.

Realizing processing

Figure 3 shows the realizing processing for our sug-

gested detection method in this article, which includes

the following five important processes: study and ana-

lyze relationship, set up decomposition rules, decom-

pose pattern detection expression, merge sharing the

same detection model, and construct multiple pattern

detection model.

Study and analyze relationship. There are a large number

of the same subexpressions during the constructing

processing of single pattern detection models from pat-

tern expressions of complex event. Those subexpres-

sions are very different to realize the sharing detection

with each other before decomposition due to its single

pattern characteristic, which can lead to a lot of repeti-

tive building, storing, searching, and computing opera-

tions for them, thus influencing its whole detection

efficiency.

In this article, first, in order to realize the sharing

detection for the subexpressions in pattern expressions,

we use decomposition technology to decompose the

pattern expressions into multiple subexpressions; sec-

ond, in order to effectively reduce the repetitive build-

ing, storing, searching, and computing operations for

them, we use merge sharing technology to construct a

multiple pattern complex event detection model by mer-

ging sharing all the same prefix, suffix, or subpattern

into one based on the above decomposition results, thus

improving its whole detection efficiency.

Figure 1. The subpattern in SEQ1(A,B,D) and SEQ2(G,A,B).

Figure 2. The subpattern in SEQ3(A,B,C,D) and

SEQ4(B,C,D,E).

Figure 3. Composition structure of our detection method.

Wang et al. 5



Set up decomposition rules. Since a pattern expression of

complex event can be decomposed into multiple subex-

pressions without changing its semantic meaning.

Based on the principle, we set up two important decom-

position rules for a pattern expression and realize the

decomposition for a pattern expression. The two built

decomposition rules in this article are shown as follows:

1. Decomposition rule 1

Left decomposition scheme: a pattern expression

itself can be sequentially break into the prefix two oper-

ands and the rest expression in such way, and the suffix

two operands are referred as a subexpression.

2. Decomposition rule 2

Right decomposition scheme: a pattern expression

itself can be sequentially break into the suffix two oper-

ands and the rest expression in such way, and the suffix

two operands are referred as a subexpression.

In this article, we denote the decomposed scheme

with the form of ‘‘subexpression’’! ‘‘the rest part of

original query,’’ where ! means connecting the output

of left operation to the input of right operation.

Decompose pattern detection expression. Based on the

above decomposition rules, we can easily decompose a

pattern expression at its arbitrary places. For example,

the decomposition results for decomposing the pattern

expression SEQ1(A,B,D) and SEQ2(G,A,B), SEQ3

(A,B,C,D) and SEQ4(B,C,D,E) using above decomposi-

tion rules are shown as follows, respectively. And there

will be many the same prefix, suffix, or subpattern among

subexpressions after decomposition process:

SEQ1(A,B,D): SEQ(A,B) ! SEQ1({A,B},D);

SEQ2(G,A,B): SEQ(A,B) ! SEQ2(D,{A,B});

SEQ3(A,B,C,D): SEQ(B,C,D) ! SEQ3(A,{B,C,D});

SEQ4(B,C,D,E): SEQ(B,C,D) ! SEQ4(A,{B,C,D}).

Merge sharing the same detection model. Since a large

number of the same prefixes, suffixes, or subpatterns

can be obtained from the pattern expressions after

completing the above decomposing process. For exam-

ple, SEQ1(A,B,D) and SEQ2(G,A,B) can produce the

same sharing subexpression SEQ(A,B) in them;

SEQ3(A,B,C,D) and SEQ4(B,C,D,E) can produce the

same sharing subexpression SEQ (B,C,D) in them.

Therefore, in order to effectively reduce the repetitive

building, storing, searching and computing operations

caused by them, we use merge sharing technology to

share the same prefix, suffix, or subpattern based on

the above decomposition results, and then reduce their

redundancy.

Figure 4 shows the realizing processing for our mer-

ging sharing in our scheme. It includes three important

realizing processes as follows: read single pattern

expression, produce single pattern detection model, and

merge sharing single pattern detection model.

1. Read single pattern expression

Read single pattern detection expression mainly exe-

cutes the reading operation for each single pattern

expression of complex event from system.

2. Produce single pattern detection model

Produce single pattern detection model mainly executes

the production operation for each single pattern CED

model according to the above read results.

3. Merge sharing single pattern detection model

Merge sharing single pattern detection model mainly

executes the merge sharing operations for single pattern

detection model by merging sharing the same prefix,

suffix, or subpattern among single pattern detection

models and to produce a multiple pattern CED model

based on the above decomposition results.

In our proposed scheme, three important

functions—state transition function, failure transition

function, and conditional output function—are used to

realize the merging sharing function. Figure 5 shows

the relationship among three functions.

Figure 4. Realizing processing for our merging sharing.

Figure 5. The relationship among three functions.

6 International Journal of Distributed Sensor Networks



Where state transition function mainly executes the

transition state path when traversing single pattern

detection model. Failure transition function mainly

executes the transition path of the next step when it

fails in its traversing process. Conditional state output

function mainly executes the output operation for pat-

tern detection results when it needs to output detection

results. Figures 6 and 7 are the merge sharing results

for SEQ1(A,B,D) and SEQ2(G,A,B), SEQ3(A,B,C,D)

and SEQ4(B,C,D,E), respectively.

Construct multiple pattern detection model

Construct multiple pattern detection model mainly exe-

cutes the construction operation for our suggested mul-

tiple pattern detection model using merging sharing

technology. Figure 8 shows the construction results of

multiple pattern detection model using merge sharing

technology from the above SEQ1(A,B,D),

SEQ2(G,A,B), SEQ3(A,B,C,D), and SEQ4(B,C,D,E).

From Figure 8, we can clearly see that our proposed

multiple pattern detection model of complex event in

this article can include less automata states, migration

edges, and computation operations compared with the

single pattern CED model due to its merging sharing

for the same prefix, suffix, or subpattern based on their

decomposition results, which can reduce many redun-

dant building, storing, searching, and calculating oper-

ations for them, thus improving its whole detection

performance.

Detection of multiple pattern detection model

After finishing the constructing of a multiple pattern

detection model of complex events by merging sharing

technology, we use the detection model to detect multi-

ple complex events from massive event streams.

Figure 6. Merge sharing results of SEQ1(A,B,D) and SEQ2(G,A,B).

Figure 7. Merge sharing results of SEQ3(A,B,C,D) and SEQ4(B,C,D,E).

Figure 8. Multiple pattern detection model for SEQ1(A,B,D), SEQ2(G,A,B), SEQ3(A,B,C,D), and SEQ3(B,C,D,E).

Wang et al. 7



In our scheme, three important detection processes

need to go through to realize the detection of multiple

pattern complex events from massive event streams:

input massive event stream, detect multiple pattern

detection model, and output detection results. Figure 9

shows the detection composition of our proposed

method.

Where input massive event stream mainly executes

the input operation for the massive event stream into

multiple pattern detection model; detect multiple pat-

tern complex event mainly executes the detection oper-

ation for multiple pattern complex events with our

proposed multiple pattern detection model from the

above input massive event stream; output detection

results mainly executes the output operation for multi-

ple pattern complex events when finishing detection

process. Figure 10 shows the detailed detecting process-

ing for multiple pattern complex events with our pro-

posed method in this article.

Figure 10 shows that our proposed detection method

can quickly detect the related multiple pattern complex

events from massive event streams with a general detec-

tion model one time by decomposing different pattern

expressions into multiple subexpressions and merging

sharing the same prefix, suffix, or subpattern into one

to construct a general multiple pattern detection model.

It does not need to independently construct multiple

complex event detection models, thereby improving its

whole detection efficiency for multiple pattern complex

events.

Realizing steps of our algorithm

Figure 11 shows the algorithm flow of our proposed

scheme, which mainly includes read event stream, read

pattern expressions, decompose pattern expression,

obtain the same subexpressions, build single pattern

detection model, traverse single pattern detection

model, merge sharing single pattern detection model,

construct multiple pattern detection model, detect mul-

tiple pattern complex event, and output detection

results. The detailed realizing steps for our proposed

scheme can be summarized in the following steps:

In step 1: read two different pattern expressions of

complex event.

In step 2: decompose the pattern expressions using

our built composition rules.

In step 3: obtain the same subexpressions from the

above decomposed pattern expressions.

In step 4: build single pattern CED models according

to their pattern expressions of complex event above.

Figure 10. Detecting processing with our proposed method.

Figure 9. Detection composition of our proposed method.

8 International Journal of Distributed Sensor Networks



In step 5: traverse single pattern detection model

above using depth-first search algorithm from its

starting state.

In step 6: merge sharing single pattern detection

model using three important functions as follows:

state transition function, failure transition function,

and conditional output function.

In step 7: construct a multiple pattern detection

model of complex event by merging sharing

technology.

In step 8: detection multiple pattern complex events

using the above multiple pattern detection model.

In step 9: output detection result of multiple pattern

complex events.

Cost model

In order to realize the rapid detection for multiple com-

plex events from massive event streams, our proposed

detect model in this article needs to meet the following

cost models

Costord DS+ TSð ÞłCost DSð Þ+Cost MSð Þ
Cost DSð Þ=Costa +Costr +Costv T ,PN sð Þ

� �

+ Selv T ,PN sð Þ

� �

:Costn +Cost Dð Þ+Cost filterð Þ
Cost MSð Þ=Costa +Costr +Costv T ,PN sð Þ

� �

+ Selv T ,PN sð Þ

� �

:Costn +Cost Mð Þ+Cost filterð Þ

8

>

>

>

>

<

>

>

>

>

:

ð1Þ

where Costord(DS+ TS) refers to the optimal multiple

pattern CED models based on decomposition and

merge sharing; Cost(DS) refers to all the multiple

pattern CED models based on decomposition sharing;

Cost(MS) refers to all the multiple pattern CED models

based on merge sharing; Costa refers to the accessing

cost of event instances from model; Costr refers to the

cost of removing the event instances from model; N

refers to any given node in model; PN represents the

path from the root node to the N node in model; N (s)

represents the corresponding node S in model.

Costv(T ,PN (s)) refers to the conditional verification cost

between the new event type T and the event before it;

Selv(T ,PN (s)) refers to the cost of conditional selection;

Costn refers to the cost of creating a new instance and

inserting it into model; Cost(D) refers to the cost of

decomposing pattern expression in model; Cost(M)

refers to the cost of merging sharing the same prefix,

suffix, or subpattern in model; and Cost(filter) refers to

the cost of filtering redundant the prefix, suffix, or sub-

pattern in model.

Experimental results and analysis

In this section, in order to verify the effectiveness of

our proposed detection scheme above, some simulation

experiments are designed. Our designed experiments

mainly include the following two contents: build experi-

mental environment and test the effectiveness of our

proposed detection scheme, respectively.

Build experimental environment

Our simulation experiments are implemented on the

Microsoft Windows 7 operating systems, AMD A6-

3420M 4 core CPU Processor, 2 GB memory, and

500 GB hard disk. The Visual C++6.0 tool is used to

develop an event generator, and then uses it to generate

different kinds of RFID event streams by controlling

some parameters. The main setting parameters are

shown in Table 1 in our experiment.

Where sliding window size refers to the total number

of events processed in a certain time period in our

experiment. Number of event types refers to the total

number of different event types used in our experiment.

Number of CED expression refers to the number of

detection expressions of complex event used in our

Figure 11. Algorithm flow.

Table 1. Main setting parameters in our experiment.

Parameter name Parameter value

Sliding window size 40
Number of event types 10
Number of complex event
detection expressions

40

Length of complex event
detection expression

3 ~ 10

Scale of event stream 105

Number of attributes of each event 2

Wang et al. 9



experiment, which needs to transform into the corre-

sponding detection models. Length of CED expression

specifies the length of each CED expression used above

in our experiment. Scale of event stream specifies the

total testing scale of event stream used in our experi-

ment, which is generated by our event generator.

Number of attributes of each event refers to the num-

ber for each event type excluding the timestamp.

In our experiments, we mainly test the effectiveness

of our proposed detection method from detection

model and detection algorithm. In the detection model

aspects, number of automata states and number of

migration edges are selected as two important indica-

tors to evaluate our detection model. Where the num-

ber of automata states refers to the total number of

automata states that are used to generate multiple pat-

tern detection model of complex event, while the num-

ber of migration edges represents the total number of

migration edges that are used to build multiple pattern

detection model of complex event under the same pat-

tern expression of complex event. In the detection algo-

rithm aspects, detection time, memory consumption,

and event throughput are used as comparison indica-

tors to evaluate our detection algorithm, respectively.

Where the detection time refers to the total detecting

time for the expected multiple complex events from

massive RFID event streams. The memory consump-

tion refers to the total memory consumption used for

detecting the desired multiple complex events from

massive RFID event streams. The event throughput

refers to the detection number of the expected complex

events from the massive RFID event streams in one

unit time.

In our experiments, single pattern detection method,

optimized method,36 and multi-pattern sharing detec-

tion method37 are selected as comparison methods to

test the performance of our detection methods. Where

single pattern detection method mainly executes pat-

tern expressions of complex event independently (with-

out any sharing technology); optimized method mainly

uses a series of optimized algorithms based on nonde-

terministic automata model to reduce its bottlenecks

and realize its CED; multi-pattern sharing method

mainly uses multi-pattern sharing technology to share

the same prefix, suffix, or subpattern in its all the pat-

tern expressions. However, it cannot share the subex-

pressions before decomposition; while our proposed

multiple pattern processing method in this article

mainly use decomposition and merge sharing technol-

ogy to realize the detection of multiple different com-

plex events, which is introduced in section ‘‘Proposed

scheme’’ of this article. In order to reduce the random-

ness of testing, five tests are taken in our experiment of

this article.

Test the effectiveness of our detection method

Test the effectiveness of our detection model

Test number of automata states. In this section, we

mainly test the effectiveness of our detection model

from the number of automata states with single pattern

detection model and multi-pattern sharing detection

model. The experimental result is shown in Figure 12.

From Figure 12, we can see clearly that that our

proposed detection model needs less automata states

compared with other two detection models under the

same testing conditions. The reasons for that lies that,

in our detection model, we mainly use decomposition

sharing technology to decompose the pattern expres-

sions into many subexpressions, which can provide

many sharing opportunities for pattern sharing, and

use merge sharing technology to merge sharing all the

same prefix, suffix, or subpattern into one based on the

above decomposition results, which can reduce lots of

redundant automata states for them, therefore needing

less number of automata states. Multi-pattern sharing

detection model needs more automata states compared

with our detection model because it can only use the

multi-pattern sharing technology to share the same pre-

fix, suffix, or subpattern in its all pattern expressions,

but it cannot share these subexpressions before decom-

position, thus needing more automata states. However,

since single pattern detection model cannot use the

sharing technology in all the pattern expressions due to

their unsharing characteristic and needs to indepen-

dently construct every CED model to complete its

detection for each pattern expressions, therefore requir-

ing the most number of automata states.

Test migration edges. In this section, we mainly test the

effectiveness of our detection model from the number

Figure 12. Comparison in number of automata states.

10 International Journal of Distributed Sensor Networks



of migration edges with single pattern detection model

and multi-pattern sharing detection model. The experi-

mental result is shown in Figure 13.

Figure 13 shows that our detection model in this arti-

cle needs less number of migration edges compared with

multi-pattern sharing detection model and single pat-

tern detection model under the same testing conditions.

The reasons for that lies that, in our scheme, first

decomposition sharing technology is used to decom-

pose pattern expressions into many subexpressions,

which can provide many sharing opportunities for sub-

expressions; second, merge sharing technology is used

to merge sharing all the same prefix, suffix, or subpat-

tern in all the pattern expressions, including decomposi-

tion subexpressions, which can reduce lots of redundant

migration edges, therefore requiring less number of

migration edges. Because multi-pattern sharing detec-

tion model can only realize the sharing detection for the

same prefix, suffix, or subpattern in pattern expres-

sions, but it cannot realize the sharing detection for

these subexpressions before decomposition; therefore, it

needs more migration edges compared with our pro-

posed detection model. However, single pattern detec-

tion model needs the most migration edges lies in its

unsharing detection characteristic in all the pattern

detection expressions, including decomposable pattern

expressions, and it needs to independently construct all

CED models to complete their detection, therefore

needing the most number of migration edges in three

methods.

Test the effectiveness of our detection algorithm

Test detection time. In this section, we evaluate the

effectiveness of our proposed detection algorithm from

detection time. The experimental result is shown in

Figure 14.

From Figure 14, we can see clearly that our pro-

posed detection method shows the least detection time

in four detection methods. Multi-pattern sharing detec-

tion method and optimized method followed. Single

pattern detection method consumes the most detection

time. The main reasons for that are that, in our sug-

gested scheme, we use decomposition sharing technol-

ogy to decompose pattern expressions into many

subexpressions and use merge sharing technology to

merge sharing the same prefix, suffix, or subpattern in

all pattern expressions, including subexpressions after

decomposing pattern expressions, which can reduce

many building, storing, searching, and calculating

operations for them, thus saving much detection time.

Multi-pattern sharing detection method costs more

detection time compared with our proposed method

lies in the use of multi-pattern sharing among pattern

expression in its scheme, which can eliminate many the

same prefix, suffix, or subpattern in all its pattern

expressions, but it cannot share the subexpressions

before decomposition. Optimized method used series of

optimized algorithms based on nondeterministic auto-

mata model to realize its detection function in its pro-

cessing of complex event; therefore, it needs less

detection time compared with single pattern detection

method. Single pattern detection method costs the most

detection time because it is unable to realize the sharing

detection for all the pattern expressions, including the

decomposable pattern expressions, and it needs to inde-

pendently construct multiple different CED models to

complete its detection function, therefore requiring

most detection time in four detection methods.

Figure 14. Comparison in detection time.
Figure 13. Comparison in number of migration edges.

Wang et al. 11



Test memory consumption. In this section, we evaluate

the effectiveness of our proposed detection algorithm

from memory consumption. Figure 15 shows the

experimental result.

Figure 15 reveals that our proposed detection

scheme in this article has a significant improvement in

saving memory consumption compared with other

three detection methods. Multi-pattern sharing detec-

tion method and optimized method followed. Single

pattern detection method shows the most memory con-

sumption. The main reasons for that can be explained

as follows: in our scheme, decomposition sharing tech-

nology is used to decompose many pattern expressions

into many subexpressions, and merge sharing technol-

ogy is used to merge sharing all the same prefix, suffix,

or subpattern in all the pattern expressions, including

subexpressions in decomposable pattern expressions,

which can reduce many redundant building, storing,

looking up, and calculating operations for them, thus

saving more memory consumption. Multi-pattern shar-

ing detection method mainly used multi-pattern sharing

technology to reduce the same prefix, suffix, or subpat-

tern in all pattern expressions; however, it cannot share

detection for the subexpressions in decomposable pat-

tern expressions, thus costing more memory consump-

tion than our proposed scheme. Optimized method

mainly used series of optimized algorithms based on

nondeterministic automata model to realize its detec-

tion function during its detection of complex event,

thus saving less memory consumption than single pat-

tern detection method. Single pattern detection method

costs the most memory consumption lies that it is

unable to realize the sharing detection for all the pat-

tern expressions, including decomposable pattern

expressions, and it needs to independently construct

multiple different CED models to complete its detec-

tion, therefore consuming the most memory consump-

tion in four methods.

Test event throughput. In this section, we evaluate the

effectiveness of our proposed detection algorithm from

event throughput. The experimental result is shown in

Figure 16.

From Figure 16, we can observe that our proposed

detection scheme shows the good event throughput pro-

cessing capacity compared with other three methods.

Multi-pattern sharing detection method and optimized

method followed. Single pattern detection approach

presents the worst processing performance. The main

reason lies in the use of decomposition and merge shar-

ing technology in our proposed scheme. Specially, in

our method, we use decomposition sharing technology

to decompose pattern expressions into multiple sharing

subexpressions and use merge sharing technology to

construct a general multiple pattern detection model of

complex event by merging sharing all the same prefix,

suffix, or subpattern into one based on the above

decomposition results, and then improve the event

throughput of our scheme. Multi-pattern sharing detec-

tion method can improve its event throughput capacity

lies in the use of multi-pattern sharing in its pattern

expression, which can eliminate many the same prefix,

suffix, or subpattern in them. However, it cannot share

the subexpressions in decomposable pattern expres-

sions. Optimized method shows a better processing

capability compared with single pattern detection

method because of the uses of series of optimized algo-

rithms based on nondeterministic automata model in its

detection scheme of complex event. Single pattern

detection method presents the worst processing

Figure 15. Comparison in memory consumption.

Figure 16. Comparison in event throughput.

12 International Journal of Distributed Sensor Networks



performance because it needs to repeatedly execute the

building, storing, looking up, and calculating opera-

tions for all the pattern expressions due to its unsharing

pattern, including the subexpressions in decomposable

pattern expressions, which needs to execute many unne-

cessary detection operations, therefore leading to lowest

event detection performance.

In addition, from Figures 14–16, we can also see that

four detection methods show the similar detection per-

formance in small event stream scale, but with the

increasing of event stream scale, our proposed scheme

is obviously superior to other three methods.

Conclusion

In this article, a multiple pattern CED scheme based

on decomposition and merge sharing is presented for

massive event stream. In our scheme, we first success-

fully use decomposition technology to decompose pat-

tern expressions into multiple subexpressions, which

can provide many sharing opportunities for the subex-

pressions. We then use merging sharing technology to

construct a multiple pattern CED model by merging

sharing all the same prefix, suffix, or subpattern into

one based on the above decomposition results. As a

result, our proposed detection method in this article

can effectively solve the above problem. The simulation

results show that our proposed scheme in this article

has a great improvement in reducing automata states

number and migration edges number, saving detection

time, lowering memory access, and improving event

throughput compared with some general detection

methods from massive event streams.

Acknowledgements

The authors authentically thank associate professor Wang

Tao, who offered us some valuable suggestions and help.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with

respect to the research, authorship, and/or publication of this

article.

Funding

The author(s) disclosed receipt of the following financial sup-

port for the research, authorship, and/or publication of this

article: This work was supported by the National Natural

Science Foundation of China (nos 61602187 and 6180405);

the National Key Research and Development Plan (no.

2016YFD0200700); the Guangdong Science and Technology

Projects (no. 2019B020219002); and the Guangdong

Laboratory of Lingnan Modern Agriculture.

ORCID iD

Jianhua Wang https://orcid.org/0000-0001-9587-2845

References

1. Cheng L, Wang T, Hong X, et al. A study on the archi-

tecture of manufacturing internet of things. Int J Model

Ident Control 2015; 23(1): 8–23.

2. Tao F, Cheng Y, Da Xu L, et al. CCIoT-CMfg: cloud

computing and internet of things-based cloud manufac-

turing service system. IEEE Trans Ind Inform 2014;

10(2): 1435–1442.

3. Bi Z, Da Xu L and Wang C. Internet of things for enter-

prise systems of modern manufacturing. IEEE Trans Ind

Inform 2014; 10(2): 1537–1546.

4. Wang JHLUJ, Lan YB and Cheng LL. An efficient com-

plex event detection algorithm based on NFA_HTS for

massive RFID event streams. J Electri Eng Technol 2018;

13(2): 989–997.

5. Del G, Eugene W, Hee J, et al. SASE: complex event

processing over streams. In: Proceedings of the 3rd bien-

nial conference on innovative data systems research, Asilo-

mar, CA, 7–10 January 2007, pp.407–411. https://

arxiv.org/ftp/cs/papers/0612/0612128.pdf

6. Wang F, Liu S and Liu P. Bridging physical and virtual

worlds: complex event processing for RFID data

streams. In: Processing of the 10th international confer-

ence on EDBT, Munich, 26–31 March 2006, pp.588–607.

Heidelberg: Springer.

7. Bai L, Lao S, Smeaton AF, et al. Semantic analysis of

field sports video using a Petri-net of audio-visual con-

cepts. Computer 2009; 52(7): 808–823.

8. Sun XW, Chen R and Du ZJ. Composite event detection

based on automata. In: Proceedings of 2009 IEEE inter-

national conference on intelligent human-machine systems

and cybernetics, Hangzhou, China, 26–27 August 2009,

pp. 160–163. New York: IEEE.

9. Mei Y and Madden S. ZStream: a cost-based query pro-

cessor for adaptively detecting composite events. In: Pro-

ceedings of the 2009 SIGMOD, Providence, 28–29 June

2009, pp.193–206. New York: ACM.

10. Jin X, Lee X and Kong N. Efficient complex event pro-

cessing over RFID data stream. In: Proceedings of the

7th IEEE/ACIS international conference on computer and

information science (ICIS), Portland, OR, 14–16 May

2008, pp.75–81. New York: IEEE.

11. Li Y, Wang J and Feng L. Accelerating sequence event

detection through condensed composition. In: Proceed-

ings of the 5th international conference on ubiquitous infor-

mation technologies & applications, Sanya, China, 16–18

December 2010, pp.6–10. New York: IEEE.

12. Cao J, Wei X, Liu YQ, et al. LogCEP-complex event

processing based on pushdown automaton. Int J Hybrid

Inform Technol 2014; 7(6): 71–82.

13. Liu M, Rundensteiner E, Green field K, et al. E-cube:

multi-dimensional event sequence analysis using hierarch-

ical pattern query sharing. In: Proceedings of the 2011

ACM SIGMOD international conference on management

Wang et al. 13

https://orcid.org/0000-0001-9587-2845
https://arxiv.org/ftp/cs/papers/0612/0612128.pdf
https://arxiv.org/ftp/cs/papers/0612/0612128.pdf


of data, Athens, Greece, 12–16 June 2011, pp.889–900.

New York: ACM.

14. Ray M, Lei C and Rundensteiner EA. Scalable pattern

sharing on event streams. In: Proceedings of the 2016

international conference on management of data, San

Francisco, CA, 26 June–1 July 2016, pp.495–510. New

York: ACM.

15. Zhang SH, Vo HT, Dahlmeier D, et al. Multi-query opti-

mization for complex event processing in SAP ESP. In:

Proceedings of 2017 IEEE 33rd international conference

on data engineering (ICDE), San Diego, CA, 19–22 April

2017, pp.1213–1224. New York: IEEE.

16. Kolchinsky I and Schuster A. Real-time multi-pattern

detection over event streams. In: Proceedings of the 2019

ACM international conference on management of data,

Amsterdam, 30 June–15 July 2019, pp.589–606. New

York: ACM.

17. Chen J, Gong Z and Liu W. A nonparametric model for

online topic discovery with word embeddings. Inform Sci

2019; 504: 32–47.

18. Hu J and Zheng W. Transformation-gated LSTM: effi-

cient capture of short-term mutation dependencies for

multivariate time series prediction tasks. In: Proceedings

of 2019 IEEE international joint conference on neural net-

works, Budapest, 14–19 July 2019, pp.1–8. New York:

IEEE.

19. Chen J, Gong Z and Liu W. A Dirichlet process biterm-

based mixture model for short text stream clustering.

Appl Intell 2020; 50: 1609–1619.

20. Hu J and Zheng W. Multistage attention network for

multivariate time series prediction. Neurocomputing 2020;

383: 122–137.

21. Wang W, Chen J, Wang J, et al. Trust-enhanced colla-

borative filtering for personalized point of interests rec-

ommendation. IEEE Trans Ind Inform 2019; 16:

6124–6132.

22. Suhothayan S, Gajasinghe K, Narangoda I, et al. Siddhi:

second look at complex event processing architectures.

In: Proceedings of the 2011 ACM workshop on gateway

computing environments, Seattle, WA, 14–19 November

2011, pp.43–50. New York: ACM.

23. Mayer R, Koldehofe B and Rothermel K. Predictable

low-latency event detection with parallel complex event

processing. IEEE Internet Things J 2015; 2(4): 274–286.

24. Kalyvianaki E, Wiesemann W, Vu QH, et al. SQPR:

stream query planning with reuse. In: Proceedings of

IEEE international conference on data engineering

(ICDE), Hannover, 11–16 April 2011, pp.840–851. New

York: IEEE.

25. Ray M, Lei C and Rundensteiner EA. Scalable pattern

sharing on event streams. In: Proceedings of the 2016

ACM international conference on management of data,

San Francisco, CA, 14–16 June 2016, pp.495–510. New

York: ACM.

26. Liu M, Rundwnsteiner E, Dougherty D, et al. High-per-

formance nested CEP query processing over event

streams. In: Proceedings of IEEE international conference

on data engineering (ICDE), Hannover, 11–16 April

2011, pp.123–134. New York: IEEE.

27. Ma M, Wang P, Chu CH and Liu L. Efficient multipat-

tern event processing over high-speed train data streams.

IEEE Internet Things J 2014; 2(4): 295–309.

28. Ma M and Wang P. Efficient event inference and

context-awareness in internet of things edge systems.

IEEE Trans Big Data. Epub ahead of print 29 March

2019. DOI: 10.1109/TBDATA.2019.2907978.

29. Giannikis G, Makreshanski D, Alonso G, et al. Shared

workload optimization. VLDB 2014; 7(6): 429–440.

30. Zervakis L, Setty V, Tryfonopoulos C, et al. Efficient

continuous multi-query processing over graph streams.

arXiv Preprint arXiv 2019; 1902: 05134.

31. Schultz-Møller NP, Migliavacca M and Pietzuch PR.

Distributed complex event processing with query rewrit-

ing. In: Proceedings of the 3rd ACM international confer-

ence on distributed event-based systems. Nashville, TN, 6–

9 July 2009, pp.1–12. New York: ACM.

32. Xiao F, Zhan C, Lai H, et al. New parallel processing

strategies in complex event processing systems with data

streams. Int J Distrib Sens N 2017; 13(8):

1550147717728626.

33. Yuan L, Xu D, Ge G, et al. Study on distributed complex

event processing in Internet of things based on query

plan. In: Proceedings of IEEE international conference on

cyber technology in automation, control, and intelligent

systems, Shenyang, China, 8–12 June 2015, pp.666–670.

New York: IEEE.

34. Xiao F. An intelligent complex event processing with D

numbers under fuzzy environment. Math Prob Eng 2016;

2016(1): 1–10.

35. Abbasnejad I, Sridharan S, Denman S, et al. Complex

event detection using joint max margin and semantic fea-

tures. In: Proceedings of IEEE international conference on

digital image computing: techniques and applications, Gold

Coast, QLD, Australia, 30 November–2 December 2016,

pp.1–8. New York: IEEE.

36. Zhang H, Diao Y and Immerman N. On complexity and

optimization of expensive queries in complex event pro-

cessing. In: Proceedings of ACM SIGMOD international

conference on management data, Snowbird, UT, 22–27

June 2014, pp.217–228. New York: ACM.

37. Wang JH, Lan YB, Lu SL, et al. An efficient complex

event processing algorithm based on multipattern sharing

for massive manufacturing event streams. KSII T Internet

Info Syst 2019; 13(3): 1385–1402.

38. Scanagatta M, Corani G, De Campos CP, et al. Approxi-

mate structure learning for large Bayesian networks.

Mach Learn 2018; 107(8–10): 1209–1227.

39. Liu S and Liu J. CP-nets structure learning based on

mRMCR principle. IEEE Access 2019; 7:

121482–121492.

40. Jiang M, Cui P, Beutel A, et al. Catching synchronized

behaviors in large networks: a graph mining approach.

ACM T Knowl Discov D 2016; 10(4): 1–27.

14 International Journal of Distributed Sensor Networks


