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ABSTRACT 

This paper describes the application of the method of 

"Multiple Interacting Continua" (MINC) to the simulation of 

oil recovery in naturally fractured reservoirs. A generalization 

of the double-porosity technique, t~.- MINC-method permits a 

fully transient description of interporosity 8ow, using numeri­

cal methods. The method has been successfully applied in the 

past to geothermal reservoir and chemical transport problems. 

In this paper, we present examples to demonstrate the 

utility of the MINC-method for modeling oil recovery mechan­

isms and field applications in fractured reservoirs. Specifically, 

results for water imbibition m individual matrix blocks 

obtained with the MINC method are compared with results 

from the conventional double-porosity method and with calcu­

lations using a detailed discretization of matrix blocks. The 

MJ~C-calculations are found to be accurate to better than I 

percent at all times, while double-porosity results can have 

large errors for matrix blocks of low permeability or large size. 

In addition, the MII\:C-method is used to match published 

results for five-spot water8oods, and to study the coning 

behavior of a single well in the north China oil field. All 

results show that the MINC-method provides accurate predic­

tions of the behavior of naturally fractured reservoirs, while 

requiring only a modest increase in computation work in com­

parison to the double-porosity method. 

I. INTRODUCTION 

The study of 8uid 8ow in naturally fractured petroleum 

reservoirs has been a challenging task and has made consider­

able progress since the 1960's because many fractured hydro­

carbon reservoirs have been discovered and put into develop­

men t in the past decades. Most papers treating 8ow in frac­

tured reservoirs consider that global 8ow occurs primarily 

References and illustrations at end of paper. 

through the high-permeability, low-effective-porosity fracture 

system surrounding matrix rock blocks. The matrix blocks 

contain the majority of the reservoir storage volume and act as 

local source or sink terms to the fracture system. The frac­

tures are interconnected and provide the main 8uid 8ow path 
· · · d od . II 1•2 

to IDJeCtiOn an pr UCtiOn we S. 

Due to the complexity of the pore structure of fractured 

reservoirs, there is no universal method for the simulation of 

reservoir behavior. Several different double-porosity models 

(DPM) have been developed to describe single-phase and mul­

tiphase 8ow in fractured media3-ll. Usually, analytical 

approximations are introduced for the coupling between frac­

ture and matrix continua. For example, it is commonly 

assumed that a quasi-steady state exists in the primary­

porosity matrix elemen.ts at all times. 

Very little work has been done so far in studying tran­

sient flow in the matrix blocks or between matrix and fracture 

systems either numerically or experimentally. As a. generaliza­

tion of the double-porosity concept, Pruess and Narasimhan 

developed a. "Multiple Interacting Continua" method 

(MINC)
7

, which treats the multiphase and multidimensional 

transient 8ow in both fractures and matrix blocks by a numer­

ical approach. This method was successf\!,llv applied to a 

number of geothermal reservoir problems 6 · 1 ~,IJ The MINC­

method of Pruess and Narasimhan 
7 

involves discretization of 

matrix blocks into a sequence. of nested volume elements, 

which are defined on the basis of distance from the block sur­

face (Fig. la.). In this way it is possible to resolve in detail the 

gradients (of pressure, temperature, etc.) which drive inter­

porosity Oow. This discretization technique was later adopted 

by Gilman ll for 8ow in fractured hydrocarbon reservoirs, and 
14 h . I . f by Neretnieks and Rasmuson for c em1ca transport m rac-

tured groundwater systems. 

In the present paper, we appl·r the MINC-method to 

study oil recovery mechanisms in fractured reservoirs, and to 

obtain insight into the behavior of water-oil 8ow during the 
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mechanism of oil production in waterHooding or waterconing 

of fractured reservoirs
15 

For multiphase How, pressure, 

viscous, gravitational, and capillary forces should all be taken 

into account. In order to understand the roles played by the 

three kinds of forces, we have studied the imbibition process 

with the MINC method, the conventional double-porosity 

method, and with a detailed explicit discretization of matrix 

blocks. The comparison of the results from the three methods 

shows that the MINC-method can give an accuracy of better 

than one percent at all times, while the double-porosity 

approximation with quasi-steady interporosity Bow can pro­

duce large errors, especially for matrix blocks with low permea­

bility or large size. 

We also apply the MINC-method to match published 

data of a five-spot water-Hood
4

•
9

, and the observed coning 

behavior of a well with bottom water drive in a fractured oil 

reservoir1 i. Satisfactory results have been obtained for the 

two examples. In both the imbibition study of individual 

matrix blocks and field-scale applications, the MINC-method is 

found to give more reliable history matching and behavior 

predictions for the simulation of fractured reservoir than the 

conventional double porosity method (DPM). 

In most previous analytical or numerical studies of multi­

phase How in porous media, it has been taken for granted that 

the matrix system can be treated as a single continuum with 

(locally) uniform pressure and Huid saturation distributions. 

To our knowledge, no studies have been published for multi­

phase Bow about how much error will be introduced by this 

treatment, and under what conditions the quasi-steady 

approximation for interporosity flow is acceptable for engineer­

ing applications. The app!!cability of the DPM method is dis­

cussed by analyzing the results from individual block imbibi­

tion studies and field-scale examples with MINC and DPM in 

this paper. Through the work of this paper, it is found that 

the DPM method is often not suitable for the simulation of 

oil-water imbibition processes in naturally fractured reservoirs. 

Depending on reservoir Buid and rock properties, DPM may 

either overestimate or underestimate imbibition oil recovery 

from matrix blocks, especially for matrix blocks with low per­

meability and large size, or for high oil viscosity. In some 

special cases, the results from MINC and DPM calculations are 

very close either because of similarities in individual block 

response predicted from either method, or because of the com­

pensatory effect of global flow in the fractures on individual 

block imbibition response in field-scale modeling. In general, it 

will be difficult to determine the suitability of DPM for a given 

reservoir problem. It is suggested that individual matrix imbi­

bition studies be carried out with various possible reservoir 

parameters, using DPM approximation as well as explicit 

discretization, before applying DPM to actual reservoir simula­

tion. Comparison between DPM and EDM results for indivi­

dual matrix blocks may provide clues for the accuracy to be 

expected from the DPM approximation in field studies. When 

changes in water saturation in the fractures are rapid, as may 

often happen in coning problems, or in response to rate 

changes, it is usually necessary to account for the transient 

Bow inside the matrix blocks, a.nd between matrix and frac­

tures. 

2. MINC-METHOD 

The method of "Multiple Interacting Continua" (MINC), 

a generalization of the double-porosity techuique, is applicable 

for numerical simulation of heat and multiphase fluid flow in 

multidimensional fractured porous media. The method per­

mits treatment of multiphase fluids with largP. and variable 

compressibility, and allows for phase transitions with latent 

heat effects, as well as for coupling between fluid and heat 

flow. By dividing the matrix into subdomains, the transient 

interaction between matrix and fractures is treated in a realis­

tic way. The numerical implementation of the MINC-method 

is most easily accomRlished by means of an integral finite 

difference formulation 
8

. 

An important point of the MINC-method is the genera­

tion of computational grids
20 

. A fractured reservoir is at first 

partitioned into "primary" volume elements (or grid blocks), 

such as would usually be employed for a porous medium. The 

interblock flow connections are then assigned to the fracture 

continuum, and each primary grid block is sub-divided into a 

sequence of "secondary" nested volume elements, which are 

defined on the basis of distance from the matrix block surfaces 

(Fig. la). With these sub-continua it is possible to represent 

the transient flow in the matrix blocks, and transient inter­

porosity flow between matrix and fractures. For problems 

involving strong gravity effects (e.g., gas injection), it is possi­

ble to define more general flow connections which allow for 

gravity drainage into fractures, and for global flow through 

matrix-matrix contacts. 

The MINC-method contains the double-porosity approxi­

mation as a special case. It can be implemented simply by 

defining only one matrix continuum, and using an appropriate 

nodal distance for matrix-fracture flow (see Appendix A). 

The simulations reported in this paper were carried out 

·with a. code "STMFLDl"*, which solves simultaneous mass 

balance equations for two hydrocarbon components and water, 

as well as a heat balance. ST~IFLDl employs an integral 

finite difference technique for space discretization, and a fully 

implicit first-order time discretization. The resulting non­

linear algebraic equations are solved by Newton-Raphson itera­

tion, using a sparse version of LU-decomposition for the set of 

linear equations arising at each iteration step
19

. STMFLDI 

has a capability for simulating thermally enhanced oil recovery 

in fractured reservoirs, but was in the present work used only 

for isothermal oil-water two phase How. 

3. IMBffiiTION Oll.. RECOVERY 

Imbibition displacement of oil by water in relatively tight 

matrix blocks is a basic oil reco\·ery mechanism in fractured 

reservoirs, owing to the fact that most of the oil in place is 

present in the low permeability matrix system, and flows into 

the fracture system under viscous, gravity and capillary forces 

during oil production. Detailed simulations of individual 

matrix blocks surrounded by water and oil are presented in 

this section to study oil recoHry mechanisms and to demon­

strate the validity of the Mll'\C-method. The MI!'\C results 

are compared with predictions from double-porosity and 

explicit-discretization methods (DPJ\·1 and EDJ\1; see Figs. 1 b 

and lc). Two kinds of matrix blocks, cubic and cylindrical. 

are modeled, and similar results are obtained. Relative per­

meability and capillary pressure data, and other parameters 

used are shown in Tables I, 2 and 3. 

•dtuloped by K. Pru~!\5 
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RESULTS 

EDM is used as a comparison standard for MINC and 

DPM because EDM can take into account all the mechanisms, 

viscous, gravity and capillary effects. Figure 2 shows a 

schematic profile of a matrix block of cylindrical shape for 

MINC and EDM calculations. 

Oil recovery versus time is shown in Figures 3a, 4a, and 

5a, calculated from l\1INC, DPM and EDM for the three data 

sets given in Tables 1, 2, and 3. In Figure 6 we present oil 

recovery results for a cubic matrix block, using the data set of 

Thomas et ai.
9

. This is virtually identical to the results for a 

cylindrical block, given in Figure 4a. After many calculations 

with various matrix sizes and parameters, we have found that 

there is almost no difference in ftow behavior between cubic 

and cylindrical matrix blocks. 

Comparing the oil recovery calculated by the three 

mt>tbods, it can be found that the t-.1INC-method is accurate 

enough to simulate the water-oil imbibition process, while the 

DPM approach can give very large errors because it neglects 

transient ftow in the matrix. In all cases we have studied, 

there is excellent agreement between the MINC and EDM 

results. It is interesting to note that the l\1INC-method 

requires only a modest increase in computational work in com­

parison to DPM because of the one-dimensional treatment of 

How in the matrix, and saves much more computer time and 

storage than ED:\!. 

As shown in Figures 3-6, there is a large difference in oil 

recovery between the MINC (or EDM) and DPM results. 

From the curve of imbibition rates (How rate of oil from 

matrix into fractures) versus time in Figures 3b, 4b and 5b the 

cause of the difference is apparent. The imbibition rates are 

quite different between the two methods at early time, because 

DPl\1 underestimates the capillary gradient near the matrix 

block surface. In fact, in DPM the initial differences in capil­

lary pressures between matrix and fractures are assumed to 

occur over a quasi-steady How distance D, which is much 

larger than the nodal distance we employ for the first matrix 

continuum in the .l\fiNC-method (see Appendix A). Subse­

quently the Ml:'\C-method predicts a buildup of water satura­

tion near the matrix block surface, which diminishes the capil­

lary pressure gradient driving interporosity How, as well as oil 

relative permeability. This results in a steeper decline in 

imbibition rate than that predicted from the DP.l\1 approxima­

tion, in which all saturation changes are averaged over the 

entire matrix block. Therefore, at intermediate times, DPM 

overpredicts imbibition rates. Eventually, for very large times, 

the DP~I imbibition rates decline below the MINC-predictions. 

This occurs simply because fort - oo all approximations must 

converge to the the same total oil recovery, corresponding to 

attainment of capillary equilibrium between matrix and frac­

tures. The relative lengths of the "early", "intermediate", and 

"late" time period, and the magnitude of deviation between 

~fi:'\C and DPl\·1, depend on formation parameters, PVT pr<:>­

perties, and initial conditions. 

The agreement bt>wteen Mll"C and EDM is excellent 

throughout. This is further substantiated in Figure 7, which 

compares the water saturations calculated in Mll"C approxi­

mation for a certain distance from the surface of a cylindrical 

block (st>e Fig 2) with the detailed predictions of EDM. It is 

seen that the MINC-method underpredicts water saturations 

near the "corners", where imbibition effects through the 

cylinder mantle ,overlap with those through the upper (or 

lower) cylinder surface. Away from the corners, imbibition 

effects are slightly overpredicted by the MINC-method. The 

deviations are such that the saturations computed in MINe­

approximation agree extremely well with the average satura­

tion at a given distance from the block surface obtained in 

EDM. Figure 7 shows that this holds true even when gravity 

effects are included, as long as saturations are uniform over the 

block surface. This result confirms a theoretical prediction by 

Pruess
20 

Ejfecl.8 of Matrix Block Size and Permeability 

In Appendix B we show that, as far as interporosity ftow 

is concerned, a change in linear matrix block size by a factor a 

is equivalent to a change in block permeability by a factor 

ljo2
, provided gravity effects are small in comparison to capil­

lary effects. We have verified this by comparing calculations 

for cylindrical and cube-shaped matrix blocks of widely 

different permeability and size. This result makes it possible 

to plot imbibition oil recovery in terms of a dimensionless time 

to, which is proportional to (k/L2)t (see Figure 8). 

One of the most difficult problems in history matching 

and performance prediction of fractured reservoirs is to 
determine the matrix block size because it cannot be measured 

directly, so that the parameter usually bas to be established 

after tedious history-matching calculations. The equivalence 

between changes in matrix block size and permeability facili­

tates practical application of .the MINC-method to actual 

reservoir problems and history matching. A computational 

grid for a .l\1INC-model of a How system needs to be generated 

only once for a given matrix block shape; changes in matrix 

block sizes can then be implemented simply by appropriate 

adjustments in matrix permeability. 

The same holds true when considering not just one kind 

of block shape, but a distribution of block shapes and sizes, 

based on some stochastic fracture distribution. As was shown 

by Pruess and Karasaki
21

, the effective shape of a distribution 

of blcick sizes can be conveniently represented by means of a 

"proximity function" PROX(x), which represents the fraction 

of matrix material present within a distance x from the frac­

tures. Knowledge of the proximity function is sufficient for 

defining all geometric parameters of a computational grid in 

the MINC-method. Based on the discussion of Appendix 8 it 

is clear that scaling of all matrix block dimensions in any dis­

tribution of shapes and sizes by a factor o will be equivalent 

to a change in matrix block permeability by a factor 1/oz 

(provided gravity effects in interporosity How are small). 

4. A FIVE-SPOT EXAMPLE 

In order to demonstrate the application of the Mll"C­

method to a field-scale problem, we present a comparison with 

previous calculations of Kazemi et al.
4

, and Thomas et al.
9

, 

for five-spot waterHood. In this problem water is injected into 

one-quarter of a live-spot pattern at a rate of 200 STB/D, and 

the production rate of total liquid is set at 210 STB/D. Reser­

voir dimensions and properties are given in Table 4. 

3 

'.;t,:· t ! ~ 

~1.~:~ ·. -~ 



4 A Multiple-Porosity Method for Simulation of Naturally Fractured Petroleum Reservoirs 

For the treatment of the flow between matrix and frac­

tures, Warren and Root
2 

have derived an equation for the 

shape factor u for single-phase flow, based on the quasi-steady 

flow assumption, 

u,;;, 4N(N + 2) 
L2 

(4-1) 

\\'here N is number of normal sets of fractures; (N = 1, 2 or 

3), and 

for N = 1 

for N = 2 (4-2) 

for N = 3 

Kazemi et a.l. and Thomas et al. both employed the 

quasi-steady approximation, introduced by Warren a.nd Root, 

and gave different formulae for the matrix shape factor u. 

Kazemi et al. proposed, 

(4-3) 

and Thomas et al. suggested 

(4-4) 
A 

Q=--
LVm 

It should be noticed that the shape factors calculated 

from the three equations above for a. cubic matrix block are 

quite different. As mentioned in the previous sections, the 

matrix block size makes a. difference in flow behavior of imbibi­

tion oil displacement, and so does the shape factor since it is 

related closely to the matrix block size. The simulation results 

for different u may lead to remarkable differences in the per­

formance prediction. 

In the present five-spot example, Kazemi et a.l. used a. 

va.lut' of u = 0.08
4

, which according to Equation (A.5) 

corresponds to a. nodal distance of D = 5.833 ft. A com­

parison of our simulated water-oil ratios with the results of 

Kazemi et al. and Thomas et a.!.
9 

is shown in Figure 9. For 

tht' first two years, our calculation using u = 0.08 is in excel­

lent agreement with the curves of Kazcmi et al. and Thomas 

et al, and shows slight deviations at later time. The curve for 

u = 0.36 in Figurt' 9, based on Warren and Root's shape fac­

tor. is lower for the first three yt'ars, and has a more rapid 

increa.~e during the later production period. We also carried 

out a ~11 :'\C~calcu lation for this problem, using a discretization 

of five continua. Surprisingly, the results for produced water· 

oil ratio turned out to bt' virtually indistinguishable from those 

obtained in double-porosity approximation with u = 0.36, 

even though over much of the five-spot pattern the saturation 

distributions are quite different in both cases. How can a tran­

sient and a quasi-steady approximation for interporosity How, 

which give substantially different imbibition response for indi· 

vidual matrix blocks (compare Fig. 3a). end up yielding nearly 
indistinguishable water-oil ratios in a five-spot ftood? The 

answer is that the aggregate response of many matrix blocks in 

a Hood problem tends to compensate for differences in indivi­

dual block rt'sponse. In the prest'nt case, the double-porosity 

approximation gives more rapid oil recovery from an individual 

block over virtually tht' entire time period of interest (see Fig. 

3a). Therefore, iro tht' double-porosity calculation matrix 

blocks near the injector will take up more water and deliver 

more oil than predicted from the MINC-method, so that 

blocks further downstream from the injector will "see" more 

oil and less water in the fractures. Therefore, those more dis­

tant blocks will give smaller imbibition rates. From this con­

sideration it is clear tha.t there will be a. general tendency for 

aggregate effects of blocks to compensate for differences in 

individual block response. The fact that this compensation is 

virtually quantitative in the present case is to be considered 

fortuitous. 

5. A CONING PROBLEM 

In this section, the MINC approximation is used to match 

the observed coning behavior of a. well in the north China. oil 

field. The data have been previously analyzed by Chen whose 

basic reservoir model is axially symmetric, the symmetry axis 

coincides with the well. The upper part of the reservoir is the 

oil zone, the middle is the transition zone, and the lower part 

is the water zone. Near the top of the water zone there is a 

horizontal thin impervious break. The bottom water is sup­

plied from the lowest surface of the cylinder on which the 

pressure is maintained at a constant value. The top and the 

external border of the cylinder are sealed - i.e., there is no flow 

across the boundaries. The data used are shown in Table 5. 

As given in Table 5, Chen used u = 0.1068, which 

corresponds to a cubic matrix block with L = 23.7 ft. In the 

history match simulation, parameters are calibrated from the 

water-cut data of the first 200 days of production, and the 

water-cut data after 200 days are used for checking the 

predicted results. 

The results of the history matching and the behavior 

prediction a.re shown in Figure 10, computed by Mll'\C and 

DPM from the data of Table 5, respectively. Both models give 

a reasonable match for observed performance; differences 

between DPM and MINC are small in this case. 

8. ON THE VALIDITY OF THE DOUBLE­

POROSITY METHOD (DPM) 

For practical simulation applications it would be prefer­

able to use the simpler DPM approximation whenever possible, 

and to resort to the more complex MI:'\C-description only in 

cases where the accuracy of DPM is poor. In this section we 

examine in more detail the conditions for which acceptable 

accuracy can be attained with the DP~! method. The limita­

tions of DPM can be seen best when comparing the temporal 

evolution of imbibition rates in individual matrix blocks with 

the more accurate MINC-prediction. As was discussed above. 

one can distinguish three time periods (see also Figures 11 b, 

13b, Hb): 

(1) a.n early period, in which DPM underpredicts imbibi· 

tion rate, because it underpredicts the capillary gra­

dients at the matrix block surface; 

(2) a.n intermediate period, in which DP~! overpredicts 

imbibition rate, because it underestimates buildup of 

water saturation nt'ar the matrix block surface; and 

v 
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(3) a. late time period, in which DPM again underpredicts 

imbibition rate, because in the intermediate time 

period (2) the block has moved closer towards even­

tual capillary equilibrium with the fractures than 

would be predicted from MINC. 

The relative lengths of these time periods, and the magnitude 

of deviation between DPM and MINC in them, depend upon 

formation and fluid properties. Generally speaking, differences 

tend to be larger (DPM less accurate) for small matrix permea­

bility, large ma.rix block dimensions, large matrix porosity, or 

large oil viscosity. This can be seen bl comparing the imbibi­

tion results obtained for Chen's data. 
7 

(Figures 10.11) with 

those calculated for a modified data set, in which matrix per­

meability was decreased from 5 and for O.I md, and porosity 

was increased from 5 percent to 20 percent (Figure 12-I3). For 

the original data. of Chen most matrix blocks are in the "inter­

mediate" time period (2) during the water coning process with 

relatively minor differences between DPM and MINC (see Fig­

ure Ilb). For the modified data most matrix blocks are in 

time period (I) (see Figure I3b), with very large differences 

between DPM and MINC. 

Reservoir response is in general more complicated than 

indi\"idua.l block response, because it involves a superposition 

of effects from many matrix blocks. Depending upon their 

location in the reservoir relative to the water table, and to 

injection and production wells, different blocks will be at 

different periods of the imbibition "cycle". Aggregate imbibi­

tion response of many blocks in a. reservoir ma.y be similar in 

DP!\f and MINC, even if individual block responses are rather 

different. This behavior was observed in our simulations of 

Kazemi's five sv>t waterflood example, where DPM and MINC 

gaH virtually indistinguishable results even though individual 

block response predicted from DPM differs considerably from 

the MINC results (Figures I4a, 14b). The explanatio~ here is 

that with. time the matrix blocks near the injector move into 

stages (2) or (3) of the imbibition cycle, while the blocks closer 

to the production well remain in stage (I) for a longer time. 

Overall reservoir response tben tends to average out the 

differences existing in each stage. 

For practical reservoir simulation problems, it would be 

desirable to be able to evaluate the accuracy to be expected 

from DPM without actually going through a reservoir-wide 

MINC-calculaton as well. It may be possible to accomplish 

this by plotting individual block imbibition data as shown in 

Figure 15. Here we have shown the ratio of recovery predic­

tions from MINC and DPM as a function of total recovery. 

This presentation of the data removes the somewhat spurious 

dependence on real (physical) time, instead emphasizing the 

connection between total recovery and accuracy of DPM. 

(Note that an explicit discretization calculation for an indivi­

dual block could be used instead of the MINC-calcula.tion, 

with virtually indistinguishable results.) Figure 15 shows why 

DPM for the modified data of Chen strongly underestimates 

oil recovery (overestimates WOR): all matrix blocks are in con­

ditions that plot above ORM/OR0 = 1. For Chen's original 

data, as well as for Kazemi's data, the ORMfOR0 ratio reaches 

1 for substantially smaller oil recovery. In these cases, there­

fore, some matrix blocks will have ORM/OR0 > 1 while others 

will have ORM/ORd < I after a relatively modest r!covery 

period. In this situation differences in individual block 

response will tend to average out, giving a. favorable situation 

for applying DPM. 

'1. CONCLUSIONS 

1. The conventional double-porosity method can give 

large errors for simulation of oil recovery from individual 

matrix blocks or from a reservoir by water-oil imbibition 

mechanisms. The errors increase rapidly with enlargement of 

matrix blocks or fluid viscosity, and with decrease in rock per­

meability. 

2. The method of "multiple interacting continua." 

(MINC) takes into account the transient flow of fluids both in 

the matrix system and in the fractures. Comparisons with cal­

culations using a detailed explicit discretization of matrix 

blocks have shown that the MINC-method gives accurate 

predictions for water imbibition. 

3. Results of five-spot waterflood and coning simulations 

indicate that the aggregate response of many matrix blocks in 

a reservoir has a general tendency to compensate for 

differences in individual block response. This suggests that the 

dou hie-porosity method with quasi-steady approximation for 

interporosity flow may be applicable even in cases where its 

basic assumptions are poorly justified. 

4. An estimation of the suitability of the double-porosity 

approximation for water flooding and coning problems can be 

obtained by comparing quasi-steady and transient imbibition 

predictions for individual matrix blocks. 

NOMENCLATURE 

A interface area of matrix block, [L2
1 

Anm interface area. between volume elements n and m, [L2
] 

b formation volume factor, [L3jL3 j 

c compressibility, [Lt2 /MJ 

D distance between nodal points, [LJ 

DJ nodal distance for the innermost matrix node, [LJ 

F mass flux, [M/L2·tj 

h time level index 

k absolute matrix permeability, [L2J 

k component index (k =oil, water), [L2j 

k# relative permeability to the ,8-phase 

L characteristic dimension of matrix block, [LJ 

L,. matrix block length, [LJ 

L1 matrix block width, [LJ 

L. matrix block height, [LJ 

M accumulation term in mass balance equation, [M/L3
1 

P pressure, [M/L·t2
1 

Pewo capillary pressure, [M";Lt2
) 

S saturation 

time, [tj 

V m matrix-block volume, [L3 j 

5 
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v. volume of grid block n, [L3
] 

X mass fraction 

Q scale factor (Appendix A) 

J.l viscosity, [ M/Lt] 

p mass density of fluid, [M/L3
] 

q matrix shape factor, [L-2
] 

~ porosity 

Subscripts 

b 

m 

n 

0 

w 

bubble point 

fracture 

matrix 

indt>x number of volume element 

oil 

watt>r 

/3 phast> 
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Appendix A: Relationship Between Double-Porosity 
Matrix Shape Factor and Geometric Parameters of the 
Integral Finite DifFerence Method. 

Warren and Root (1963) wrote a quasi-steady approxima­

tion for interporosity !low in single phase conditions as follows: 

Opm km -
tPmCm at= tT P (Pr- Pm) (A.1) 

The bars indicate averages over matrix and fracture continua, 

respectively. The parameter tT (Warren and Root used the 

notation a) is a "matrix shape factor" (Thomas et al., 1983), 

which characterizes the matrix block surface area per unit 

volume. 

To obtain the relationship between tT and the geometric 

parameters used in an integral finite difference description of 

interporosity !low, consider the point differential equation for 

How in the matrix blocks 

0Pm . km 
tPmCm-- = d1v - 'VPm 

at 11 
(A.2) 

Integrating over one matrix block we obtain: 

0Pm km --
V¢>mcm-0 =A- ('VPm)_ 

t lA 
(A.3) 

In double-porosity approximation (two continua), the pressure 

gradient at the block surface is approximated by the following 

finite difference expression 

(
-) ~ Pr- Pm 
'VPm.....,. ~ --

0
-- (A.4) 

with D being the distance of the matrix nodal point from the 

block surface. Comparing Eqs. (A.1), (A.3) and (A.4), we 

obtain 

A 
tT= --

VD 
(A.5) 

For matrix blocks in the shape of cubes, Warren and Root give 

tT=60/L 2· Noting that A/V = 6/L in this case, we obtain a 

nodal distance D = L/10 for quasi-steady !low. Different 

values of tT which have been proposed for multi-phase !low can 

be accommodated in the integral finite difference representa­

tion by simply calculating the corresponding nodal distance 0 
from Eq. (A.5). 

Appendix B: Dependence of lnterporosity Flow on 

Matrix Block Si:te 

Let us consider a scale change for the matrix blocks in which 

all distances between points change by the same common fac­
tor 

I - I' =a/ (8.1) 

Such a scale change will not affect the shape of the blocks. In 

order to evaluate its effect on interporosity How, we consider 

the governing mass balance equations for matrix-matrix or 

matrix-fracture !low. Ignoring gravity effects, we have 

M.H+l - M.H - .O.Vt ~ Anm F ntm = 0 (8.2) 
D m 

where 

k t kp 
--~ Xp- Pp (Pp,m- Pp,.) 
o.m " lAp 

(8.3) 

Thus, the permeability and geometry parameters appear in 

(8.2) in the group 

k~ 
v.o.m 

(8.4) 

Suppose that the total number of matrix blocks in grid block 

V0 is 11. Under the scale change (8.1) this number will change 

to v = vja3 
. The surface area per matrix block will change 

from Anm/11 to a 2A0 m/" , so that the total surface area will 

become 

= V a2Anm =_.!._A 
V 

0 
om 

(8.5) 

All nodal distances in the matrix will change according to 

. (8.6) 

Note that for a matrix-fracture connection the same equation 

holds, because the fracture nodal point will be on the block 

surface, so that the entire group (8.4) will change as follows: 

k ~ = .!._ ~ (8.i) 
VaDam a2 v.o.,;, 

Thus, an increase in linear matrix block size by a factor o is 

equivalent to a reduction in matrix permeability by a factor 

o 2
. This result holds for arbitrary (fixed) block shapes, and in 

fact for arbitrary distributions of block sizes. Nowhere in the 

above discussion did we need to require matrix block sizes to 

be identical. 

When gravity effects are included no simple block size­

permeability relationship is possible. For a gravity term in 

F nkm• the geometric data would appear in the group 

k Anm - k Anm' = !_ A,,m 

v. v. Q v. 

For gravity contribution to flow, an increase in linear matri~ 

block size by a factor a is equivalent to a decrease in pernwa­

bility by the same factor. As matrix block sizes increas~. 

therefore, the contribution of pressure forces to flow will 

diminish more rapidly than the contribution of gravity forces. 

This indicates that gravity forces may often be unimportant 

for imbibition in small matnx blocks, but may be very impor­

tao t for large matrix blocks. 

7 
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Table 1. 

Relative Permeabilities and Capillary Pressures 

for Data Set 1 (Kazemi et al., 1976) 

Sw krmf krof Pcwof krwm krom Pcwom 

(psi) (psi) 

0.000 0.000 1.000 4.000 

0.100 0.050 0.770 1.850 

0.200 0.110 0.587 0.900 

0.250 0.145 0.519 0.725 0.000 0.920 4.000 

0.300 . 0.180 0.450 0.550 0.020 0.705 2.950 

0.400 0.260 0.330 0.400 0.055 0.420 1.650 

0.500 0.355 0.240 0.290 0.100 0.240 0.850 

0.600 0.475 0.173 0.200 0.145 0.110 0.300 

0.700 0.585 0.102 0.160 0.200 0.000 0.000 

0.800 0.715 0.057 0.110 

0.900 0.850 0.021 0.050 

1.000 1.000 0.000 0.000 

v 
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Table 2 

Parameters for Data Set 2 {Thomas et al., 1983) 

Relative Permeability 

Sw krw krow pcwo 

(psi) ... 

0.200 0.000 1.000 50.00 

0.250 0.005 0.860 9.000 

0.300 0.010 0.732 2.000 

0.350 0.020 0.600 0.500 

0.400 0.030 0.492 0.000 

0.450 0.045 0.392 -0.40 

0.500 0.060 0.304 -1.20 

0.600 0.110 0.154 -4.00 

0.700 0.185 0.042 -10.0 

0.750 0.230 0.000 -40.0 

Original bubble point, psig 5,545 

Slope of b
0 

above Pb, voljvol-psi 0.000012 

Density of stock-tank oil, I bm/cu ft 51.14 

Slope of the Jlo above Pb, cp/psi 0.0000172 

Gas density at standard conditions, lbm/c:u ft 0.058 

Water formation volume factor, psig 1.07 

Water compressibility, vol/vol-psi 3.5 (lo-5
) 

Water viscosity, cp 0.35 

Water density at standard conditions lbm/cu ft 65 

·~ ..... 
Matrix compressiblity vol/vol psi 3.5 (lo-6

) 

Fracture compressibility, vol/vol psi 3.5 (lo-6
) 

Matrix permeability, md 1 

Matrix porosity, % 30 
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Table 3 

Parameters for Data Set 3 (Southern California Oil Field) 

Relative Permeability 

Sw krwm krom pcwom 

(psi) 

0.000 1.000 0.000 355.55 .. 
0.037 0.850 0.000 141.59 

0.040 0.840 9.42E-11 124.25 

0.049 0.811 2.41E-8 105.77 

0.059 0.779 2.72E-7 88.27 

0.073 0.735 1.95E-5 70.85 

0.095 0.571 1.32E-5 53.42 

0.099 0.659 1.72E-5 51.77 

0.133 0.558 9.85E-5 35.92 

0.201 0.411 8.41E-4 21.54 

0.259 0.303 2.82E-3 14.38 

0.351 0.173 1.13E-2 7.155 

0.380 0.142 1.51E-2 5.568 

0.455 0.0785 3.55E-2 3.082 

0.554 0.0285 8.31E-2 1.543 

0.524 0.0104 0.138 1.232 

0.800 0.000 0.405 0.872 

0.900 0.000 0.577 0.730 

1.000 0.000 1.000 0.205 

Matrix porosity (%) 20 

Matrix Permeability, md 1 ~ 

Fracture permeability, md 10,000 

Rock compressibility voljvol-psi 3x1o-5 v 

Initial oil saturation 0.60 

Oil density, I bmjcu ft 60.99 

Oil viscosity, cp 90 
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Table 4 

Data for Five-Spot Problem of Kazemi et al. {1976) 

Initial Pressure, psia 

Thickness, ft 

Grid dimensions 

Grid spacing, .D.x=.D.y (ft) 

Fracture porosity (%) 

Matrix porosity (%) 

Fracture permeabilty (effective), md 

Matrix permeability, md 

Matrix shape factor, sq ft -2 

Water compressibility, vol/vol-psi 

Bubble point pressure, psia 

\Vater and oil formation volume factor at the 

bubble point, RB/STB 

Slope of b0 above Pb, voljvol-psi 

Fracture compressibility, vol/vol-psi 

Water viscosity, cp 

Water density, psijcu ft 

Water injection rate, STB/D 

Total productton rate, STB/D 

3,959.89 

30 

8 X 8 

75 

1 

19 

500 

1 

0.08 

3.03(10-6
) 

0 

1.0 

0.0000103093 

3(10-6
) 

0.4444 

0.3611 

200 

210 
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-Table 5 

Parameters for the Coning Problem 
i7 

(Chen, 1983) 

Relative Permeability 

Fracture Matrix 

0.0 0.0 1.0 

0.1 0.052 0.764 

0.2 0.111 0.592 

0.3 0.182 0.439 

0.4 0.271 0.328 

0.5 0.367 0.239 

0.6 0.470 0.163 

0.7 0.586 0.103 

0.8 0.715 0.057 

0.9 0.854 0.017 

1.0 1.0 0.0 

Perforated thickness, ft 

Thickness of oil zone, ft 

Thickness of water zone, ft 

Well radius, ft 

Well drainage radius, ft 

Radius of the impervious break, ft 

Porosity 

Permeability, mel 

3.869 

1.906 

0.896 

0.540 

0.370 

0.277 

0.205 

0.135 

0.085 

0.043 

0.0 

Compressibility, pst 1 

\'ertiealjhorizontal permeability ratio 

!\latrix shape factor sq ft- 1 

Viscosity, cp 

Specific gravity 

Compressibility, psi- 1 

Formation volume factor, RB/STI3 

0.280 

0.324 

0.368 

0.412 

0.456 

0.500 

0.544 

0.588 

0.632 

0.676 

0.720 

0.0 

0.016 

0.034 

0.052 

0.070 

0.092 

0.113 

0.131 

0.154 

0.178 

0.200 

Fracture 

0.008 

3,500 

0.0056 

0.55 

Oil 

15.8 

0.8-156 

0.00000-l 

1.05:3 

0.940 

0.705 

0.544 

0.431 

0.348 

0.276 

0.207 

0.149 

0.092 

0.034 

0.0 

3.869 

2.773 

2.077 

1.579 

1.195 

0.868 

0.612 

0.384 

0.213 

0.085 

0.0 

68.2 

369.1 

984.2 

0.328 

984.2 

439.6 

.~/latrix 

0.05 

5 

0.0 

~ 

0.1068 

Water 

0.3 

1.02 

0.0 

1.0 



( " 

r-----1------1 I 

: ,- - - - - - -, : 
I I -- -- : I 
I I I Matrix I I 

I 

I 
I 
I 

I __ I_ _I I 
I- - I-- I l__t_J I 

. I I 
L ____ .J 

I 
I 

I 
I 

L---- --- __ I 

XBL 8512-12639 

.: 

Matrix 

XBL 8512·12640 

Fig. 1. Discretization of matrix blocks {schematic) {a) MINC, (b) Double porosity, (c) 

Explicit discretization. 

" 

XBL 8512·12697 

I .... 
VI 
I 



0 

I 

2 

4 

6 

10 

14 

16 

18 

19 

20 

z 
( ft) 

2 

• 

• 

lr 

-14-

4 5 6 7 8 9 10 R ( ft ), 

• • • • 
• 

• 

• 

• 

• 

• 

• 

• 
• • • • 

XBL 857-10609 

Fig. 2. Discretization of a cylindrical matrix block for MINC and EDM. 



(a) 

(b) 

u 
Q) 

"' ' 0' 
-"' 

~ 
0 

a:: 
c 
0 

15 
:0 
F. 

Fig. 3. 

50 

40 

~ 
~ 30 
Q) 

> 
0 
u 
Q) 

a:: 

0 20 

10° 

10
1 

10
2 

10~ 

10~1 

I 
I 

I 
I 

0 
I 

I 
I 
I 
I 
I 

/ , 
, 

;f, 
,. 

,d' 

-15-

-o---o--..o-­
~--o--

,<r 
.o' 

.JY"" 

_...o--~ 

,,o-

2 

I (years) 

10 

I (days) 

e:. Explicit Discretization 

• MINC (7Continual 

o Double Porosity 

3 4 5 

XBL 857-10601 

6 Explicit Discretization 

• MINC (7Conlinuo) 

0 Double Porosity 

100 1000 

XBL 856-10600 

Imbibition recovery and rate from a cylindrical matrix block (Kazemi et al. data) 

(a) Imbition recovery, (b) Imbibition rate. 



(a). 

(b) 

Fig. 4. 

~ 
~ 

;::... 
..... 
Q) 

> 
0 
u 
Q) 

0:: 

0 

U) 

........ 
0' 
-"" 

<LI 

a 
a:: 
c 
a 

·-
.0 

.0 

E 

-16-

30r----------r----------.---------~~------~----------. 

20 

10 

I 
I 

I 
I 

I 
I 

, 
p 

,4 
,-

,u' , 

~--------------~-------------------

b. Explicit Discretization 

• MINC ( 7 Continua) 

o Double Porosity 

0~--------~----------~--------~--------~--------~ 
0 2 3 4 5 

t (years) 

XBL 657-10605 

lcJ3 6 Explicit Discretization 

• MINC ( 7 Continua) 

0 Double Porosity 

10~ 

10
6
~--------~----------~----------~--------~----------~--~ 

2 3 4 5 

t (years) 

XBL 856-10598 

Imbibition recovery and rate from a cylindrical matrix block (Thomas et aL data) 

(a) Imbibition recovery, (b) Imbibition rate. 



.. 

-17-

(a) 15~----~------~------~----~------~ 

Fig. 5. 

~ 
~ 

>. ..... 
Q) 

> 
0 
u 
Q) 

0:: 

0 

(b) 

Vi ...... 
0' 
-"" 

2! 
0 

0:: 

c 
0 

:.0 
D 

E 

10 

5 

6. Explicit Discretization 

• MINC(7Continua) 

o Double Porosity 

- ... "d" 
...o:r""'-o --... -<:r ... 

.-.-a- .... 
.-o----<::1'" 

... -<:r-

_,..,.. ... -cr 
..o--"V 

~--cr 
_.t:::r --.,., 

0~--------~----~--~----------~--------~--------~ 
0 2 3 4 5 

t (years) 

XBL 857-10604 

~~-----------.----------.-----------~---------,~--------~ 

-- .................... 

10
1 

10'. 

10
1 

"'"Q. 

............ 
.... ... .... .... ... ... ... 

' 'u. 
' .... 

.... 

10' 

' ' ' ' ' ' ' 

!(days) 

' ' 

6. Explicit Discretization 

• MINC (7 Continual 

o Double Porosity 

' :q 

' ' ' ' 

10' 10
1 

XBL 8~6- 10~99 

Imbibition recovery and rate from a cylindrical matrix block (Southern California 

Field) (a) Imbibition recovery, (b) Imbibition rate. 



-~ ->-
'­
Q) 

> 
0 
u 
Q) 

0::: 

0 

30~------~------.--------r------~------~ 

20 

10 

p 
/ 

/ 

--cr-,, 
p 

-- ~---~--~------------------()- ---- v 

~ 
6 

6 Explicit Discretization 

• MINC ( 7 Continua} 

o Double Porosity 

0~--------~--------~--------~--------~------~ 

0 2 3 4 5 

t (years) 

XBL 857-10607 

Fig. 6. Imbibition recovery from a cubic matrix block (Thomas et al. data). 

< .. 

I _.. 
CD 
I 



( 

~ 
(f) 

.40 

.35 

.30 

.250 

" 
.r; 

z = 0.75 ft R = 9.25 ft 
.. I .,. 

-<==:
Average (.386~) 

A""""" 
4 

t - 57 8. 7 D -·-----
MINC (.3867) 

• • :;;if 

~Average (.2848) 

MINCl2850) • • I= 11.5741 D. 

II II 

Corner 

5 10 15 20 

{' ( ft) 
XBL 857-10608 

Fig. 7. Saturation distribution in a cylindrical matrix block. 

I ...... 
~ 
I 



....-
~ 0 -
c 
Q) 

> 
0 
() 
Q) 

a: 

0 

SOr-------------r------------.------------~------~~~1 

40 

I 

30 L 

I 

20 I 

10 I 

1 

Fig. 8. 

< 

/ 6- Cylinder 

/ R =10ft 

H =20ft 

/ t _ Kt 
o-

4>mC0 {2R}
2 
/Jo 

~ # 
•- Cube 

~,~ 
K = 1 md 

t _ Kt 
o-

4>mCoL2 /Jo 

I 
10 100 1000 10,000 

to 

XBL 8512-12699 

Effect of marix block size and rock absolute permeability on imbibition oil 

recovery versus dimensionle~=3 time. 

~ 

I 
N 
0 
I 



( 
;i • 

8~--------~--------~--------~--------~---------. 

6 Kazemi et al. 

o Thomas et al. 

• Present Work ( cr = .08) 

0 1 
+ Present Work ( cr = .36) 

-a 
0:: 

0 

~ 

Q) -a 
~ 

2 

I I I I 
2 3 4 5 

t (years) 

XBL 857-10606 
Fig. 9. Kazemi's five-spot example. 

I 
N _.. 
I 



-~ 0 -
+.J 

:::1 

0 
0 

'-
(!) 

100 

co 
~ 50 

Matching Predicting 

-· Actual Water-Cut 

o Water-Cut Computed from MINC 

• Water-Cut Computed from DPM 

50 100 150 200 250 300 

-t (days) 

XBL 861-10503 

Fig. 10. Chen's coning problem. 

< ' "' 

I 
N 
N 
I 



., 

,., 

1.,./ 

Fig. 11. 

(a) 

50 

40 

~ 
2::' 
Q) 

> 
0 

30 u 
Q) 

a: 

6 

20 

10 

(b) 

w-J 

"' 0; 
~ 

"' '" a: 

g to·• 
fj 
0 

5 

10-s 

(I) Early 

10 ti 

0 I 

-23-

2 3 

t (years) 

(2) Intermediate 

10 100 

t (days) 

e MINC 

6 DPM 

L- 23,7 

4 5 

XBL 861-10496 

e MINC 

6 OPM 

L • 23.7 

1000 

~BL <;til 10502 

Imbibition recovery and rate from a cubic matrix block (Chen's data) (a) Imbibi­

tion recovery (b) Imbibition rate. 



-24-

'f 

' 
~-

I 
I 
I 
I 

' 50 

' ' I 
I 

a: 
40 ' 0 I 

~ 

' \ 
\ 

30 
\ 

~ 
\ 
\ 
\ 
\ 

20 ,. .... L~.... 
...... 

,~.,... ...... 
~ 

• MINC 

0 DPM 

10 L= 23.7 

Km = 0.1 md 

<!>m = .20 
t_\ Relative Error 

100 200 300 400 
v 

t (days) 

XBL 861-10501 

Fig. 12. Comparison of WOR from MINC and DPM (modified Chen's data). 



.,. 

,. 

'I 
~ 

(a) 

10 

~ 
~ 
Ql 
> 
0 
u 
Ql 

a: 

6 
5 

2 

-25-

3 

t (years) 

6 MINC 

e DPM 

L- 23.7 

Km- 0.1 md 

d>m- .20 

4 5 

XBL 861-10500 

(b) 10-2 r----------r---.......-----~-----r-----. 

Fig. 13. 

Ul 
Oi 10-3 

~ 
(j) 

(ii 
a: 
c 
Q 

i5 
i5 
f 10-4 

• • • • • • • • 

['_ MINC 

e DPM 

L- 23.7 

Km- 0.1 md 

Cl>m ~ .20 

10- 5 L-----------~----------~------------~-----------L-----L 
0 1 10 100 1000 

t (days) 

Imbibition recovery and rate from a cubic matrix block (modified Chen's data) 

(a) Imbibition recovery, (b) Imbibition rate. 



Fig. J.l. 

-26-

(a) 60~------~-------r------~-------,------~ 

50 

40 
D. MINC ;i 

!!... • DPM 

~ Lx= 10ft. 
Q) 

> Ly = 10ft. 0 
u 

30 Lz= 30ft. Q) 

a: 

6 

20 

10 

10°~--------~--------~--------~--------~--------~ 

01 10 100 1000 

t (days) 

ABL 80 I IQ~gl 

Imbibition recovery and rate from a rectangular matrix block as used m five-spot 

example (a) Imbibition recovery, (b) Imbibition rate. 

~ 



a 
0: 
0 
~ 
0: 
0 

-27-

5~------~--------r-------~--------~-------.--------. 

4 

3 

2 

10 20 

o- - Chen (23. 73) 

e- Chen (0m = .20, Km = 0.1 md,23.73
) 

t:r- Kazemi et al. (10X 10X30) 

OR
0 

-Oil Recovery from DPM 

ORM -Oil Recovery from MINC 

30 

OR
0 

(%) 

40 50 

Fig. 15. Comparison of imbibition oil recovery from MINC and DPM. 

60 



This report was done with support from the 

Department of Energy. Any conclusions or opinions 

expressed in this report represent solely those of the 

author(s) and not necessarily those of The Regents of 

the University of California, the Lawrence Berkeley 

Laboratory or the Department of Energy. 

Reference to a company or product name does 

not imply approval or recommendation of the 

product by the University of California or the U.S. 

Department of Energy to the exclusion of others that 

may be suitable. 



-~--~ 

LAWRENCE BERKELEY LABORATORY 

TECHNICAL INFORMATION DEPARTMENT 

UNIVERSITY OF CALIFORNIA 

BERKELEY, CALIFORNIA 94720 

-~ -- ....:..:· 




