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A multiple scattering technique is developed for describing the physics of intersecting
waveguides. In this picture the two waveguides interact by scattering the fields of each other in
a self-consistent manner. The development of such an analysis is motivated by the fact that the
previous theory, which is based on the idea of symmetric and antisymmetric modes of the
composite waveguide structure, has a limited validity. The analysis reveals new features of this
geometry with important device applications in integrated optics.

|. INTRODUCTION

An intersecting waveguide structure consists of two
straight waveguides crossing each other at a small angle.
This coupled waveguide geometry has recently been added
to the list of basic elements used for integrated optics.'™
Electro-optical switches have been demonstrated in lithium
niobate with the addition of electrodes to intersecting wave-
guides.> A nonblocking 4 X 4 switch array with bow-tie-type
geometry has also been fabricated with this waveguide struc-
ture.* The simplicity of geometry, i.e., absence of .S bends,
makes it possible to achieve higher levels of integration with
a switch based on this geometry than is possible with direc-
tional couplers.® Intersecting waveguides also offer the pos-
sibility of producing novel switch array interconnections,
such as the Benes or Clos networks.’

The previous theory for single-mode intersecting wave-
guides invokes the concept of interference between the low-
est-order symmetric and antisymmetric modes of this com-
posite waveguide structure.”® These local modes are usually
constructed by a superposition of the fundamental mode of
the individual waveguides. Such an analysis has at best a
limited validity for intersecting waveguides because the opti-
cal fields of the two modes which are superposed do not
propagate in the same direction. In this paper we present a
systematic theory which describes for the first time the phys-
ics of two intersecting waveguides correctly. The theory of
coupling between two intersecting waveguides is formulated
in terms of a multiple scattering interaction picture and is
discussed in Sec. IL. In this picture the two waveguides inter-
act by scattering the fields of each other in a self-consistent
manner. The applicability of the proposed theory is quite
general in its scope and is not limited to the case of two
intersecting waveguides. In Sec. II the directional coupleris
treated to provide a clear understanding of the idea behind
the multiple scattering interaction analysis. In Sec. IV the
coupling between two identical intersecting waveguides is
presented along with a description of the distinguishing fea-
tures of the solution obtained. The theory described in this
paper can also be used to describe a variety of other phenom-
enon in intersecting waveguides. For example, the analysis
of an entire class of novel devices which may be designed by
employing a variety of index distributions in the common
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volume region. Some concluding remarks are given in Sec.
V.

Il. THE MULTIPLE SCATTERING INTERACTION
ANALYSIS

This method utilizes a multiple scattering interaction
picture of coupling between the two waveguides and is for-
mulated in terms of the Green’s function for the individual
waveguides. The wave equation for the transverse electric
(TE) mode, d /9x = 0, V= (32/dy*) + (82/3z%), reduces
to

[V: + 0’ue(r,2) |E, (y,2) =0, (1)

with a harmonic time dependence exp( — iwt), and dielec-
tric permittivity

€2) =€ + €,(0,2) + 6(0.2) +L(y,2), (2)
where €, pertains to the substrate, €,2 (1,2z) represent the
two intersecting single-mode waveguides, and ¢ (y,z) is used
to incorporate an arbitrary scattering inhomogeneity in the
intersection region. The total field E, (p,z) is decomposed in
terms of fields £, ; (y,z) associated with the two waveguides
with / = 1,2. Equation (1) is rewritten as
[V12 + CD%U,(ES + ei ) ]Ex,i

= - wzﬂ(eiEx,j + 6-jl(:x,i ) - a)zy,L (Ex,i + Ex,j)
~ [V + o’ule, +€)]E,,, (3)

withi=1,7=2,and i =2, J = 1. In what follows, the sub-
scripts 1,2 are used to denote a point (y,z) in the (y,,z,) and
(#2,2,) coordinate axes, respectively (see Fig. 1). In addi-
tion, a source point is distinguished from an observation
point by a prime superscript.

A wave is launched from the left of the junction at

z,—> — oo in waveguide 1. The fields in the absence of cou-
pling between the waveguides 1 and 2 are

E. (n2) =EQ(y2), (4a)

E.,(»pz) =EZ(2) =0, (4b)
where the superscript within parenthesis denotes the order
of scattering interaction. However, in the presence of a cou-
pling between the two waveguides, a part of the power is
scattered from waveguide 1 into 2, and this power can be
calculated from the first-order scattered field E {3 (y,2).
Substituting Eq. (4) into Eq. (3) with/ =2,/ =1 leads to
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FIG. 1. Schematic diagram of the coordinate axes for the analysis of inter-
secting waveguides.

[Vf + &’ (€; + €) ]E;(clz) = —o’ule, + I')E)(c(,)l)’ )
where the term on the right-hand side accounts for an ex-
change of power between the two waveguides in the first

order. The fields in the two waveguides at the end of this
virtual interaction are given by

E. . (3z2)=EQ(y2), (62)
E ,yz)= (O)(y,Z) +E{)(pa2). (6b)
In the next stage of interaction, the field E {3 (y,2) is
scattered into waveguide 1 and is defined to be E () (y,2).
Substituting Eq. (6) into Eq. (3), withi =1, j =2 leads to
[V2+o’u(e, +€)]ER = —o’u(e, +OEL. (T)

The field E{})(y,z) is in turn scattered into E 2 (y,2) in
waveguide 2 and so on. The wave equation satisfied by the
nth order scattered fields E {3 (y,z) and E {7} (y,z) can be
derived in a manner similar to Egs. (5) and (7) by the induc-
tion method and are expressed as

[V +o'ule, +&)]ED = —o'u(e+)ES™Y, (8a)
[V:+oule, +€)]ED = —o’u(e, +1)E.  (8b)
The total field in waveguides 1,2 can be written as a sum of
fields due to an infinite sequence of scattering interactions
withi=1,2 as

E, . (yz) = Z EZ (n.2). (9

The solution to Eqgs. (8a) and (8b) can be expressed in terms

of Green’s function G, (y,zy',2') of the two slab waveguides
withi= 1,2 as

E(y2) =—J-J[62(y’,2’) +1(Z)ES (2D

X G,(y,z;y',2' )dy dz, (10a)
ERp2) = —”[el(y’,Z’) +(V' 2N ER(YZ)
X G, (yzy',z')dy dz, (10b)

where the Green’s function G; (y,zy',2') withi= 1,2 is dé-
fined by

[VZ+ 0’ule, +€) ]G (pzy'2) = idoud(y —y'z — 2').
' (10c)

We restrict our attention to the coupling between the
TE, (fundamental ) modes of the two intersecting slab wave-
guides denoted by ¥, (y,,z; ) withi = 1,2. The Green’s func-
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tion is first obtained in its Fourier integral representation in
the complex wave number plane and then the inverse Four-
ier transform is taken including the contribution from only a
single pole corresponding to the TE, mode of the slab wave-
guide. Itis found that the Green’s function G, (y;,z;;y;,2; ) for’
the two single-mode slab waveguides with { = 1,2 can be ex-
pressed in terms of the eigenfunctions as

G, (yiziyinz)) =Yz ¥, (¥::2:). (1)
Each point source implied in Eqs. (8a) and (8b) excites the
fundamental mode TE, mode of the waveguides 2,1 travel-
ing in both + z,, + z, directions. The formalism described
here is quite general and can be used to analyze directional
couplers as well, which are formed with two parallel wave-
guides. In the two special cases of multiple scattering inter-
action analysis to be considered in this paper, the two wave-
guides that are coupled are either parallel or intersect each
other at a small angle (see Secs. III and IV). In either case
the contradirectional coupling in all orders of scattering in-
teraction is small because of a large mismatch between the
propagation wave vectors of the incident and reflected waves
along +z,and —z, (or + z,and — z,) directions, respec-
tively. Equation (10a) represents a weak coupling over an
extended region of interaction in the nth order and causes
the envelope of the eigenfunction ¥, corresponding to the
TE, mode to grow slowly along the axis of waveguide 2. To
obtain the value of the envelope 4 {™ at a point (y,,2,), the y;
integral extends over all space but the z; integral is evaluated
from — oo to z,. A similar remark holds for the scattering
interaction represented by Eq. (10b). Since the Green’s
function for a single mode waveguide is separable in source
and observation point coordinates, i.e., r’ and r respectively,
the nth order scattered fields can be written in the form

(n)(yz»zz) =4 (")(Zz)q’z(J’pzz), (12a)

E D (yp21) =A4{"(z)¥, (2. (12b)
In fact, Eqs. (12a) and (12b) form the basis of the physical
picture of spatial evolution of fields along the axes of wave-
guides 1 and 2 in the intersecting waveguide structure as
discussed above.

Finally, the explicit expressions for some of the quanti-
ties referred to earlier in this section are given for the specific
case of step index slab waveguides. The two slab waveguides
with { = 1,2 are described as
- a@[ < + a,
0 otherwise.

€; —€, if

ei(yi,zi)z{ (13)

The normalized (unit power) eigenfunctions ¥, (y;,z;) of
the two waveguides corresponding to TE, mode with / = 1,2

are as follows:
J2ope e
VBN @+ 1770 (1 +vi/ed)
for + a<y; < o,
J2wp cos(a,y,; e

for —a<y;< +a,

¥, (y,2:) =

(14a)

VY, (y:i,2;) =
(14b)
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Wen(n-#a) eiﬂiz,-
VBN @+ /vl +7i/ai

for — o <y;< —a.

W, (y;52;) =

(14c)

The following relations are satisfied by the constants
Q; ;Y

a; = o’ue;,; — B, (15a)
vi =B? - oue,, (15b)
¥; = a,; tan(a;a), (15¢)

where Eq. (15c¢) is the dispersion relation for even modes of
the slab waveguides, of which the TE, mode is a special case.

1. ANALYSIS OF THE DIRECTIONAL COUPLER

An analysis based on the multiple scattering interaction
picture is presented in this section for coupling between par-
allel waveguides so as to provide an interpretation of the
scattered fields in various orders of interaction and relate
them to the results obtained using coupled mode theory. The
equations derived in Sec. II can be readily applied, the only
difference being that the three coordinate systems, instead of
intersecting each other at a common point, are now parallel
along the axes of the two waveguides and are displaced with
respect to each other in the transverse direction (see Fig. 2).
In addition, the wave is launched from the left at z, = 0 in
waveguide 1.

In case of coupling between parallel waveguides, it is not
possible to specify the input field amplitude in both the
waveguides independently. To be specific, the excitation
conditions given by Egs. (4a) and (4b) are strictly speaking
not valid in the present case. However, as the interwaveguide
separation is made larger and larger for a pair of nearly iden-
tical waveguides, the conditions given by Eqgs. (4a) and (4b)
provide a better and better approximation to the physical
reality. We assume these conditions to be valid in this analy-
sis. Substituting Eq. (11) in Eq. (10a) with » = 1 and the
relation

EQ2) =¥,(y2) (16a)
gives
EQoa = (2 [[ewarean
X¥r(y',2)ay' dZ')‘l’z (»:2). . (16b)

Since the two waveguides are parallel in the present case,
there is no intersection region. Therefore, in deriving Eq.
(16b), the value of  (y,2) is taken to be zero everywhere. The
integral in this equation is evaluated by using Eqs. (13)-

yZ
WAVEGUIDE #1 2&: T €, R 2,
2d P e 2
. |
WAVEGUIDE #2 2a, 1 e L ___—_C z,

FIG. 2. Schematic diagram of the coordinate axes for the analysis of parallel
waveguides.
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. 2n—1
ES(92) =Vkn/kn (ikyhp2)* ¥, (.2,

(15) to obtain the first-order scattered field in waveguide 2
as

EWz2) = ix,z¥,(n,2), (17a)
with
—2y(d—a)
K1z re (17b)

Bla+ /¥ (1 +v/at) (1 +¥/ad)
In deriving Eq. (17), the phase-matching condition
31 = B,=/ has been assumed, which when combined with
Eq. (15b) implies that ¢, = ,=%. The fields in both the
waveguides can be obtained to all orders of scattering inter-
action in such a case and for n>1 are given by

Qn— 1) (182)
[ 2n
ER(2) = (“((‘2+2)"Z) ¥, (y2), (18b)

where «,, can be obtained from «,, by interchanging the
subscripts 1,2. The relation between «,, and «,, follows from
Eq. (17b) to be

K1y = Ky =K. (19)

Equations (4), (9), (16), (18), and (19) can be used to
obtain the total field in the two waveguides as

E,., (y,z) =isin(kz)¥,(y,2), (20a)
E,; (3,2) = cos(k2)¥,(3,2). (20b)
If the phase-matching condition is not satisfied, the cou-
pling between the two waveguides is not symmetric under
the interchange of subscripts 1,2. Moreover, no general ex-
pressions can be written to evaluate the nth order scattering

interaction term in this case. The sum of the first three terms
in the two waveguides yields a solution which is correct up to

~ (kz)* with k = k%5, 7=1(8, — B,) and is obtained as
E,02)=EQ2)+ERW0.2) + EZ2)

; 3 em23
= VK12 K2, [ixz — Kz — 7 i2kn’z
6 3
3 4 3.4
+ o+ O(Ef)]wz(y,z),
(21a)

E,p02)=EQp2)+ENWp2) +EZ (.2
AL A A = A
=[1-2 4+ 2
[ 2 3 24 + 6

+ O(HzS)]\P,(y,z). (21b)

The solution obtained using the coupled mode theory analy-
sis of the same problem is’

K .
Ex,2 (,V,Z) = iVKlz/K21_— e
\/KZ + 172

X sin(V&? + 772)¥,(n.2), (22a)
E.,(pz)= e""”(COS(\/I?2 +7%2) + —_m__
\lk'z + 772

X sin (Va2 + nzz))\l’l(y,z). (22b)
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Equations (22a) and (22b) can be expanded into power se-
ries in «z. It is found that such power series representations
of Egs. (22a) and (22b) are identical to the expansions in
Egs. (21a) and (21b) up to ~ (xz)*. It can be shown by
evaluating still higher-order terms given by Eqgs. (10a) and
(10b) that Eqs. (22a) and (22b) represent the exact sum of
the series given in Eq. (9) with i = 2,1 for the coupling be-
tween two parallel waveguides. It is evident from the analy-
sis presented in this section that the multiple scattering inter-
action analysis yields results which are in agreement with the
results obtained using coupled mode theory.

IV. ANALYSIS OF COUPLING BETWEEN TWO
INTERSECTING WAVEGUIDES

An analysis based on multiple scattering interaction is
presented in this section for coupling between two identical
waveguides intersecting at an angle 8. The differential and
integrated coupling coefficients are defined, respectively, as

w_o (7 .o ‘o
5@ =2 [ (g0 +001a))]
XV, (p,2)YVYF (y),2))dy],

K@= @,

(23a)
(23b)

with i=1,j=2 and i =2, j = 1. It can be shown by per-
forming the integrals in Eqs. (23a) and (23b) that the func-
tional dependence of x; (K;) on its argument z; is same as
that of «; (K}; ) on its argument z;. This symmetry property
is symbolically expressed as '
k; () =, () =x(.), (24a)
K;() =K, ()=K(). (24b)

Substituting Eq. (11) in Eq. (10a) with » = 1 and the rela-
tion

EQ0z) =¥, (,2) ~ (25a)
gives
EQGa) = (2 [ [ 052 +101.2)]
XV, (1,21 ¥3 (2.2 )dy;dz;
X W, (y22,). (25b)

The integral in Eq. (25b) is evaluated using Eqgs. (13) and
(14) and (23) and (24) to obtain the first-order scattered
field in waveguide 2 in the form

E () (p22,) = iK(2)¥,(022,). (26)
Substituting Eqs. (11) and (26) in Eq. (10b) with n=1
gives

E(0vz) = (%? Jf [6:01:21) +e(1,21) ) iK(23)
X, (3,2 )T (1,21 )y dzi)

XW(y1,21)- 27
The coordinates of a point (y,z) can be expressed in the
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(y5,2,) and (y,,z,) coordinate axes as follows:

y, =y cos(8/2) —zsin(8/2), (28a)
z, =y sin(8/2) +z cos(6/2), (28b)
y, =ycos(8/2) 4+ zsin(6/2), (28¢c)
z, = —ysin(8/2) +zcos(8/2). (284d)

The evaluation of E {!} (y;,2,) can be simplified by assuming
K(z,) =K(z,) in Eq. (27), which is a good approximation
for small angles in view of Eqgs. (28b) and (28d). Using this
approximation and the relations expressed in Egs. (23) and
(24) in Eq. (27) gives

EXN(pz)) z(izf K@Kz )dz;)\ln(y.,zl) (29a)

= {[iK(z,)1%/2} ¥, (y1,21). (29b)

In a similar manner, it is shown that for n>1

E 5 (92,2) ={[iK(2) 1"~/ (2n — DIW(p222),

(30a)

ES (2 ={[iK(z) 1" /2m)}¥,(,z1).  (30b)
Equations (4a), (4b), (9), (252), (30a), and (30b) are
used to obtain the total field in the two waveguides as

E,,(y22,) =isin[K(z,) |¥2(V222), (31a)

E,,(31,2)) = cos[K(z)) ]¥,(y1,2/)- (31b)
At finite values of z, and z, it is not meaningful to speak of
the amount of power in individual waveguides, because the
two waveguides are decoupled only at z, ; » + «. In order
to calculate the power in waveguides 2,1 as a consequence of
coupling between them, we take the limit of Egs. (31a), and
(31b) as z,, — + . Since the eigenfunctions ¥, (y;,z;)
with i = 1, 2 are normalized to unit power, the power trans-
ferred to waveguide 2 is given by

P, = sin?(K,) (32a)

and the unconverted power in waveguide 1 is given by

P_ =cos*(K,), (32b)
where
K,= lim K(z,)= lim K(z,). (32¢)

Z— +

It should be noted that the convention for classifying the

TE and TM modes for a slab and a channel waveguide is

different. Therefore, the TE (TM) modes of a slab wave-

guide are physically equivalent to the TM (TE) modes of a

channel waveguide. In the remainder of this section the cou-

pling bétween the identical intersecting waveguides is dis-

cussed for two specific choices of the scattering inhomogene-
ity in the intersection region.

Z;—~ + =

A. Single-An intersecting waveguides

The single-An intersecting waveguides are obtained by
taking

t(pz) = — (& — €)= — A, (33)
in the intersection region. In such a case the coupling coeffi-
cient K|, represents the coupling due to the overlap of one of
the waveguides with the evanescent tail of the field in the
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WAVEGUIDE #1 28 < '
gy /

-~ P
> <]
><
’/ ~
-
e

WAVEGUIDE #2 2g
Ctan~tasp)

8=2ton"'(a/B8)

other and is given by
Ko = (e)v’
where

2
K ‘ul

FIG. 3. Rays are drawn in the two
waveguides which are intersecting at
an angle € such that 8 =2 tan—'(a/
B). It should be noted that the rays are

B Bla + 1/y)(1 +¥/a®) [y* + B2 tan*(8/2)]sin @
sin{[@ + B tan(#/2) la}

paralle] for half of the bounce distance

“and that no particular point of origin
of the rays is implied in either of the
two waveguides.

(34a)

{y cos[B tan(6/2)a] — Btan(8/2) sin[B tan(6/2) a]}

><(sin{[a —Btan(6/2) Ja}
[@a—Btan(6/2)]

The values of @, B, ¥ are determined by solving the disper-
sion relation

Y = a tan(aa), (35a)
in terms of the normalized parameters®

V= (4m[n2 —nla)/A (35b)
and

b= (N?—n2)/(n:—n?), (35¢)

where n, = \[€,/€o,n, = \[€,/€,, and N is the effective index
of the slab waveguide. The single-mode waveguides are chai-
acterized by O V<, where a larger value of ¥ corresponds
to a better confined mode. It is seen from Egs. (34b) and
(35a) that

Ky=0 (36a)
when

a =pftan(6/2), (36b)
because at this condition
y cos[Btan(8/2)a] _ \

— B tan(0/2)sin[Btan(6 /2)a] = 0. (36¢)

The intersection angle for which Eq. (36b) is satisfied is
hereafter referred to as magic angle. It is obvious that there is
a range of possible values for the magic depending on the
value of V. As a general rule, the value of the magic angle
decreases with increasing V, attaining its minimum value at
V = for a given value of 1, and n,. Since the inclination
angle of the rays in the two waveguides is equal to tan~ ! (a/
B) with respect to their axes (see Fig. 3), the magic angle of
intersection is simply twice the ray angle. In Fig. 3, rays are
drawn in the two waveguides which are intersecting at the
magic angle. It should be noted that at this angle of intersec-
tion the propagation wave vectors or rays are parallel for half
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[a +Btan(6/2)]

). : (34b)

of the bounce distance in the two waveguides. Therefore; Eq.
(36b) also represents a quasi-phase-matching condition.
The effect of the phase-matching condition manifests itself
in the expression for K §’ in terms of two sinc functions [see
Eq. (34b)]. Numerical analysis has shown that a typical
value of the magic angle is 5°. It is also found that the reso-
nance represented by the sinc functions with respect to the
mode confiement parameter V is quite broad and hence,
does not yield any new features for evanescent coupling be-
tween intersecting waveguides. The value of K § passes over
smoothly from positive to negative values including zero as
the value of V'is increased from O to 7 (see Fig. 4). The cusp
seen in Fig. 4 arises due to the fact that it is the absolute value
of K'§' that is plotted. Due to the « (sin 6) ™ ! dependence of
K g, the effective number of coupling lengths in an intersect-
ing waveguide device increases for decreasing values of 6. If

016 - —.

0.2

0.08 -

0.04 |

COUPLING COEFFICIENT

0.00
0.00

FIG. 4. Evanescent coupling coefficient |K 5} as a function of mode con-

finement parameter ¥ for two slab waveguides intersecting at angles of 5°
and 6. The waveguide parameters are a =2 um, n, =2.300, and
n, = 2.305.
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$.00 —

4.00 -

3.00 -

2.00 -

COUPLING COEFFICIENT

[Rele] 8

/
1= ) ) | | 1
0.00 0.50 1.00 1.50 2.00 2.50 3.00

0.00

FIG. 5. Evanescent (K 5'), guided (K &), and total (K,), integrated cou-
pling coefficients as a function of ¥ for two slab waveguides intersecting at a
small angle (6= 1°). The strength of coupling coefficients is plotted in
terms of the number of coupling lengths. The waveguide parameters are
a=2pum, n; = 2.300, and n, = 2.304.

the angle of intersection is less than the magic angle corre-
sponding to ¥ = 7 for a given value of n, and n, no cusp is
observed in K§' vs V. Instead K§' will increase, reach a
broad maximum, and then decrease with increasing V,
which is to be expected from the familiar properties (e.g., in
a directional coupler) of evanescent coupling (see Fig. 5).

B. Double-An intersecting waveguides

The double-An intersecting waveguides are obtained by
taking ¢ (y,z) equal to zero in the intersection region. In this
case, the coupling coefficient has an additional component
due to the overlap of one of the waveguides with the guided
fields in the other and is given by

Ko=K§ +K§, (37a)

where the expression for K §" has already been obtained in
Eq. (34b). The cqupling coefficient K & is given by

T T T T T T

0.40 - qd -1
KO\/‘
/
= o032}
& S
E 0.24 |- / —
Q //
C o R4 §
g 974
3 "/
O 0.08 - // |K8v n
72
0.00 N
0.00 0.50 1.00, 1.50 2.00 250 3.00

v

FIG. 6. Evanescent (K§'), guided (K &%), and total (K,), integrated cou-
pling coefficients as a function of ¥ for two slab waveguides intersecting at a
large angle (6 =5°). The strength of coupling coefficients is plotted in
terms of the number of coupling lengths. The waveguide parameters are
a=2pum,n, =2.300, and n, = 2.304.
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0.80 FH

0.60 |-

0.20 -

COUPLED POWER (arb.units)

0.00 1 1 i L | i 1 1
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FIG. 7. The coupled power [P, = sin?(K,)] from waveguide 1 to 2 as a
function of the intersection angle for the double-An intersecting wave-
guides. The parameters @ = 2 um, n, = 2.300, and n, = 2.305 are selected
so as to obtain single-mode waveguides at A = 1.3 um.
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The dependence of X & as a function of ¥ is shown in Figs. 5
and 6 for a small and a large angle of intersection, respective-
ly. The most important aspect of this coupling is the mono-
tonic increase in the value of K § with the mode confinement
parameter V. This behavior is in contrast with that of the
evanescent coupling in intersecting waveguides. It turns out
that the guided wave coupling is stronger than evanescent
coupling in the case of intersecting waveguides under consi-
deration, so that the total coupling coefficient K, has the
same dependence on ¥ as of K & (see Figs. 5 and 6).

We conclude this section by describing the coupling be-
tween the two intersecting waveguides as a function of their
angle of intersection. There are two distinct regimes of oper-
ation of these devices depending on the magnitude of the
intersection angle 6. In the limit of smaller values of 8
( £1°), the interaction between the two waveguides corre-

(37b)
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FIG. 8. Thecrosstalk (P, ~10log(|K,|*)) between waveguide 1 and2asa
function of the intersection angle for the single-An intersecting waveguides.
The parameters @ = 2 um, n, = 2.300, and n, = 2.303 are selected 50 as to
obtain single-mode waveguides at A = 1.3 zm.
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sponds to several coupling lengths. A rapid variation in the
number of coupling lengths with the intersection angle is
responsible for the oscillatory nature of the coupling shown
in Fig. 7. Such results are in agreement with the experimen-
tal data obtained with double-An intersecting waveguides.®
In the limit of larger values of ( % 3°), the crosstalk can be
written as

P, ~|K,% (38)

Such an approximation is quite good for single-An intersect-
ing waveguides, because in this limit k4 € 1. Thus, the contri-
bution of higher-order scattering interactions is negligible
[see Egs. (30a) and (30b)]. Moreover, for larger values of 6
the phase-matching condition can be satisfied for single-
mode waveguides. Thus, the evanescent coupling does van-
ishin this regime of operation for a particular value of V. It is
seen from Fig. 8 that crosstalk between the two waveguides
vanishes at the magic angle of intersection for single-An in-
tersecting waveguides. Such results are in good quantitative
agreement with the experiments. '°

V. CONCLUDING REMARKS

We have developed a multiple scattering technique to
analyze the coupling between two parallel and intersecting
dielectric waveguides. The solutions obtained for parallel
waveguides by this technique are in agreement with those
derived from the coupled mode theory. For intersecting
waveguides, the analysis is restricted to identical wave-
guides. It is noteworthy that the multiple scattering interac-
tion analysis is essentially an analytical technique in the limit
of a large strength of interaction between the two wave-
guides. This fact is of crucial importance because in such a
case the infinite series obtained in this analysis cannot be
summed up by numerical methods.

The previous theory for the analysis of intersecting
waveguides which invokes the concept of mode interference
makes two key assumptions. First, the existence of local
modes of the composite structure is postulated and second,
the phase shift between them is interpreted as the coupling
coefficient. The first of these assumptions is quite good at
small angles of intersection. However, the second assump-
tion which tacitly assumes a weak coupling between the two
intersecting waveguides is invalid regardless of the size of
intersection angle. In addition, there is no sensible way to
model the interaction between the two waveguides in the
intersection region. In general both qualitative and quantita-
tive discrepancies remain between this theory and the ex-
periments.

Some aspects of the coupling between two intersecting
waveguides have been treated by the beam propagation
method.®'! In this method, a single propagation direction is
identified, the rapidly varying phase in that direction is sepa-
rated out and the slowly evolving transverse field distribu-
tion is evaluated numerically under the assumption that the
changes in the geometry and the material parameters in the
propagation direction are sufficiently small so as not to in-
troduce any reflected waves. In the method developed in this
paper, the two propagation directions corresponding to the
axes of the two intersecting waveguides are introduced at the
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outset and the reflected and radiated waves can be taken into
account if needed. Thus, the multiple scattering interaction
analysis of the intersecting waveguides is general.

The experimental measurements'® on the crosstalk and
loss characteristics of intersecting waveguides do not agree
with the results obtained using a two-dimensional beam
propagation method in conjunction with the concept of ef-
fective index.® It has been suggested that the validity of the
assumptions inherent in such an analysis is questionable in
the context of intersecting waveguides. Therefore, a numeri-
cal analysis employing a three-dimensional beam propaga-
tion method that eliminates the need to use the approxima-
tion of effective index has been carried out.!! However, this
improved numerical analysis still yields results which do not
agree completely with the experiments. The crosstalk mea-
surements on single-An intersecting waveguides as a func-
tion of intersection angle are in good agreement with the
analysis presented here as pointed out previously. In addi-
tion, an extension of the multiple scattering analysis to in-
clude the coupling between guided and radiation modes of
the individual waveguides is carried out and will be reported
elsewhere. It is found that such analysis agrees both qualita-
tively and quantitatively with the experimental data on in-
sertion loss.'® _

The unique features of coupling between intersecting
waveguides described in this paper are of great practical
signifiance in terms of device applications. As the complex-
ity of optical integrated circuits increases, it becomes impor-
tant to be able to cross one waveguide over the other without
any cross talk. In such applications all that needs to be done
is to let the different waveguides intersect each other at the
magic angle. The increase in the total coupling coefficient
with mode confinement for two intersecting waveguides is of
added importance since it leads to a requirement of smaller
asymptotic separation between the two waveguides. Such a
property is invaluable, since it can be used to design still
smaller devices with intersecting waveguides as compared to
directional couplers.
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