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Abstract

The purpose of this paper is to investigate a multiple ship routing and speed

optimization problem under time, cost and environmental objectives. A branch

and price algorithm as well as a constraint programming model are developed

that consider (a) fuel consumption as a function of payload, (b) fuel price as an

explicit input, (c) freight rate as an input, and (d) in-transit cargo inventory

costs. The alternative objective functions are minimum total trip duration,

minimum total cost and minimum emissions. Computational experience with

the algorithm is reported on a variety of scenarios.

Keywords: Ship speed optimization, multi-commodity pickup and delivery,

Branch-and-Price, combined ship speed and routing

1. Introduction1

Ships travel slower than the other transportation modes. As long-distance2

trips may typically last one to two months, the benefits of a higher ship speed3

mainly entail the economic added value of faster delivery of goods, lower inven-4

tory costs and increased trade throughput per unit time. However, fast ship5
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speeds entail increased emissions as the latter are proportional to fuel burned,6

which is an increasing function of ship speed. At the same time, the above bene-7

fits may become elusive whenever shipping markets are depressed and whenever8

fuel prices are on the increase. In such situations, ships tend to slow down, and9

slow steaming is a prevalent practice.10

Because of the non-linear relationship between ship speed and fuel consump-11

tion, a ship that goes slower will burn much less fuel and produce much fewer12

emissions than the same ship going faster. Hence speed reduction is a tool that13

could reduce both fuel costs and emissions at the same time, and may potentially14

constitute a win-win proposition. It is certainly a prime tool for improving a15

ship’s environmental performance, provided of course the relevant opportunity16

is adequately exploited.17

In the charter (tramp) market, those who pay for the fuel, that is, the ship18

owner whose ship trades on the spot market, or the charterer if the ship is19

on time or bare-boat charter, will typically choose ship speed as a function of20

two main input parameters: (i) the fuel price and (ii) the market freight rate.21

In periods of depressed market conditions, as is the typical situation in recent22

years, ships tend to slow steam. The same is the case if bunker prices are high.23

Conversely, in boom periods or in case fuel prices are low, ships tend to sail24

faster.25

A similar situation plays out in the liner market. Container and Ro-Ro26

operators typically operate a mixed fleet of vessels, some of which are owned27

vessels and some are chartered from independent owners who are not engaged in28

liner logistics. In either case, fuel is paid for by the liner operator. The operator29

receives income from the multitude of shippers whose cargoes are carried on30

the ship and the rates charged to these shippers can be high or low depending31

on the state of the market. As in the charter market, high fuel prices and/or32

depressed market conditions imply lower speeds for the fleet.33

Investigating the economic and environmental implications of ship speed is34

not new in the maritime transportation literature and this body of knowledge is35

rapidly growing. In [1], some 42 relevant papers were reviewed and a taxonomy36
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of these papers according to various criteria was developed. More papers dealing37

with ship speed are being published, as documented by the above paper’s Google38

Scholar citations, which in October 2016 stood at 110, more than double the39

number a year before. Last but not least, a limited number of papers in recent40

years consider combined ship routing and speed decision problems. It is fair to41

say that this particular research area is still a new one, and much potential for42

further development still exists.43

In that context, the purpose of this paper is to investigate a multiple ship44

routing problem with simultaneous speed optimization and under alternative45

objective functions. A heuristic branch-and-price algorithm as well as a con-46

straint programming model are developed that consider (a) fuel consumption47

as a function of payload, (b) fuel price as an explicit input, (c) freight rate as48

an input, and (d) in-transit cargo inventory costs. The alternative objective49

functions are minimum total trip duration, minimum total cost and minimum50

emissions. Computational experience with the algorithm is reported on a vari-51

ety of scenarios. Moreover, in order to evaluate the quality of the heuristic, an52

exact constraint programming model has also been developed. The reason for53

not comparing with an exact version of the branch-and-price algorithm is that54

the pricing problem is non-linear and that no known methods are available for55

solving it to optimality. This made constraint programming a natural choice.56

We clarify right at the outset that weather routing considerations are out-57

side the scope of this paper. Weather routing involves choosing the ships path58

and speed profile between two specified ports under variable and dynamically59

changing weather conditions. In weather routing, the ships fuel consumption60

function depends not only on ship speed and payload, but also on the prevailing61

weather conditions along the ships route, including wave height, wave direction,62

wind speed, wind direction, sea currents, and possibly others. Weather rout-63

ing models (see for instance [2], among many others) take these factors into64

account. But models in a ship routing and scheduling context, including those65

developed in our paper, take a simpler approach: they do not deal with the66

problem of determining the best path between two ports, and they implicitly67
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factor the average weather conditions the ship expects along its route into the68

fuel consumption function.69

A related issue that we do not consider in this paper is the integration of70

risk and ship load monitoring data in the decision making process for optimal71

ship routing. Related research considers the impact of weather variables on ship72

safety attributes along a ships route. These include a ships structural integrity,73

the safety of the passengers, and possibly others. For an exposition see [3].74

The rest of this paper is organized as follows. Section 2 discusses how some75

problem parameters that are considered important are treated in the literature.76

Section 3 describes the problem and Section 4 develops two mathematical formu-77

lations for it, a set partitioning formulation and a compact formulation. Section78

5 develops a heuristic Branch-&-Price algorithm for the problem, together with79

an alternative constraint programming approach for comparison purposes. Sec-80

tion 6 describes and interprets the computational results and finally Section 781

presents the conclusions of the paper.82

2. Which problem parameters are important? A focused look at the83

literature84

It is outside the scope of this paper to conduct yet another full review of85

the literature, that close to the previous one. Rather, we list a number of input86

parameters and model assumptions that we consider important in ship speed87

optimization, and observe how these parameters are treated in a limited sample88

of the literature. In that context, the following may or may not be true in a89

model in which ship speed is a decision variable:90

(a) fuel consumption is a function of payload,91

(b) fuel price is an input (explicit or implicit),92

(c) freight rate is an input, and93

(d) in-transit cargo inventory costs are considered.94
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All of the above (a) to (d) can be important. The degree of importance de-95

pends on the particular scenario examined. Briefly below we argue about the96

importance of each.97

As regards (a), it is clear that ship payload can drastically influence fuel98

consumption (and hence emissions) at a given speed, with differences of the99

order 30% between fully laden and ballast conditions being observed for the100

same speed. The dependency on payload is more prevalent in tankers and bulk101

carriers that sail either full or empty and less prevalent in other types of ships,102

which can be partially laden (container ships) or their payload does not change103

much (Ro-Ro ships, passenger ships, cruise ships). The functional relationship104

between ship speed and payload on the one hand and fuel consumption on105

the other is typically non-linear and may not even be available in closed form.106

Section 3 presents a realistic closed-form approximation.107

As regards (b) and (c), in [1] it was shown that it is mainly the non-108

dimensional ratio of fuel price over the market spot rate that determines optimal109

ship speed, with higher speeds corresponding to lower such ratios. Optimal here110

is defined as maximizing the average per day profit of the ship owner. This re-111

flects the typical behavior of shipping companies, which tend to slow steam in112

periods of depressed market conditions and/or high fuel prices and go faster if113

the opposite is the case. As regards (b), fuel price may be given either explicitly114

in the model, in the form of a distinct input, or implicitly, whenever a fuel cost115

function is given. An implicit formulation has the drawback of not allowing116

someone to directly analyze the functional dependency between fuel price and117

optimal speed.118

Finally as regards (d), in-transit inventory costs accrue while the ship is in119

transit, and they can be a non-trivial component of the cost that the owner of120

the cargo (that is, the charterer) bears if the ship will sail at a reduced speed.121

They can be important if timely delivery of the cargo is significant. They can122

also be important if the voyage time and/or the quantities to be transported are123

non-trivial. This can be the case in long-haul problems. In-transit inventory124

costs are also important for the ship owner, as a charterer will prefer a ship that125
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delivers his cargo earlier than another ship that sails slower. Thus, if the owner126

of the slower ship would like to attract that cargo, he may have to rebate to the127

charterer the loss due to delayed delivery of cargo. In that sense, the in-transit128

inventory cost is very much relevant in the ship owner’s profit equation, as much129

as it is relevant in the charterer’s cost equation.130

Table 1 lists a limited sample of papers and lists whether or not each of (a)131

to (d) above is true. Based on the table, we can advance the conjecture that132

whatever the shipping market and logistical context, ours is the only paper in133

the maritime literature that addresses a multiple ship scenario in which all of134

parameters (a) to (d) above are true.135

Papers Shipping

market

Logistical context Number of

ships

(a) Fuel/payload (b) Fuel price (c) Freight rate (d) In-transit

cargo costs

[4] Tramp Fixed route One No Explicit Yes No

[5] Container Fleet deployment Many No Explicit Yes No

[6] Tanker World oil network Many Only for laden and bal-

last conditions

Explicit No. Equilibrium spot

rate computed

Yes

[7] Container Fixed route Many No Explicit No No

[8] Tramp Pickup and deliv-

ery

Many No Implicit No No

[9] Container Fixed route Many No Explicit No Yes

[10] Tanker Fixed route Many Only for laden and bal-

last conditions

Explicit Yes Yes

[11] General Fixed route One No Implicit No No

[12] Tramp Pickup and deliv-

ery

Many No Implicit For spot cargoes No

[13] General Fixed or flexible

route

One For any loading condi-

tion

Explicit Yes Yes

[14] Container Fixed route in SE-

CAs

Many No Explicit No No

[15] Ro-Ro Fleet deployment Many Only for laden and bal-

last conditions

Implicit No No

[16] Ro-Ro Route selection in

SECAs

One No Explicit No No

[17] Container Disruption man-

agement

One No Implicit No No

[18] Container Fleet deployment Many For any loading condi-

tion

Explicit Yes No

[19] Container Berth allocation,

virtual arrival

Many No Implicit No No

[20] General Speed optimiza-

tion in a dynamic

setting

One No Explicit Yes No

This Paper General Pickup and deliv-

ery

Many For any loading condi-

tion

Explicit Yes Yes

Table 1: Sample of speed papers and whether parameters (a) to (d) are included in the model.

The parameters indicate: (a) If fuel consumption is a function of payload, (b) if fuel price is

an implicit or explicit input, (c) is freight rate is an input, (d) if in-transit cargo inventory

costs are considered.

It should be clarified here that no time windows are assumed in our model.136

Whereas this may be perceived as a potential limitation, there is a specific reason137
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that we do not consider them: time windows may implicitly or explicitly dictate138

what the speed of the ship might be (at least in some trip legs) and, as such,139

may limit the flexibility of choosing an optimal speed according to a prescribed140

objective. They would also prevent one to see the variety of solutions under141

alternative objectives, since if speed is more or less fixed, some of the problem’s142

objectives may be rendered to produce the same solutions. It should also be143

noted that in practice time windows are not really exogenous inputs, as most of144

the literature assumes, being usually the subject of negotiation and agreement145

between the shipper and the shipping company so that feasible solutions are146

obtained. It is also important to consider the fact that in-transit cargo inventory147

costs will make sure that cargo is delivered on time and not delayed, which makes148

this objective component a surrogate for time-windows.149

3. Problem description and mathematical formulation150

We consider the optimization of routes and speeds of an heterogeneous fleet151

that needs to pickup and deliver a set of cargoes. Each cargo has a specific152

weight, pickup and delivery destination. Cargoes cannot be split and should be153

picked up by exactly one ship during one visit, however the ships are allowed to154

make multiple visits in a ports if this is necessary.155

We assume that the ships used for the delivery are on time charter with given156

freight rates (expressed in $/day). These freight rates are assumed to be known157

for each ship and independent of charter duration1. In general they will be158

different for each ship, as they depend on ship size. Each ship is initially located159

at a given port and has a known payload capacity that cannot be exceeded. A160

ship can sail at different speeds on different legs of the route as long as the161

speeds are within its feasible speed range (which is dictated by the ship’s engine162

size and technology).163

1In general the time charter rate is a function of charter duration, but for charters of the

same time range (e.g. short term as opposed to long term) one can assume that the rate is

independent of charter duration.
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The daily fuel consumption of each ship (in tons/day) is given by a function164

f(v, w) of the ship’s speed v (in nautical miles/day, or knots) and payload w (in165

tons). In this work, we use the realistic closed-form approximation of f given166

in [13]:167

f(v, w) = G(P + vT )(w +A)2/3 (1)

where G > 0, P ≥ 0 and T ≥ 3 are ship related constants, and A is the168

modified ‘lightship weight’, that is, the weight of the ship if empty including169

fuel and other consumables but without any cargo on board. Strictly speaking,170

f must take into account the reduction in the ship’s total displacement due171

to fuel being consumed along the ship’s route. However, since displacement172

would not change much as a result of that consumption, one can practically173

assume f independent of en-route fuel consumption. In addition, we consider174

a heterogeneous fleet, meaning that the initial ports, the capacities, the freight175

rates, the feasible speed ranges, and the fuel consumption parameters can be176

different for each ship.177

Equation (1) assumes that the average weather conditions that the ship ex-178

pects along its route are implicitly factored into the fuel consumption function.179

As stated earlier, and as this is not a weather routing model, no explicit con-180

sideration of weather variables is included.181

We assume that the charterer (the cargo owner) bears all cargo inventory182

costs. These have two components: 1) port inventory cost, the cost due to cargo183

waiting to be picked up, and 2) in-transit inventory cost, the cost due to cargo184

being in transit. These inventory costs are assumed to be linear in time and in185

cargo volume. A zero port inventory cost assumes that the cargoes are available186

at the origin ports in a ‘just-in-time’ fashion.187

The objective of this problem is to minimize the total cost over all route188

legs. Three cost components are considered: fuel costs, cargo inventory costs189

and time charter costs.190

As pointed out in [13], for a single ship and a given route, the total cost of
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an individual route leg (L,L′) is equal to

COST (L,L′) =

(

UG(P + vT )(w +A)2/3 + αu+ βw + F

)

·
dLL′

v
(2)

where191

dLL′ : the distance of leg (L,L′) (in nautical miles)192

U : the fuel price (in $/ton)193

F : the time charter freight rate of the ship (in $/day)194

α: the unit cargo port inventory cost (in $/tons/day)195

β: the unit cargo in-transit inventory cost (in $/tons/day)196

u: the amount of cargo still waiting to be picked up (in tons)197

198

It is obvious that COST (L,L′) is a function of speed v when the route

sequence is fixed. To obtain the speed that leads to a minimum value of

COST (L,L′), we just need to identify the speed that minimizes (1) and com-

pare it with the ship’s speed range [vLB , vUB ]. This speed point can be obtained

by setting the first derivative of COST (L,L′) to zero as follows:

v̂ =

(

UGP (w +A)2/3 + αu+ βw + F

UG(w +A)2/3(T − 1)

)
1
T

(3)

The optimal speed v∗ should be v̂ if vLB ≤ v̂ ≤ vUB , vLB if v̂ ≤ vLB , and vUB199

if v̂ ≥ vUB .200

3.1. Mathematical Formulations201

We can define a problem with n cargoes and m ships on a graph G = (N,E),202

where N is the set of all the nodes and E is the set of feasible arcs in the graph.203

Let P = {1, ..., n} denote the set of pickup nodes and D = {n+1, ..., 2n} the set204

of delivery nodes. Cargo i is represented by the node pair (i, n+i). LetK denote205

the set of ships. Ship k ∈ K starts from node o(k) and returns to a dummy node206

d(k). Let dij denote the distance between node i and node j. If the ships are not207

required to end their journey at specific ports, we can just set did(k) = 0 for all i208

and k. The set of all the nodes is N = P ∪D∪{o(1), ..., o(m)}∪{d(1), ..., d(m)}.209
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Let N+
i = {j : (i, j) ∈ E} and N−

i = {j : (j, i) ∈ E} be the set of nodes that210

can be reached from node i, and can reach node i respectively.211

For each node i, let Hi denote the amount of cargo to be loaded, Hi > 0212

for i ∈ P , and Hi = −Hi−n for i ∈ D. The per unit volume and per unit time213

cargo port inventory cost α and cargo in-transit inventory cost β are assumed214

the same for all the cargoes. Each ship k ∈ K has a capacity Qk and can sail at215

any speed between its minimum speed Lk and maximum speed Uk. The freight216

rate of ship k is Fk per unit time. Let Ak denote ship k’s lightship weight. Let217

Gk, Pk and Tk denote the corresponding parameters in the fuel consumption218

formula (1) for ship k. The per unit volume fuel cost is denoted by U .219

3.1.1. A compact formulation220

Let the binary decision variable xk
ij be 1 if ship k ∈ K sails from node i ∈ N

to j ∈ N and 0 otherwise. Let auxiliary variable v̂kij denote the optimal speed

from (3) for ship k on leg (i, j), and let the decision variable vkij be the actual

sailing speed of ship k when sailing from node i to j. The variable qki represents

the load of ship k after loading/unloading cargo at node i. For the purpose

of evaluating the total cost of ship k on leg (i, j), we need to keep track on

the total weight of cargo not yet picked up while ship sails on each leg. We

therefore define variable tk as the total weight ship k delivers on the entire

route, and variable hk
i as the total weight ship k has already delivered after

loading/unloading at node i. The total weight of the cargo waiting to be picked

up by ship k after visiting node i is tk − hk
i . Finally, let ui be the sequence

variable used to eliminate subtours.

z∗ = min
∑

k∈K

∑

(i,j)∈E

xk
ij

(

UGk(Pk + vkij
Tk )(qki +Ak)

2/3 + α(tk − hk
i ) + βqki + Fk

)

dij

vkij
(4)

s.t.
∑

k∈K

∑

j∈N+
i

xk
ij = 1 ∀i ∈ P (5)

∑

j∈N+
o(k)

xk
o(k)j = 1 ∀k ∈ K (6)

∑

j∈N+
i

xk
ij −

∑

j∈N−

i

xk
ji = 0 ∀i ∈ P ∪D, k ∈ K (7)

∑

j∈N−

d(k)

xk
jd(k) = 1 ∀k ∈ K (8)

uj ≥ ui + 1−M(1− xk
ij) ∀(i, j) ∈ E, k ∈ K (9)
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∑

j∈N+
i

xk
ij −

∑

j∈N+
n+i

xk
n+i,j = 0 ∀i ∈ P, k ∈ K (10)

un+i ≥ ui ∀i ∈ P (11)

tk =
∑

j∈N+
i

∑

i∈P

Hix
k
ij ∀k ∈ K (12)

qkj ≥ qki +Hix
k
ij −M(1− xk

ij) ∀(i, j) ∈ E, k ∈ K (13)

hk
j ≥ hk

i +max{0, Hi}x
k
ij −M(1− xk

ij) ∀(i, j) ∈ E, k ∈ K (14)

max{0, Hi} ≤ qki ≤ Qk ∀i ∈ N, k ∈ K (15)

v̂kij =

(

UGkPk(q
k
i +Ak)

2/3 + α(tk − hk
i ) + βqki + Fk

UGk(q
k
i +Ak)2/3(Tk − 1)

) 1
Tk

∀(i, j) ∈ E, k ∈ K (16)

Lk +max{0, v̂kij − Lk} ·M ≥ vkij ≥ Lk ∀(i, j) ∈ E, k ∈ K (17)

Uk ≥ vkij ≥ Uk +min{0, v̂kij − Uk} ·M ∀(i, j) ∈ E, k ∈ K (18)

v̂kij +max{0, Lk − v̂kij , v̂
k
ij − Uk} ·M ≥ vkij ≥ v̂kij −max{0, Lk − v̂kij , v̂

k
ij − Uk} ·M

∀(i, j) ∈ E, k ∈ K

(19)

xk
ij ∈ {0, 1} ∀(i, j) ∈ E, k ∈ K (20)

tk, hk
i , q

k
i , v̂

k
ij , v

k
ij ≥ 0 ∀i ∈ N, k ∈ K (21)

ui ∈ Z+ ∀i ∈ N (22)

221

The objective (4) minimizes the total cost of all the route legs. Constraints222

(5) make sure that each cargo is delivered by exactly one ship. Constraints223

(6)–(8) are the flow conversation constraints. Constraints (9) eliminate the sub-224

tours. Constraints (10) and (11) are so-called paring constraints and precedence225

constraints that enforce each cargo to be first picked up and then delivered by226

the same ship. Constraints (12) calculate the total weight of cargoes assigned to227

each ship. Constraints (13) and (14) keep track on the load of the ship and the228

total weight the ship has already delivered after loading/unloading at a node.229

Constraints (15) are the ship capacity constraints. Constraints (16) calculates230

the v̂kij value for ship k on leg (i, j) in the same way as (3). The optimal speed231

vkij is determined by constraints (17)–(19). Finally, the decision variables are232

defined by (20)–(22).233
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3.1.2. A Set Partitioning formulation234

This problem can also be formulated as a Set Partitioning Problem. Let Rk
235

be the set of feasible routes for ship k ∈ K, all of which start from node o(k),236

end at node d(k), satisfy the paring and precedence constraints, and are feasible237

with respect to the ship’s capacity and speed range. Let ckr denote the cost of238

route r ∈ Rk for ship k, calculated as the sum of total cost over all the legs in239

the route. Parameter air equals 1 if route r covers cargo i, and 0 otherwise. Let240

the binary variable ykr be 1 if route r ∈ Rk is taken by ship k, and 0 otherwise.241

The problem can then be formulated as follows:242

z∗ = min
∑

k∈K

∑

r∈Rk

ckry
k
r (23)

s.t.
∑

k∈K

∑

r∈Rk

airy
k
r = 1 i ∈ P (24)

∑

r∈Rk

ykr ≤ 1 k ∈ K (25)

ykr ∈ {0, 1} ∀r ∈ Rk, k ∈ K (26)

The objective is to minimize the cost of the selected routes in such way that243

each cargo is delivered (24) and each ship is assigned to at most one route (25).244

The LP relaxation of the set partitioning formulation will always provide245

the same or better lower bound compared to the LP relaxation of the compact246

formulation.247

4. Solution methods248

We propose two solution methods: a Heuristic Branch-and-Price (H-B&P )249

in Section 4.1 and a Constraint Programming Model (CPM ) in Section 4.2.250

4.1. Heuristic Branch-and-Price251

Solving model (23)–(26) directly by an IP solver requires the enumeration

of all feasible ship routes, which seems impossible given the huge size of feasible
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routes. Instead, we solve the model by a heuristic branch-and-price algorithm

similar to [21]. Branch-and-Price (B&P) is a version of branch-and-bound,

where the linear programming (LP) relaxation at each node of the branch-and-

bound tree is obtained by using the Column Generation (CG) method ([22]).

The LP relaxation of the problem (denoted by LP-SP) can be obtained by

relaxing the binary constraints (26) as follows:

ykr ≥ 0 ∀r ∈ Rk, k ∈ K

The CG starts by solving a restricted LP-SP, called the master problem, where252

only a subset of ship routes are considered, and then gradually generates the253

rest of the routes that can potentially improve the objective function and adds254

them to the model. A solution to the master problem provides the the dual255

variables πi and λk corresponding to constraints (24) and (25). These values256

can be used to calculate the reduced cost of a route r ∈ Rk for ship k ∈ K as257

ĉkr = ckr −
∑

i∈P airπi − λk. From the theory of the Simplex method, adding a258

route with negative reduced cost can possibly produce an improved LP solution.259

If ĉkr ≥ 0 for all feasible route r and all ship k then the solution to the restricted260

LP-SP is also optimal to the full LP-SP. Otherwise, the route with negative261

reduced cost should be added to the master problem and the master problem262

needs to be solved again to get new dual variables.263

Finding the route with the lowest ĉkr is done by solving a pricing problem.

In our case, the pricing problem is an elementary shortest path problem with

capacity, pickup and delivery, variable speed and variable arc costs, in which the

speed and cost of each arc varies as the route sequence varies. Here we examine

how to define the speed and arc cost in the shortest path problem related to

ship k ∈ K. For a given route r ∈ Rk, the speed of leg (i, j) in route r is defined

as

vkijr =























Lk if v̂kijr ≤ Lk

v̂kijr if Lk ≤ v̂kijr ≤ Uk

Uk if Uk ≤ v̂kijr

13



where

v̂kijr =

(

UGkPk(wijr +Ak)
2/3 + αuijr + βwijr + Fk

UGk(wijr +Ak)2/3(Tk − 1)

)
1

Tk

and wijr and uijr are the payload and the weight to be picked up during leg

(i, j) in route r. The cost of leg (i, j) in a route r in the pricing problem is

calculated as

ĉkijr =























ckijr − πi if i ∈ P

ckijr if i ∈ D

ckijr − λk if i = o(k)

where

ckijr =

(

UGk

(

Pk + (v̂kijr)
Tk

)

(wijr +Ak)
2/3 + αuijr + βwijr + Fk

)

dij
v̂kijr

.

By using the above defined arc cost ĉkijr, the cost of route r will equal the264

reduced cost of the corresponding variable.265

The resource constrained shortest path problem is usually solved by labeling266

algorithms [23]. However, solving our pricing problem to optimality can be267

time consuming given its high complexity. To be able to solve the problem268

in reasonable computational time, we use a cheapest insertion heuristic. The269

heuristic starts from a route containing only one cargo, and gradually inserts270

the remaining cargoes that least increases the reduced cost of the route. During271

the insertion, we keep track of the routes with most negative reduced costs. The272

procedure is repeated with every cargo as a starting point and for every ship273

k ∈ K. If the heuristic fails to find any route with negative reduced cost, the274

column generation procedure stops and proceeds as if we have solved the LP-SP275

to optimality. However, we can not guarantee the optimality due to the fact276

that the pricing problem is solved heuristically. We call this method of solving277

the LP-SP as heuristic column generation (H-CG).278

If the solution obtained by the H-CG is an integer solution, the H-B&P

algorithm stops. Otherwise, we branch on the arc variables as suggested in [24].

The algorithm uses strong branching in order to decide which arc to branch on.
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A number, γ, of branching candidates are evaluated by enforcing the branch

and computing the resultant improvement in the lower bounds (∆1 and ∆2)

in the two child nodes. Following [25], the algorithm chooses the branch that

maximizes

µmin{∆1,∆2}+ (1− µ)max{∆1,∆2}

where 0 ≤ µ ≤ 1 is a parameter.279

The H-B&P stops until all the nodes in the search tree are explored. Since280

the LP-SP is solved by the H-CG and the solution found by the H-B&P is281

not necessarily optimal, it can potentially be improved. In a post-optimization282

phase, we use an IP solver to solve the set partitioning model with all the283

columns found in the branch-and-price procedure. The solution to such model284

is at least as good as the solution found by the branch-and-price.285

4.2. A Constraint Programming model286

Changing the solution method of the pricing problem with an exact ap-287

proach, could give use the possibility of comparing our heuristic solutions to the288

optimal ones. In the literature, the only know method to solve a similar prob-289

lem is the dynamic programming approach proposed in [13]. This procedure is,290

however, not able to scale to multiple vessels and a larger set of ports. Thus,291

we sought an alternative solution approach, constraint programming, which not292

only it is an exact method but it can also deal with non-linear functions.293

Constraint programming is a search based approach to solve constraint sat-294

isfaction problems. Problems are modeled in terms of variables and their do-295

mains, and a set of constraints (relations between variables). At each step of296

the search, specialized filtering algorithms analyze the constraints and remove297

infeasible values from the variables domain. In case of an optimization problem,298

the search can be performed within a branch & bound algorithm which thus al-299

lows the finding of optimal solutions. The filtering and search algorithms are300

often part of a solver (as it is in this case). We thus only present a description301

of the model and refer the reader to [26] for further information.302
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The model is an adaptation of the VRPPD model presented in [26] and303

uses the same notation and node representation described in Section 3.1. A304

solution to the problem is represented by a sequence of nodes determined by305

the variable pi ∈ N , which indicates the node immediately before node i ∈ N .306

The speed used to reach node i from its preceding node pi is decided by the307

variable vi ∈ R+. Furthermore, the model makes use of a number of auxiliary308

variables: li ∈ Z+ is the load of the ship going to node i, si ∈ K is the ship309

sailing to node i, ri ∈ Z+ is the amount of cargo yet to be picked-up after310

leaving node i, and ci ∈ R+ is the total cost at node i. Finally, a number of311

variables have been introduced to ease the modeling of the problem: oi ∈ N is312

the node at position i in the solution sequence (e.g. if node 5 is the first in the313

sequence then it must be the case that o1 = 5), bi ∈ N is the position of node314

i in the sequence (e.g. if node 5 is the first in the sequence then it must be the315

case that b5 = 1), and aij ∈ {0, 1} which is 1 iff node i is visited after node j316

and 0 otherwise.317

circuit(P,D) (27)

po(k+1) = d(k) ∀k ∈ K (28)

so(k) = k ∀k ∈ K (29)

sd(k) = k ∀k ∈ K (30)

spi
= si ∀i ∈ P ∪D (31)

li = lp(i) +Hi ∀i ∈ N (32)

li ≤ Qsi ∀i ∈ N (33)

oi ≤ on+i ∀i ∈ P (34)

oi = poi+1 ∀i ∈ N (35)

allDifferent(O) (36)

si = sn+i ∀i ∈ P (37)

Lsi ≤ vi ≤ Uvi ∀i ∈ N (38)
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optimalSpeed(vi, li, si, ri) ∀i ∈ N (39)

oi = j ⇔ bj = i ∀i, j ∈ N (40)

aij = (bi < bj) ∧ (vi = vj) ∀i, j ∈ N (41)

ri =
∑

j∈P

djaij ∀i, j ∈ N (42)

costFunc(ci, vi, li, si, ri) ∀i ∈ N (43)

Constraint (27) uses the global constraint Circuit [26] to force the set P =318

{pi : i ∈ N} of all pi variables to form an Hamiltonian circuit. Moreover,319

this constraint keeps track of the sailed distance at each node, where D is the320

distance matrix. The filtering algorithm also imposes sub-tours elimination.321

Constraints (28) - (31) are related to the vessel. Constraint (28) forces the322

depot end node (d(k)) of vessel k ∈ K to be immediately followed by the323

next vessel’s depot start node (o(k + 1)). This constraint not only ensures324

the consistency of the solution, it also removes symmetrical sequences where325

the routes of the different ships exchange position in the solution encoding.326

Constraint (29) - (30) binds the sk ship variables to their corresponding depot327

start and end node. Constraint (31) imposes that only one ship can be present328

in one route. Note that it is possible to have multiple routes since the constraint329

is only posted for the the pickup (P ) and delivery (D) nodes. The cargo and330

ship capacity are constrained by (32) and (33). The first ensures that the load of331

the ship visiting node i ∈ N (li) is updated by the demand Hi, while the second332

ensures that the capacity of the assigned ship is not exceeded. Constraint (34)333

forces a precedence between a pickup node i ∈ P and its corresponding delivery334

node n + i. The order variables oi are linked to the predecessor variables pi335

via constraint (35). To improve pruning, an allDifferent constraint [26]2 is336

imposed over the set of order variables (O = {oi : i ∈ K}) in constraint (36).337

Constraint (37) ensures that the same ship that picks up a cargo also delivers338

it. The speed at each node is limited to the minimum and maximum speed of339

2Imposes that each variable in the given set must have a distinct value
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the assigned ship by constraint (38). In order to model the speed of the ship we340

have, in Constraint (39), implemented a dedicated filtering algorithm, which,341

based on the optimal speed equation from [13], ensures bound consistency on342

the speed variables. In order to model the remaining cargo to be loaded (ri) at343

a node, we used a binary variable aij indicating if node i is visited before node344

j and they are both in the same route (or equivalently if they are visited by the345

same ship). To do so we needed the dual version of the order variable oi, which346

in Constraint (40) is obtained using a so called channeling constraint. Using the347

bi variable, Constraint (41) can then define the aij variables. The remaining348

cargo load (ri) is then obtained by collecting the demands yet to be visited349

(42). Another bound consistency filtering algorithm has been implemented for350

the cost calculation (43), which binds the different cost component to the cost351

variable ci. The filtering algorithms used in (39) and (43) are explained in detail352

in Section 4.3.353

The objective function (44) is then the minimization of the sum of all cost354

components ci.355

z∗ = min
∑

i∈N

ci (44)

4.3. Speed and cost filtering algorithms356

The optimalSpeed() and costFunc() algorithms filter values respectively from357

the domain of the speed (vi) and cost (ci) variables. Both algorithm force the358

so called bound consistency, meaning that they can only adjust the lower and359

upper bound of the domains (contrary to arc-consistency where values within the360

domain set can be removed). Since both filtering algorithms have a dependency361

from other variables, which might have not yet been assigned, we must be able362

to work with the domain of these variable. For simplicity, let us define the lower363

bound of a variable x to be x̌ and the upper bound to be x̂. Thus, from the364

variable si ∈ K, ši and ŝi are respectively the smallest and largest, feasible,365

vessel index for node i ∈ N . Let Gi, Pi, Ti, Fi and Ai denote the corresponding366
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parameters in Section 3.1 for a ship sailing to node i ∈ N . The per unit volume367

fuel cost is denoted by U . Again, for simplicity, we abuse the notation and define368

Ǧi, P̌i, Ťi, F̌i and Ǎi, to be the smallest values these coefficient can have at node369

i ∈ N , and Ĝi, P̂i, T̂i, F̂i and Âi, to be the highest (e.g. Ĝi = maxj∈Dom(si) Gj370

where Dom(si) is the current domain of variable si for node i ∈ N).371

For each i ∈ N the optimalSpeed(vi , li , si , ri) filters the domain of the vi

variables as follows:

k̂1 = U
(

Ĝi(l̂i + Âi)
2
3

)

(45)

ǩ1 = U
(

Ǧi(ľi + Ǎi)
2
3

)

(46)

k̂2 = k̂1P̂i +
(

αr̂i + βl̂i + F̂i

)

(47)

ǩ2 = ǩ1P̌i +
(

αři + βľi + F̌i

)

(48)

ŝi =

(

k̂2

ǩ1(Ťi − 1)

)
1
Ťi

(49)

ši =

(

ǩ2

k̂1(T̂i − 1)

)
1
T̂i

(50)

Similarly, costFunc(ci, vi, li, ri) filters the domain of the ci variables as fol-

lows:

ĉi =
[

U Ĝi(P̂i + v̂3i )(l̂i + Âi)
2
3 + αr̂i + βl̂i + F̂i

] δ̂i
v̌i

(51)

či =
[

U Ǧi(P̌i + v̌3i )(ľi + Ǎi)
2
3 + αři + βľi + F̌i

] δ̌i
v̂i

(52)

where δ̂i and δ̌i are respectively the longest and shortest distance to from the372

previous node in the sequence (e.g. δ̂i = maxj∈Dom(pi) dij).373

4.4. Search strategy374

The model is solved using a dynamic branching that attempts at building375

routes backwards from each ship dummy end node. The strategy sequentially376

selects the first ship which route in not yet complete (which happens when one377

of the predecessor variable pi is assigned to the dummy start node of the selected378

ship). It then attempts to assign the arc which incurs the highest cost (thus379
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assigning a value to the pi variables). Since the speed variables vi are mainly380

derived by the rest of the variables, they are branched on at last. This branching381

is based on the traditional fail first strategy where the solver attempts at cutting382

as early as possible sub-optimal branches. The original strategy branches first383

on the variable with the smallest domain selecting a random value. During the384

experimental evaluation, the original strategy was able to provide faster optimal385

solutions to very small instances, but failed to provide even upper bound to386

larger ones.387

5. Computational Results388

This section presents the computational results of both solution methods on389

a set of generated realistic data. The H-B&P is implemented in C++ and run390

on a PC with Intel Core i7-3520M, 2.9Hz, 8GB RAM. The SP model in the391

H-B&P is solved by CPLEX 12.6. The parameters γ and µ in strong branching392

were set to 3
4 and 15, as in [27] and [21]. The computational time is limited to393

30 minutes. The CPM is implemented in C++ and uses Gecode 4.4 [28] and run394

on a similar Linux machine for 10 hours. In the following, Section 5.1 describes395

the testing data and Sections 5.2–5.4 present the results.396

5.1. Data397

Our instances contain cargoes that originate from 4-7 ports, whose geograph-398

ical locations are illustrated in Figure 1. Distances between ports (in nautical399

miles) are taken from LinerLIB, a benchmark suite for liner shipping network400

design described in [29], and they are presented in Table 2.401

The number and size of the cargoes for each instance group are randomly402

defined. Table 3 presents the number of cargoes and ports used in each group.403

In each scenario there are up to 3 vessels that can be used, the size of which404

varies from small to large. These vessels are deployed in the Intra-Mediterranean405

container trade. Detailed ship characteristics such as ship’s lightweight, total406

amount of cargo that can be transported (capacity), the range of sailing speeds,407
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Figure 1: Geographical locations of the ports

Piraeus

Limassol

Port Said

Tunis

Genoa

Barcelona

Valencia

port ID (name) 1 (Tunis) 2 (Port Said) 3(Piraeus) 4(Genoa) 5(Valencia) 6(Barcelona) 7(Limassol)

1 ( Tunis ) 0 1192 701 472 560 492 1150

2 ( Port Said ) 1192 0 619 1446 1699 1620 228

3 ( Piraeus ) 701 619 0 906 1174 1095 554

4 ( Genoa ) 472 1446 906 0 512 356 1393

5 ( Valencia ) 560 1699 1174 512 0 165 1657

6 ( Barcelona ) 492 1620 1095 356 165 0 1562

7 ( Limassol ) 1150 228 554 1393 1657 1562 0

Table 2: Distance matrix (port distances in nautical miles)

the fuel consumption at the maximum speed as well as the freight rate (the408

per day price which a charterer pays a shipowner for the use of each ship) are409

presented in Table 43.410

The fuel consumption per leg (for each ship) is calculated by using (1). In411

our instances we assume a cubic relationship between fuel consumption and412

speed, that is we set P= 0 and T= 3. By assuming the above, we are able to413

calculate the value of G that is in formula (1), such that at full capacity and at414

the maximum speed, the fuel consumption is equal to the ”fuel consumption at415

3The data of Table 4 are illustrative but realistic. They are drawn from various sources

at the authors disposal, including private communication with industry contacts. The ships

span the lower end of the containership size spectrum and we thought they would be a good

example to test the models developed in the paper.
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Instance group ID G1 G2 G3 G4 G5 G6 G7 G8

# of cargoes 6 12 10 20 15 30 21 31

# of ports 4 4 5 5 6 6 7 7

Table 3: Instance data

Ship ID 1 2 3

Ship size Small Medium Large

Freight rate ($/day) 6700 7800 10650

min speed (knots) 6 7 8

max speed (knots) 13 14 16

capacity (ton) 9400 11000 15000

Lightship weight (ton) 3500 5000 5000

fuel consumption at max speed (tons/day) 20 30 45

Table 4: Ship data

max speed” that is given in Table 4.416

In order to estimate the bunker costs a base value of U equal to 300 $ per417

ton fuel is assumed.418

As described in Section 3, the total inventory cost is also taken into account.419

Two types of inventory cost are assumed in this paper, in-transit inventory cost420

(β, which accrues from time cargo is on the ship until cargo is delivered) and421

port inventory cost (α, which accrues from time 0 until cargo is on the ship).422

In the general case, we assume that β is related to cargo value. If the market423

price of the cargo at the destination (CIF price) is p $ per ton, then one day424

of delay in the delivery of one ton of this cargo will inflict a loss of p · r/365 to425

the cargo owner, where r is the cost of capital of the cargo owner (expressed426

as an annual interest rate). This loss will be in terms of lost income due to427

the delayed sale of the cargo. Therefore, it is straightforward to see that β =428

p · r/365. We assume that the cargo owner’s cost of capital is equal to r = 5%.429

In the base scenario we also assume an average cargo value of 10.950 $ per ton430
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(this can refer to expensive such as electronics etc.) therefore β is equal to 1.5431

$ per ton cargo per day.432

It is obvious that the results depend much on fuel price, charter costs and433

also the inventory costs. Fuel prices and charter rates are very volatile, therefore434

a sensitivity analysis is also presented for a selected instance, see Section 5.4.435

5.2. Results from different problem variants436

As mentioned earlier, by setting the parameters differently we obtain differ-437

ent variations of the problem. Here we take instance G3 4 as an example to438

examine the solutions of the following four variations:439

1. Min total cost (F,U, α, β > 0): this is the general case where the pa-440

rameters (a) fuel price, (b) state of the market (freight rate), (c) inventory441

cost of the cargo, and (d) dependency of fuel consumption on payload are442

taken into consideration in the routing decision at the operational level.443

The result for the G3 4 instance is depicted in Figure 2. We also provide444

details of the found solution in Tables 5, 6 and 7, which represent the445

set of routes for each ship. The visualization shows the routes allocation,446

while the table give details about the each leg. For each ship result table ,447

the first column show the ports called in the route. For each port call, the448

second column specified the operations undertaken. This is done using449

a 3 digit code where the first letter indicate whether the it is a pickup450

(P) or a delivery (D) operation. The next two values are the origin and451

destination of the cargo e.g. P45 is the pickup of cargo going from port452

4 to port 5, and the corresponding delivery is thus D45. The remaining453

columns indicate respectively the next sailing leg, the payload, the speed454

the travel distance and the sailing time. As it can be seen, in this example,455

all vessels are deployed and the sailing speeds are the maximum ones in456

almost all legs.457

2. Min total cost with zero port cargo inventory cost ( α = 0 and458

F,U, β > 0): the case α = 0 assumes that cargo is available at the loading459

23



port in a just-in-time fashion and related waiting or delay costs are zero.460

In this instance, the small and the large vessels are deployed and the sailing461

speeds are the maximum ones in almost all legs. Solution details can be462

found in Appendix in Figure A.4.463

3. Min emission ( F = α = β = 0 and U > 0): the objective in this case is464

to minimize fuel consumption, which finds the routes and the speeds that465

consume the minimum amount of fuel. In case the ship wants to minimize466

total emissions (or equivalently minimize total fuel consumed or total fuel467

cost), it is straightforward to see that all legs should be sailed at minimum468

speed. The solution uses only the smallest vessel and the sailing speed in469

all legs is equal to the minimum speed as expected. Solution details can470

be found in Appendix in Figure A.5.471

4. Min total trip time (U = α = β = 0 and F > 0): the problem becomes472

the minimum total trip time problem, which finds the minimum total473

duration of all the routes. In this case, the ship will take the maximum474

speed. The solution shows that only one vessel is used (the largest one)475

and that the legs are sailed as expected at the highest speed in order to476

minimize the total time and, thus, the chartering cost. Solution details477

can be found in Appendix in Figure A.6.478

port Pickup/delivery Next payload on the leg remaining weight speed Distance sailing time

stop operations leg (Ktons) to pickup (Ktons) (knots) (nautical miles) (days)

0 0–4 0 23 13 0 0

4 P45 4–5 7 16 13 512 1.641

5 D45 P53 5–3 7 9 13 1174 3.763

3 D53 P31 3–1 9 0 13 701 2.247

1 D31 1–0 0 0 13 472 1.513

Table 5: Detailed solution for ship 1 of instance G3 4.

It is important to realize that different objective functions will generally479

produce very different solutions to the same instance, as it has be shown in480

the previous examples. In the last two cases the results are as expected and481

in line with [13]. In the first two cases and especially in the general one (cost482
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Piraeus

Port Said

Tunis

Genoa

Valencia

Ship 1

Ship 2

Ship 3

Figure 2: Solution with minimum cost for instance G3 4.

port Pickup/delivery Next payload on the leg remaining weight speed Distance sailing time

stop operations leg (Ktons) to pickup (Ktons) (knots) (nautical miles) (days)

0 0–4 0 14 14 0 0

4 P41 4–1 5 9 14 472 1.405

1 D41 P14 1–4 9 0 14 472 1.405

4 D14 4–0 0 0 13.719 0 0

Table 6: Detailed solution for ship 2 of instance G3 4.

port Pickup/delivery Next payload on the leg remaining weight speed Distance sailing time

stop operations leg (Ktons) to pickup (Ktons) (knots) (nautical miles) (days)

0 0–4 0 17 16 0 0

4 P42 4–2 1 16 16 1446 3.766

2 P23 D42 P25 P21 2–3 15 1 16 619 1.612

3 D23 3–1 14 1 16 701 1.826

1 P15 D21 1–5 6 0 16 560 1.458

5 D15 D25 5–0 0 0 15.968 512 1.336

Table 7: Detailed solution for ship 3 of instance G3 4.

minimization) the results depend on the parameters of the problem. To give a483

better overview we present, in Table 8, the solutions to all four variants. For484

each variant, the total sailing distance, the total sailing time, the total cost,485

the total amount of fuel consumed, the total chartering cost, the total port486

inventory cost and the total in-transit inventory cost over all the routes in the487
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solution are given.488

As we can see in Table 8, in the minimum total trip time scenario the large489

ship is only deployed and sails the minimum total distance at the maximum490

speed, thus, the total sailing time is the least one (15.5 days) under this scenario.491

The reason this ship is chosen is that its maximum speed is the highest, among492

all ship types. On the other extreme side, one vessel is used again under the493

minimum emissions scenario sailing at the slowest speed for a total of 64.6 days.494

This is the smallest ship which has the lowest, among all ships, fuel consumption,495

and the solution would have that ship alone serve all cargoes using as much time496

as it would take.497

In the quest for environmentally optimal solutions, one might actually as-498

sume that if the minimum distance route is sailed at the minimum possible499

speed in all legs, this would minimize emissions. However, it turns out that this500

is not necessarily the case as the fuel consumption also depends on the payload.501

In this instance, the solution that gives the minimum emissions actually has a502

total distance traveled that is longer than those under the other three objectives.503

In the minimum cost scenarios, both when the port inventory cost is zero504

and in the general case, it seems that the sailing speeds are high due to the high505

inventory costs.506

min total trip time min emission min total cost (JIT) min total cost

U = α = β = 0 F = α = β = 0 α = 0

Total dist (nautical miles) 5971.0 9299.0 6915.0 7641.0

Total trip time (days) 15.5 64.6 19.7 22.0

Total cost(k$) 165.6 28.5 531.0 759.2

Fuel consumption (tons) 593.8 95.1 487.3 515.9

Fuel cost (k$) – 28.5 146.2 154.8

Chartering cost(k$) 165.6 – 173.9 189.8

Port inv. cost(k$) – – – 204.7

In-transit inv. cost(k$) – – 210.9 210.0

# used ships 1 1 2 3

B&P time (sec) 0.2 0.4 0.5 0.3

Table 8: Results from different problem variants for instance G3 4
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5.3. Results of the H-B&P and the CPM507

A comparison of the solutions provided by the H-B&P and the CPM are508

provided in Table 9. For the H-B&P , the total cost as well as the four cost509

elements are given in columns 2–6. The number of ships used in the solutions510

and the computational times of the H-B&P are also given in the table. For the511

CPM , we present the best solution found within 10 hours. The solutions that512

are proven to be optimal by the CPM are indicated by *. As it can be seen from513

the table, the H-B&P finds the optimal solution for the first five instances. For514

the remaining instances, for which the optimal solution is unknown, the solution515

found by the H-B&P within 30 minutes is much better than the one found by516

the CPM model. For most of the instances, the H-B&P stops before reaching517

the time limit, which means the algorithm finishes exploring the branching tree518

using the heuristic column generation.519

5.4. Sensitivity Analysis520

To investigate how the fuel price, charter rate and inventory cost affect the521

solution, we have tested instance G3 4 with different inputs of these parameters.522

The solution values over these instances are given in Table 10–Table 12. Table 10523

provides the results when the fuel price varies from 100 $ per ton to 1300 $ per524

ton. Table 11 and 12 shows the corresponding results when the relative changes525

of charter rate are from -60% to +60% and the inventory cost from 0 $ per526

ton per day to 3 $ per ton per day. With an interest rate of 5% these figures527

correspond to an average cargo value of 0 to 21.900 $ per ton.528

Figure 3 summarizes the results graphically, where the results for average529

speed, fule consumption and travel distance are plotted. The data is normalized530

in percentage deviation from the base value; that is 300 $ for fuel price, 0% for531

the charter rate, and 0.3 $ for the inventory cost. As it can be seen from the532

results in all cases except when the port cargo inventory cost is low ( α equal to533

0 or 0.3) the total distance sailed is the same and all ships are being used. In534

addition, when the fuel price increases, the ships would try to reduce the fuel535

consumption by taking shorter routes and sailing at a lower speed revealed from536
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H-B&P CPM

Fuel Chartering Port inv. In-transit inv. Total # of used Computational Total

cost (K$) cost(K$) cost(K$) cost(K$) cost (K$) ships time (sec) cost (K$)

G1 1 99.5 95.9 176.7 135.9 507.9 1 0.0 507.9*

G1 2 115.9 150.5 153.8 145.6 565.8 2 0.1 565.8*

G1 3 112.6 133.1 108.6 145.6 499.9 2 0.1 499.9*

G1 4 75.8 83.2 93.1 102.1 354.2 1 0.0 354.2*

G1 5 111.1 152.8 130.2 110.3 504.4 3 0.0 504.3*

G2 1 150.6 160.2 262.5 215.1 788.4 3 0.9 1,341.60

G2 2 184.0 192.3 261.1 270.1 907.5 3 0.7 1,340.90

G2 3 163.2 188.1 280.3 227.6 859.3 3 0.7 1,228.90

G2 4 123.7 119.7 168.2 181.3 592.9 2 0.9 947.50

G2 5 127.5 144.0 154.3 182.1 607.9 2 0.9 1,104.60

G3 1 140.5 181.5 133.6 190.1 645.8 3 0.3 798.10

G3 2 118.6 168.5 131.7 145.3 564.1 3 0.6 631.00

G3 3 170.2 214.9 158.4 213.2 756.8 3 0.4 828.20

G3 4 154.8 189.8 204.7 210.0 759.2 3 0.3 863.60

G3 5 172.7 219.5 277.7 225.8 895.8 3 0.3 896.20

G4 1 247.6 249.2 356.0 383.9 1,236.6 3 13.3 7,144.10

G4 2 277.4 275.7 606.1 451.7 1,610.9 3 48.9 7,728.00

G4 3 258.3 263.7 434.9 395.5 1,352.3 3 10.2 7,395.10

G4 4 265.8 284.9 543.3 397.4 1,491.3 3 36.6 7,087.00

G4 5 353.6 386.0 862.1 532.9 2,134.5 3 84.1 8,446.80

G5 1 194.9 230.5 275.8 240.6 941.7 3 5.5 2,140.50

G5 2 156.7 193.3 238.4 184.1 772.5 3 3.2 2,400.90

G5 3 193.9 237.6 262.5 271.4 965.4 3 3.2 3,010.80

G5 4 231.0 265.4 420.9 305.5 1,222.7 3 14.4 2,558.90

G5 5 191.5 225.0 326.0 258.9 1,001.3 3 2.8 3,512.50

G6 1 364.9 387.7 1,126.1 563.8 2,442.5 3 1,800.7 20,523.80

G6 2 291.2 301.5 656.4 448.7 1,697.8 3 1,800.7 15,597.90

G6 3 377.9 393.7 1,032.2 596.7 2,400.5 3 880.5 18,912.70

G6 4 354.6 355.1 954.2 568.5 2,232.3 3 603.6 19,347.30

G6 5 394.5 424.6 1,215.1 587.5 2,621.8 3 1,800.2 20,216.10

G7 1 319.1 354.7 728.6 493.4 1,895.7 3 153.5 9,672.40

G7 2 256.0 294.1 441.5 350.6 1,342.1 3 755.3 7,647.10

G7 3 274.3 332.5 585.1 380.6 1,572.5 3 103.5 5,989.00

G7 4 279.8 283.4 528.0 438.5 1,529.6 3 13.4 8,009.30

G7 5 348.7 402.0 787.5 492.8 2,031.1 3 80.3 9,200.10

G8 1 441.9 479.8 1,447.5 663.4 3,032.5 3 1,721.3 19,592.40

G8 2 435.4 467.3 1,274.9 615.9 2,793.5 3 1,801.5 21,203.50

G8 3 410.3 442.9 1,292.5 621.3 2,767.1 3 1,802.2 20,413.70

G8 4 400.5 423.0 1,248.6 596.1 2,668.2 3 1,800.9 19,972.30

G8 5 393.2 432.2 1,160.9 574.5 2,560.7 3 1,801.8 19,900.90

Average 243.3 269.5 537.5 352.9 1403.2 2.8 428.7 7,500.9

Table 9: Results of the H-B&P and the CPM
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Fuel Price ($/ton) 100 200 300 400 500 600 700 800 900 1000 1100.0 1200.0 1300.0

Total dist (nautical miles) 7641.0 7641.0 7641.0 7641.0 7641.0 7641.0 7641.0 7641.0 7641.0 7641.0 7641.0 7641.0 7641.0

Total trip time (days) 21.5 22.0 22.0 22.3 23.0 23.8 24.5 25.2 25.9 26.7 27.5 28.3 29.1

Total cost(K$) 653.7 707.6 759.2 810.3 858.5 903.5 945.9 986.0 1024.3 1060.4 1094.4 1126.6 1157.0

Fuel consumption (tons) 549.2 516.0 515.9 501.0 465.6 436.1 411.9 391.3 373.4 350.0 330.2 312.9 296.7

Fuel cost (K$) 54.9 103.2 154.8 200.4 232.8 261.7 288.3 313.0 336.1 350.0 363.3 375.5 385.7

Chartering cost(K$) 193.1 189.8 189.8 193.0 200.0 206.9 213.4 219.7 225.6 233.3 240.5 247.3 254.0

Port inv. cost(K$) 199.7 204.7 204.7 204.8 205.2 205.5 206.2 207.4 209.0 215.0 220.7 226.3 232.4

In-transit inv. cost(K$) 206.0 210.0 210.0 212.2 220.6 229.5 238.0 246.0 253.6 262.1 270.0 277.5 285.0

# used ships 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0

Average speed (knot) 14.8 14.5 14.5 14.3 13.8 13.4 13.0 12.6 12.3 11.9 11.6 11.3 11.0

B&P time (sec) 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4

Table 10: Sensitivity to the fuel price

Relative change of freight rate -60% -50% -40% -30% -20% -10% 0% +10% +20% +30% +40% +50% +60%

Total dist (nautical miles) 7641.0 7641.0 7641.0 7641.0 7641.0 7641.0 7641.0 7641.0 7641.0 7641.0 7641.0 7641.0 7641.0

Total trip time (days) 23.0 22.7 22.4 22.2 22.1 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0

Total cost(K$) 643.4 663.1 682.6 702.0 721.1 740.2 759.2 778.2 797.1 816.1 835.1 854.1 873.0

Fuel consumption (tons) 492.4 497.7 502.7 507.5 511.6 514.3 515.9 516.0 516.0 516.0 516.0 516.0 516.0

Fuel cost (K$) 147.7 149.3 150.8 152.3 153.5 154.3 154.8 154.8 154.8 154.8 154.8 154.8 154.8

Chartering cost(K$) 79.6 98.1 116.4 134.6 152.8 171.3 189.8 208.7 227.7 246.7 265.7 284.6 303.6

Port inv. cost(K$) 204.7 204.7 204.7 204.7 204.7 204.7 204.7 204.7 204.7 204.7 204.7 204.7 204.7

In-transit inv. cost(K$) 211.4 211.0 210.7 210.4 210.1 210.0 210.0 210.0 210.0 210.0 210.0 210.0 210.0

# used ships 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0

Average speed (knot) 13.9 14.1 14.2 14.3 14.4 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5

B&P time (sec) 0.4 0.4 0.4 0.5 0.4 0.4 0.3 0.4 0.4 0.4 0.4 0.4 0.4

Table 11: Sensitivity to the charter cost

α = β ($/ton/day) 0.0 0.3 0.5 0.8 1.0 1.3 1.5 1.8 2.0 2.3 2.5 2.8 3.0

Total dist (nautical miles) 6915.0 6915.0 7641.0 7641.0 7641.0 7641.0 7641.0 7641.0 7641.0 7641.0 7641.0 7641.0 7641.0

Total trip time (days) 23.2 20.9 22.7 22.3 22.0 22.0 22.0 22.0 22.0 21.6 21.6 21.6 21.6

Total cost(k$) 307.3 400.9 480.5 551.3 620.9 690.1 759.2 828.3 897.4 966.4 1034.0 1101.6 1169.2

Fuel consumption (tons) 341.5 417.7 467.2 491.1 511.9 515.9 515.9 515.9 515.9 548.3 548.3 548.3 548.3

Fuel cost (k$) 102.4 125.3 140.2 147.3 153.6 154.8 154.8 154.8 154.8 164.5 164.5 164.5 164.5

Chartering cost(k$) 204.9 186.0 197.4 193.4 190.4 189.8 189.8 189.8 189.8 193.3 193.3 193.3 193.3

Port inv. cost(k$) 0.0 50.9 68.4 102.5 136.5 170.6 204.7 238.8 272.9 299.5 332.8 366.1 399.4

In-transit inv. cost(k$) 0.0 38.7 74.5 108.0 140.5 175.0 210.0 244.9 279.9 309.0 343.3 377.7 412.0

# used ships 2.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0

Average speed (knot) 12.4 13.8 14.0 14.3 14.5 14.5 14.5 14.5 14.5 14.8 14.8 14.8 14.8

B&P time (sec) 0.3 0.4 0.4 0.4 0.4 0.4 0.3 0.3 0.4 0.3 0.5 0.4 0.3

Table 12: Sensitivity to the inventory cost

the increasing trip time. The increase in freight rate does not seem to affect the537

speeds that much as the average speed remains the same in most of the cases.538

Finally, the figure shows that increases in the inventory cost parameters (α =539

β) lead to higher average speeds in order to reduce the trip time and thus the540
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total inventory costs.541

6. Conclusions542

This paper has developed models that optimize ship speed for a spectrum543

of routing scenarios and for several variants that concern the objective function544

to be optimized. The paper extends the work presented in [13] to the multiple545

ship case and contributes to further research in this area, for instance in multiple546

ship problems where many of the properties identified in the single ship case are547

still valid. To our knowledge, this is the only paper in the maritime OR/MS548

literature that addresses a multiple ship scenario in which all of (a) the fuel549

price, (b) the market freight rate, (c) the dependency of fuel consumption on550

payload and (d) the cargo inventory costs are taken into account. In the quest551

for a balanced economic and environmental performance of maritime transport,552

we think that this work can provide useful insights.553
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Appendix A. Results from instance G3 4636

Piraeus

Port Said

Tunis

Genoa

Valencia

Ship 1

Ship 2

Ship 3

SHIP ID 1

port Pickup/delivery Next payload on the leg remaining weight speed Distance sailing time

stop operations leg (Ktons) to pickup (Kton) (knots) (nautical mile) (days)

0 0–4 0 32 13 0 0

4 P45 4–5 7 25 13 512 1.641

5 D45 P53 5–3 7 18 13 1174 3.763

3 D53 P31 3–1 9 9 13 701 2.247

1 D31 P14 1–4 9 0 13 472 1.513

4 D14 4–0 0 0 13 0 0

SHIP ID 3

port Pickup/delivery Next payload on the leg remaining weight speed Distance sailing time

stop operations leg (Ktons) to pickup (Ktons) (knots) (nautical miles) (days)

0 0–4 0 22 15.968 0 0

4 P42 P41 4–1 6 16 16 472 1.229

1 D41 1–2 1 16 16 1192 3.104

2 D42 P23 P25 P21 2–3 15 1 16 619 1.612

3 D23 3–1 14 1 16 701 1.826

1 P15 D21 1–5 6 0 16 560 1.458

5 D15 D25 5–0 0 0 15.968 512 1.336

s Total 6915 19.729

Figure A.4: Solution with minimum cost (JIT) for instance G3 4.
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Piraeus

Port Said

Tunis

Genoa

Valencia

Ship 1

Ship 2

Ship 3

SHIP ID 1

port Pickup/delivery Next payload on the leg remaining weight speed Distance sailing time

stop operations leg (Ktons) to pickup (Ktons) (knots) (nautical miles) (days)

0 0–4 0 54 6 0 0.0

4 P45 4–5 7 47 6 512 3.6

5 D45 5–4 0 47 6 512 3.6

4 P41 P42 4–1 6 41 6 472 3.3

1 D41 1–2 1 41 6 1192 8.3

2 P23 D42 P25 2–3 6 35 6 619 4.3

3 D23 3–1 5 35 6 701 4.9

1 P15 1–5 6 34 6 560 3.9

5 D15 D25 P53 5–3 7 27 6 1174 8.2

3 D53 P31 3–1 9 18 6 701 4.9

1 D31 1–2 0 18 6 1192 8.3

2 P21 2–1 9 9 6 1192 8.3

1 D21 P14 1–4 9 0 6 472 3.3

4 D14 4–0 0 0 6 0 0

Total 9299 64.576

Figure A.5: Solution with minimum emissions for instance G3 4.
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Piraeus

Port Said

Tunis

Genoa

Valencia

Ship 1

Ship 2

Ship 3

SHIP ID 3

port Pickup/delivery Next payload on the leg remaining weight speed Distance sailing time

stop operations leg (Ktons) to pickup (Ktons) (knots) (nautical miles) (days)

0 0–4 0.0 54.0 16.0 0 0.0

4 P41 P45 P42 4–5 13.0 41.0 16.0 512 1.3

5 D45 P53 5–3 13.0 34.0 16.0 1174 3.1

3 D53 P31 3–1 15.0 25.0 16.0 701 1.8

1 D41 D31 1–2 1.0 25.0 16.0 1192 3.1

2 P23 D42 P25 P21 2–3 15.0 10.0 16.0 619 1.6

3 D23 3–1 14.0 10.0 16.0 701 1.8

1 P15 D21 P14 1–5 15.0 0.0 16.0 560 1.5

5 D15 D25 5–4 9.0 0.0 16.0 512 1.3

4 D14 4–0 0.0 0.0 16.0 0 0.0

Total 5971 15.5

Figure A.6: Solution with minimum trip time for instance G3 4.
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