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About this document

This is the instruction manual for the MSTM Fortran–90 code. The code was originally released in January
2011. Code elements will be revised in response to bug fixes, user suggestions, and modifications/extensions;
the revision date will appear in comment lines at the top of each module and/or subroutine of the code.

The current version of the manual (the one you are reading now) corresponds to revision 1.2, and was
released on 21 February 2011. The revision history appears in Sec. (6).

Michael Mishchenko has contributed significantly both to the development of the code and its visibility.
Development has also benefitted from the advice and encouragement provided, over the years, by Zhanna
Dlugach, Bruce Draine, Piotr Flatau, Kirk Fuller, Joop Hovenier, Michael Kahnert, Nikolai Khlebtsov,
Ludmilla Kolokolova, Li Liu, Pinar Menguç, George Mulholland, Olga Munoz, Antti Pentillä, Michael Wolff,
and Thomas Wriedt.

All queries regarding the code should be addressed to the author at mackodw (at) auburn.edu
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1 Purpose

MSTM is a FORTRAN-90 code for calculating the time–harmonic electromagnetic scattering properties of
a group of spheres. The algorithm applies the multiple sphere T matrix method, and the results can be
considered exact to the truncation error of the vector spherical wave function (VSWF) expansions used to
represent the fields. The code can

• calculate the cross sections, asymmetry parameters, and far–field scattering matrix elements for both
fixed and random orientations with respect to the incident wave,

• model both plane wave and Gaussian profile incident beams, and

• generate maps of the electric field distributions along any arbitrary plane and including points both
within and external to the spheres.

The MSTM code is intended to replace the FORTRAN-77 scsmtm.for and scsmfo.for codes that were
previously developed by the author. In revising the multiple sphere scattering codes, the programming goals
were to develop a code which

• is as compiler– and machine–independent as possible,

• can be compiled and run on both serial and distributed–memory parallel processing platforms,

• optimally uses the memory and (for parallel platforms) processor resources of the machine, and

• allows for a wide range of calculation and output options without modification and recompilation of
the code.

Those familiar with the old codes should have little difficulty working with MSTM. The new code replaces all
static array dimensions will dynamic memory allocation, and this eliminates the need to adjust PARAMETER
statements to meet the memory requirements of the machine and/or the calculation. The code also incorpo-
rates message passing interface (MPI) commands to implement execution on distributed memory, multiple
processor compute clusters.

A summary of the mathematical formulation and algorithm is given in Sec. (2), and compilation and
execution of the code are described in Sec. (3). An overview of the code structure, and directions on how to
modify the code for specialized applications, is found in Sec. (5).

2 Mathematical Formulation

2.1 Interaction equations

In the most general sense, the purpose of the code is to render a complete description of the electromagnetic
fields, in both the near and far field regions, that result from the excitation of a target of NS spheres with
a time–harmonic field. A target, illustrated in Fig. 1, is specified by the size parameters xi = kai = 2πai/λ,
relative refractive indices mi = m

′
i + im

′′
i , where i =

√
−1, and positions relative to a common target origin

ri = (Xi, Yi, Zi) for i = 1, 2, . . . NS . The spheres are taken in this description to homogeneous and isotropic,
although it is relatively simple to extend the formulation to account for layered and/or optically active
spheres. However, the spheres cannot overlap.
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Figure 1: Ensemble configuration

The formulation represents an extension of Lorenz-Mie theory to the multiple sphere system. The field
external to the spheres is represented by the superposition of the incident and scattered fields, except in this
case the scattered field consists of components radiated from each sphere in the target;

Eext = Einc +Esca = Einc +

NS
∑

i=1

Esca,i (1)

The incident and scattered fields, at the ith sphere in the cluster, can be represented by regular and outgoing
vector spherical wave function (VSWF) expansions, centered about the origin of the sphere;

Einc =

Li
∑

n=1

n
∑

m=−n

2
∑

p=1

f imnp N
(1)
mnp(r− ri) (2)

Esca,i =

Li
∑

n=1

n
∑

m=−n

2
∑

p=1

aimnp N
(3)
mnp(r− ri) (3)

In the above, Nmnp denotes the VSWF of either type 1 (regular) or 3 (outgoing), of order n, degree m,
and mode p = 1 (TM) or 2 (TE). The functions are defined in the Appendix. The incident field coefficients
f imnp will depend on the characteristics of the incident field, whereas the scattered field coefficients aimnp are
unknown and are sought from the solution. The order truncation limit Li in Eq. (3) is chosen to provide an
acceptable level of convergence of the series; this topic will be covered in more detail below.

Application of the continuity equations at the surface of each sphere results in a system of interaction
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equations for the scattered field coefficients;

aimnp − ainp

NS
∑

j=1
j ̸=i

Li
∑

l=1

l
∑

k=−l

2
∑

q=1

Hi−j
mnp klq a

j
klq = ainp f

i
mnp (4)

in which ainp denote the Mie coefficients of the sphere and depend on the sphere size parameter and refractive

index1, and Hi−j is the outgoing VSWF translation matrix which transforms the outgoing VSWF centered
about origin j into an expansion of regular VSWF centered about origin i. Formulas for the translation
matrix appear in the Appendix.

Equation (4), in conjunction with Eqs. (1)-(3), represents the formal solution for the scattered field
produced by the sphere ensemble. In the case of equal–sized spheres with equal truncation limits LS , Eq. (4)
forms a system of 2NS LS (LS+2) linear equations for the set of scattering coefficients. The matrix Hi−j will
be fully populated for an arbitrary translation between j and i, and correspondingly all orders/degrees/modes
of the scattered field from a sphere j will (in general) influence a particular order/degree/mode of the field at
i. This is in stark contrast to the isolated sphere case, in which each scattering order/degree/mode is excited
only by the same harmonic component for the incident field. And it is in this respect that the multiple sphere
solution departs – in a practical sense – from the single sphere Mie theory: the latter provides an explicit

formula for the scattered field, whereas the former gives only an implicit relationship. That is, numerical
methods (in the form of linear equation solvers) are needed to produce a useable solution. This characteristic
has obvious relevance with regard to the order truncation limit Li. Specifically, closure of Eqs. (4) requires
an a–priori value of Li for each sphere. In most situations Li can be set using a Lorenz-Mie criterion for
the isolated sphere i, yet there are specific situations in which interactions among neighboring spheres can
have a significant effect on the convergence of Eq. (3) [1]. To accommodate such situations, the code allows
for both automatic (based on the Lorenz-Mie criterion) and manual (user–set) specification of Li.

Iterative methods are used in the code to obtain numerical solutions to Eq. (4). The main advantage
of this approach, as opposed to direct solvers using matrix inversion, is that the translation matrices Hi−j

can be factored into rotational and axial translational parts [2]. This results in a decoupling of order and
degree, and leads to both faster matrix–vector multiplication and smaller matrix storage requirements. Our
experience, and that of others, is that the biconjugate gradient method provides the most reliable, and fastest,
solution to Eq. (4), as compared to over/under relaxation and order–of–scattering methods [3]. The number
of iterations required for a solution depends on a host of parameters; i.e., the number, size parameters, and
refractive indices of the spheres, and the proximity of the spheres to each other. In general, as the spheres
become more widely separated the solution will converge faster. An important factor affecting convergence
is whether any of the spheres is at or near a resonance mode; such conditions can lead to extremely small
convergence rates and may be more effectively solved using direct methods [4].

2.2 Incident and total scattered field

Referring to Fig. 2, the propagation direction ẑ′ of the incident field is defined by an azimuth angle α and
polar angle β relative to the target coordinate frame. The angle γ appearing in Fig. 2 is used to define the
scattering plane, upon which the amplitude and scattering matrix elements are based. The procedure for
calculating the amplitude and scattering matrix elements will be discussed in the following section, yet for
now it is noted that determination of these properties, for a set incident direction, requires the solution to

1The anp coefficients used here are the negative of those formulated in previous works, e.g., Bohren and Huffman.
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Figure 2: Target and incident field frames

Eq. (4) for two mutually orthogonal linear polarizations of the incident field. In the code, the two states

correspond to polarization in the β̂ and α̂ directions as illustrated in Fig. 2.
In addition to the standard case of plane wave incidence, the code also provides for the representation

of collimated incident beams having a Gaussian amplitude distribution. In the Gaussian beam (GB) case,
the incident field expansion coefficients centered about sphere i, appearing in Eqs. (2) and (4), cannot be
related to those relative to some other origin by a simple phase shift relation. The general approach used in
the code is to define the incident field expansion, for either the plane wave or GB case, relative to the target
origin, and then use the VSWF translation theorem to obtain the values of f imnp.

At the target origin, the incident field expansion will appear as

Einc(r) =
L
∑

n=1

n
∑

m=−n

2
∑

p=1

fmnp N
(1)
mnp(r) (5)

The order truncation limit L in Eq. (5) – which is chosen so that the expansion will yield an acceptable
description of the incident field on each sphere in the ensemble – will typically depend on the size parameter
kaC where aC is the circumscribing sphere radius illustrated in Fig. 1. For a plane wave (PW), the coefficients
for the incident field VSWF expansion, centered about the target origin, are given by

(

fmnp,β̂,PW

fmnp,α̂,PW

)

= −4π in+1 e−imα

(

τmnp(cosβ)
i τmn(3−p)(cosβ)

)

(6)
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where τmnp are derived from the vector spherical harmonic functions, and are given by

τmnp(cosβ) = −1

4

(

2n+ 1

π

)1/2
(

(−1)p D(n)
−1m(cosβ) +D(n)

1m(cosβ)
)

(7)

with D(n)
km denoting the Wigner d−function [5], the definition of which appears in the Appendix.

Along with a propagation direction and polarization angle, the GB is characterized by a focal point
(taken here to be the target origin) and beam width ω0. For a beam propagating in the +z direction and
polarized in the x direction, the amplitude distribution along the focal plane will be given by

Einc(x, y, 0) = x̂ exp

(

−x
2 + y2

ω2
0

)

(8)

The localized approximation is used in the code to provide a VSWF representation of the GB, which is valid
for kω0 ≥ 5 [6, 7]. The incident field expansion coefficients, for the expansion centered about the beam focal
point, are given by

fmnp,ŝ,GB = gn fmnp,ŝ,PW (9)

gn = exp

[

−
(

n+ 1/2

kω0

)2
]

(10)

where ŝ denotes the specific polarization state.
Since Eq. (5) is assumed to provide a sufficiently accurate representation of the incident field at all

spheres in the target, the sphere–centered expansion for the incident field can be obtained by application of
the translation theorem to Eq. (5). This results in

f imnp,ŝ =

L
∑

l=1

l
∑

k=−l

2
∑

q=1

J i−0
mnpklq fklq,ŝ (11)

where J i−0 is the regular VSWF translation matrix and f refers to either the PW or GB case.
In a manner analogous to that relating Eq. (2) to Eq. (5), the scattered field from the cluster can be

represented by a single outgoing VSWF expansion centered about the cluster origin, so that

Esca(r) =

LT
∑

n=1

n
∑

m=−n

2
∑

p=1

amnp N
(3)
mnp(r) (12)

amnp =

NS
∑

i=1

Li
∑

l=1

l
∑

k=−l

2
∑

q=1

J0−i
mnp klq a

i
klq (13)

The truncation limit LT in the expansion will depend on the distance |r|, with LT → ∞ (i.e., lack of
convergence) as |r| → Max |ri|. In particular, the expansion in Eq. (12) will not be useful to characterize the
near–field characteristics of the scattered electric field. However, Eq. (12) is completely valid in the far–field
regions, and for this limit LT becomes equal to the incident field truncation limit L.
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2.3 Coordinate rotation, amplitude and scattering matrix, and cross sections

Referring again to Fig. 2, the scattering plane is defined as the z′ − x′ plane in the incident field coordinate
frame. The incident field coordinate frame (x′, y′, z′), in turn, is obtained by a solid rotation of the target
frame (x, y, z) through the Euler angles (α, β, γ). The expansion coefficients that describe the total scattered
field, for incident polarization parallel or perpendicular to the scattering plane, are obtained by

a′mnp,∥ = a′
mnp,β̂

cos γ + a′mnp,α̂ sin γ (14)

a′mnp,⊥ = a′
mnp,β̂

sin γ − a′mnp,α̂ cos γ (15)

in which β̂ and α̂ denote solutions corresponding to the two incident polarization states, and the prime
denotes that the coefficients have been rotated from the target to the incident field coordinate frames, in
that

a′mnp,ŝ =

n
∑

k=−n

D(n)
mk(cosβ) e

i k α aknp,ŝ (16)

where aknp,ŝ refer to the coefficients obtained from Eq. (13), using the sphere coefficients for incident polar-
ization state ŝ. The amplitude matrix elements are obtained by using the the far–field asymptotic form of
the outgoing VSWF, resulting in

S1 =
L
∑

n=1

n
∑

m=−n

2
∑

p=1

(−i)na′mnp,⊥τmn3−p(cos θ
′) (17)

S2 =
L
∑

n=1

n
∑

m=−n

2
∑

p=1

(−i)n+1a′mnp,∥τmnp(cos θ
′) (18)

S3 =

L
∑

n=1

n
∑

m=−n

2
∑

p=1

(−i)n+1a′mnp,⊥τmnp(cos θ
′) (19)

S4 =
L
∑

n=1

n
∑

m=−n

2
∑

p=1

(−i)na′mnp,∥τmn3−p(cos θ
′) (20)

in which θ′ denotes the scattering angle. Elements of the scattering matrix can be obtained directly from
those of the amplitude matrix following the formulas presented in Bohren and Huffman [8].

The absorption cross section of sphere i is defined so that Cabs,iI0 is the rate at which the sphere absorbs
energy from the incident wave of irradiance (at the focal point, for a GB) I0. It is given by

Cabs,i =
2π

k2

Li
∑

n=1

n
∑

m=−n

2
∑

p=1

b
i

np

∣

∣aimnp

∣

∣

2
(21)

in which b
i

np is a positive (or zero) real valued property solely of sphere i and is defined by

b
i

np = −Re

(

1

ainp
+ 1

)

(22)
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The amnp coefficients in the above formula would correspond to either the parallel or perpendicular polariza-
tion values; the absorption cross section for unpolarized incident radiation would be the average of the two.
The absorption cross section of the entire ensemble is obtained from the sum of the individual sphere cross
sections;

Cabs =

NS
∑

i=1

Cabs,i (23)

In a similar manner, an extinction cross section of an individual sphere can be defined so that I0 Cext,i

is the rate at which the sphere removes energy from the incident wave. The optical theorem applied to the
field scattered from the sphere gives

Cext,i = −2π

k2
Re

Li
∑

n=1

n
∑

m=−n

2
∑

p=1

aimnpp
i∗
mnp (24)

As before, the scattering and incident field coefficients would correspond to the particular polarization state.
The total ensemble extinction cross section would also be obtained from the sum of the parts;

Cext =

NS
∑

i=1

Cext,i (25)

Unlike the absorption cross section, the extinction cross section for the individual sphere would be difficult
– if not impossible – to experimentally measure. The definition of this quantity relies on the superposition
model of the scattered field, and although this model serves perfectly well as a means to solve Maxwell’s
equations for the ensemble, it is not obvious how the ‘partial’ fields scattered from the individual spheres
could be discriminated in an experiment. The sphere extinction is also not bound by the isolated–particle
inequality of Cext, i > Cabs, i; it is entirely possible for this inequality to be reversed or for Cext, i < 0 on
the individual sphere level. And in this respect a scattering cross section is only meaningful on the target
level, and is obtained from energy conservation via

Csca = Cext + Cabs (26)

Finally, the independent scattering cross section of the sphere is defined as

Ci−sca,i =
2π

k2

Li
∑

n=1

n
∑

m=−n

2
∑

p=1

∣

∣aimnp

∣

∣

2
(27)

and, when multiplied by I0, would represent the power transported from the sphere by the sphere’s scattered
field. It is important to understand that the Ci−sca,i does not have the same additive properties as Eqs. (23)
and (25); the sum of the sphere independent scattering cross sections will not equal Csca. The usefulness
of Ci−sca,i is that it provides, in combination with the absorption and extinction cross sections, a relative
measure of the local incoherent (or multiply–scattered) field intensity in the target of spheres. By multiplying
Eq. (4) through by ai∗mnp and using the definitions of the cross sections, it can be shown that

Cext,i − Ci−sca,i − Cabs,i =
2π

k2
Re

NS
∑

j=1
j ̸=i

∑

k,l,q

∑

m,n,p

aimnpH
i−j
mnp klq a

j
klq

= Cd−sca,i (28)
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in which Cd−sca,i denotes the dependent scattering cross section of the sphere, and represents the power
flowing to/from the sphere due to the interaction of the sphere’s scattered field with the multiply–scattered
field. In this respect, the relative magnitudes of Cd−sca,i and Cext,i indicates the relative degree to which
the sphere is excited by the multiply–scattered and the incident fields.

2.4 The T matrix relationships

Substitution of Eqs. (11) into Eq. (4) leads to

1

aiµ
T i
µ ν −

NS
∑

j=1
j ̸=i

∑

ν′

Hi−j
µ ν′ T

j
ν′ν = J i−0

µν (29)

In the above and what follows, Greek subscripts are shorthand for the degree–order–mode triplet, i.e.,
µ = (mnp). The sphere–target T i matrix is defined so that

aiµ =
∑

ν

T i
µν fν (30)

and will typically have more columns than rows; the largest row and column order will be Li and L,
respectively.

Replacing Eq. (30) into Eq. (13) results in

aµ =

NS
∑

i=1

∑

ν

∑

ν′

J0−i
µν′ T

i
ν′ν fν =

∑

ν

Tµν fν (31)

The cluster–centered T matrix treats the ensemble of spheres as a single – albeit nonspherical – particle.
The cross sections of the target and the scattering matrix – in either fixed or random orientation – can be
obtained analytically from its properties. However, the T matrix cannot predict the fields within the cluster
or the cross sections of the individual spheres, because Eq. (12) will be valid only for radii that exceed the
largest sphere–target origin distance. The detailed individual–sphere and near–field information – which is
inaccessible from Eq. (31) – can, however, be obtained from the original superposition model.

Calculation of the target T matrix in the code is accomplished by iterative solution of Eq. (29) for a
succession of ν = (klq) values. Upon each solution, the column elements of the T matrix corresponding to
ν are obtained via the contraction in Eq. (31). The algorithm is described in detail in [9].

2.5 Random orientation

The random orientation cross sections can be obtained by using the matrix relationships for the scattered
and incident field, Eqs. (11) and (30), in Eqs. (21) and (24) and integrating the incident field over all
propagation and polarization directions. Because the transformation between PW and GB representations
in Eq. (9) is independent of propagation direction, the integration can be performed in a general manner
without considering the specific form of the incident field. This results in

⟨

fmnp (fm′n′p′)
∗⟩

= δm−m′δn−n′δp−p′g2n (32)
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where < . . . > denotes orientation averaging and gn is given by Eq. (10); note that the plane wave case will
have gn → 1. The formulas for the individual sphere random orientation cross sections are then

⟨Cabs,i⟩ =
2π

k2

∑

µ

∑

ν

b
i

µ

∣

∣T i
µ ν

∣

∣

2
g2ν (33)

⟨Ci−sca,i⟩ =
2π

k2

∑

µ

∑

ν

∣

∣T i
µ ν

∣

∣

2
g2ν (34)

⟨Cext,i⟩ = −2π

k2
Re
∑

µ

∑

ν

J0−i
ν µ T i

µ ν g
2
ν (35)

As before, the total orientation–averaged absorption and extinction cross sections for the cluster will be the
sum of the individual sphere values, and the total scattering cross section will be the difference between the
total extinction and absorption cross sections.

The random–orientation scattering matrix can be obtained analytically from operations on the T matrix,
and is represented as an expansion of generalized spherical functions [9]. The formulas for the expansion
coefficients were originally derived for plane wave excitation, yet for GB excitation the generalized spherical
function expansion for the scattering matrix can be calculated by making the simple transformation

T ′
mnpklq = Tmnpklq gl (36)

and then applying the plane wave formulas to T ′.

3 Multiple sphere T -matrix (MSTM) code

3.1 Structure and compilation

The code is organized into the following five components:

mstm-modules.f90: Contains modules for data input, special function calculation, iterative linear equation
solving, and scattering property calculation.

mstm-main.f90: The prepackaged main program, which reads input parameters from an input file, calls
the subroutines corresponding to the calculation options, and writes output files.

mpidefs-parallel.f90: A module which defines the MPI commands appearing in the mstm-modules.f90
and mstm-main.f90 code blocks for use on multiprocessor platforms.

mpidefs-serial.f90: A module which defines MPI commands for use on single processor (serial) plat-
forms.

mstm-intrinsics.f90: Compiler–specific (non–standard Fortran) functions for command–line argument
retrieval and system time operations. The users must modify this module to suit their specific compiler.

Compilation of the code using the GNU g95 on a MS-Windows, single processor machine would involve

g95 -o mstm.exe mpidefs-serial.f90 mstm-intrinsics.f90

mstm-modules.f90 mstm-main.f90

11



This places the executable in the file mstm.exe. Compilation using the MPICH2 package for execution on a
parallel machine would use

mpif90 -I/opt/mpich2-1.2.1p1/include -g -o mstm.out

mpidefs-parallel.f90 mstm-intrinsics.f90

mstm-modules.f90 mstm-main.f90

and would put the executable in mstm.out.
Other compilers follow the same basic plan. It is important to compile the module files in the order they

are given. And please remember that the mstm-intrinsics.f90 must be modified to match the command–
line recognition and retrieval intrinsic functions of the compiler. The distribution has the intrinsics set up
for gfortran.

3.2 Prepackaged main program

The mstm-main.f90 program included with the distribution is designed to offer the most common calculation
options and output formats, and should serve the computational purposes of most users. Modification of
the main program for more specialized types of calculations should be straightforward for the programmer
with moderate fortran experience. The code employs a highly modular structure, in which the various tasks
involved in the solution are performed in specialized subroutines, and modification of the code to perform a
specific task, such as averaging scattering matrix values over several target configurations or calculating near
field values along a non–rectangular domain, will typically involve rearranging subroutine calls to produce
the desired output. Customized coding is discussed in Sec. (5).

In using the code with the default main program, the properties of the sphere cluster and run variables
are passed to the code using an input file. An input file can be designated by a command line argument; on
a serial machine, with the executable named mstm.exe and an input file named mstm-01.inp, the command
to execute the code would appear as

mstm mstm-01.inp

On a parallel machine the execution command will appear in the shell script used to submit the job. I
am only familiar with running the code on the Auburn University College of Engineering HPCC [10], and
you will need to consult with the appropriate gurus to set up a parallel job on your cluster.

The input file must be in the same directory as the executable. The default input file is mstm.inp; this
file must be present if no command line argument is given.

The input file consists of paired lines; the first line of a pair representing a parameter ID, and the second
representing the value or option for that parameter. The order of the paired lines is not important. If a pair
corresponding to a particular parameter is not present, the code will use the default value.

An example of an input file, showing the first few input parameters, is shown below.

number_spheres

100

sphere_position_file

ran100.pos

output_file

test.dat

length_scale_factor

12

mstm.inp


2.d0

real_ref_index_scale_factor

1.6d0

imag_ref_index_scale_factor

0.01d0

mie_epsilon

1.d-3

Note that the parameter ID, i.e., number_spheres or output_file, must appear as written above. A
description of the parameters follows; default values are given in parentheses.

3.2.1 General options

number_spheres: NS , the number of spheres in the cluster.

sphere_position_file: File name containing the sphere size, position, and (optionally) refractive index
data. If the filename is blank, or if it is given the value at_bottom, sizes, positions, and refractive
indices appear as the last lines in the input file, following a parameter ID of sphere_sizes_and_
positions. The position file, or the appended position information at the bottom of the input file,
should have NS lines; if the number of lines is smaller than the input NS , then NS will be reduced
to match the number of lines. All lines in the file must have either 4 or 6 columns. The first four
correspond to the radius and X, Y , Z positions of the ith sphere in the list. Units are arbitrary yet
must be consistent for radius and position. The 5th and 6th columns, if present, denote the real and
imaginary refractive index of the sphere. If these columns are not present the refractive index of the
spheres is taken to be the same for all spheres and given by the scaling factors (see below). Default is
at_bottom: sphere sizes and positions appearing at the bottom of the input file.

output_file: File name for file to which final calculation results are written; see Sec. (3.4.2) (test.dat).

run_print_file: File name for file to which intermediate output results are written; see Sec. (3.4.1). If
blank, results are written to standard output (the screen). Default is blank.

length_scale_factor: Dimensionless length scale factor; the radii and positions obtained from the position
file are multiplied by this factor, so that the size parameter of the ith sphere is the scale factor times
the radius.

real_ref_index_scale_factor: Multiplies the sphere real refractive index value from the position file; if
refractive index values are explicitly given in the position file, then set this parameter to 1. If refractive
index values do not appear in the position file (i.e., 4 column option), then the scale factor becomes
the real refractive index value for all spheres.

imag_ref_index_scale_factor: Same idea as the above, except now applied to the imaginary part of the
refractive index.

mie_epsilon: Convergence criterion for determining the number of orders to include in the Mie expansions
for each sphere (10−4). Setting mie_epsilon to a negative integer −L forces all sphere expansion to
include L orders.

translation_epsilon: Convergence criterion for estimating the maximum order of the T matrix for the
cluster (10−3).
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solution_epsilon: Error criterion for solution of the interaction equations; solution is obtained when the
normalized mean square error of the solution decreases below this value (10−10).

max_number_iterations: The maximum number of iterations used in the biconjugate gradient scheme for
a particular right hand side. The code will send a message if the maximum number of iterations is
exceeded (2000).

max_memory_per_processor: The maximummemory used for translation matrix storage for each processor,
in MB. Relevant only for parallel runs, this quantity should be somewhat less than the total memory
available to a single processor (1500).

min_scattering_angle_deg: The starting value of the scattering angle for scattering matrix computations,
in degrees (0.0).

max_scattering_angle_deg: Ending value of scattering angle, in degrees (180.0).

number_scattering_angles: The number of scattering angles, evenly spaced between the minimum and
maximum values, for scattering matrix calculation (181).

gaussian_beam_focal_point: X,Y, and Z coordinates of the Gaussian–profile incident beam, relative to
the origin and scaling in the sphere position file (i.e., before length_scale_factor has been applied).
This array defines the origin of the target coordinate system (0.0, 0.0, 0.0).

gaussian_beam_constant: Dimensionless parameter CB = 1/kω0 (Eq. (8)) which characterizes the inverse
width, at the focal point, of an incident Gaussian profile beam. Setting CB = 0 selects plane wave
incidence. The localized approximation used to represent the Gaussian beam is accurate for CB ≤ 0.2.
Default is the plane wave condition (=0.0), and this number is not scaled by the length scaled factor.
Note that Gaussian beam options apply to both fixed orientation and random orientation calculations.

fixed_or_random_orientation: Integer switch: = 0 for a fixed orientation, = 1 for random orientation
results via the T matrix scheme. When = 0, input parameters corresponding to the T matrix solution
are not pertinent to the run, and likewise for the fixed orientation parameters when = 1 (0).

3.2.2 Options for fixed orientation calculations

incident_azimuth_angle_deg: The azimuth angle α of the incident field propagation direction, relative
to the sphere cluster coordinate system, in degrees (0.0).

incident_polar_angle_deg: Polar angle β for propagation direction, degrees (0.0).

scattering_plane_angle_deg: Angle γ which sets the scattering plane for scattering matrix calculations,
per Fig. 2 and accompanying discussion. Note that if α = β = 0, γ corresponds to the azimuth angle
φ of the scattering plane relative to the cluster coordinate system (0.0).

calculate_scattering_coefficients: Integer switch selecting whether the sphere scattering coefficients
aimnp are calculated from solution to Eq. (4) (=1), or read from a file generated from a previous solution
(=0). The latter option is useful for generating near field maps on different planes without having to
recalculate the scattering coefficients (1).

scattering_coefficient_file: File name for the file to which the scattering coefficients are written
(amn-temp.dat).
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track_iterations: Integer switch selecting whether the error after each iteration to Eq. (4) is displayed
in the run file (=1), or suppressed (=0). This option allows the user to track the convergence of the
solution (1).

calculate_near_field: Integer switch for calculation of near field: = 0 for no near field calculations, = 1
to select near field calculations. The following 8 input parameters are pertinent only when the near
field is calculated (0).

near_field_plane_coord: Near field values are calculated in a rectangular grid lying in the plane denoted
by this integer value, = 1: ŷ − ẑ plane; = 2: ẑ− x̂ plane; = 3: x̂− ŷ plane. (1).

near_field_plane_position: The distance of the calculation plane from the cluster coordinate origin,
scaled by k (0.0).

near_field_plane_vertices: Two pairs of numbers, (kX ′
1, kY

′
1), (kX ′

2, kY
′
2) which denote the vertices

(opposite corners) of the rectangular region, in the near field plane, in which field calculations are
made. X ′ and Y ′ refer to either (y, z), (z, x), or (x, y) for near_field_plane_coord = 1,2,3. The
coordinates in the first pair must be smaller that those in the second pair. The coordinates are
not scaled by the length scale factor; they are implicitly in size parameter units (i.e., scaled by k)
(−10.0,−10.0, 10.0, 10.0).

spacial_step_size: The spacial step size k∆x of calculation grid points (0.1).

polarization_angle_deg: A specific polarization state of the incident field is needed to calculate the near
field. The field is taken to be linearly polarized, with a polarization angle of γ relative to the k̂–ẑ
plane. When β = 0, γ becomes the azimuth angle of the incident electric field vector relative to the
cluster coordinate system (0.0).

near_field_output_file: File name for the output electric field values. The format for the file is described
in Sec. (3.4.3) (nf-temp.dat).

near_field_output_data: Integer switch specifying the data to be written to the output file, = 0, |E|2;
= 1, complex E vector; = 2, complex E and H vectors. See Sec. (3.4.3) (1).

plane_wave_epsilon: The incident field component for the near field calculations – for either the plane
wave or Gaussian beam models – is calculated using a single, regular VWH expansion centered about
the beam focal point. The plane wave epsilon is a convergence criterion for this expansion (0.01).

3.2.3 Options for random orientation calculations

calculate_t_matrix: Integer switch selecting whether the T matrix is read from a file (= 0), calculated
in its entirety and written to a file (= 1), or calculated beginning with the next largest order of
a partially–calculated T matrix read from a file, and appended to the same file (= 2). Option 0
allows for calculation of random properties for different incident beam configurations (plane wave or
Gaussian) without having to recalculate the T matrix. Option 1 calculates the T matrix elements using
the sequential solution of Eqs. (29) until a set convergence criterion is reached. Option 2 is included
for situations in which option 1 is interrupted prior to convergence; the calculations will pick up where
the interrupted run left off and continue until convergence (1).
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t_matrix_file: File name for the file to which the T matrix is read (option 0), written (option 1), or read
and appended (2). Note that the T matrix will be written to a file regardless of whether it is intended
to be used again in subsequent runs: the file serves as temporary storage of T matrix columns during
calculation (tmatrix-temp.dat).

t_matrix_convergence_epsilon: Calculation of the T matrix is accomplished by solution of the interac-
tion equations for a sequence of right hand sides, with each RHS corresponding to the order l, degree
k, and mode q component of a generalized plane wave expansion centered about the focal point. For
each order l the random–orientation extinction and scattering efficiencies of the cluster are calculated,
and a converged T matrix is identified when the absolute difference in the efficiencies, from one order
to the next, decreases below this convergence epsilon (10−6).

3.2.4 Termination of input data

Reading of options from the input file will terminate without error when the end–of file is reached. Alter-
natively, the input can be terminated by using the parameter ID of end_of_options; the input process will
be closed when this line is reached, and ID/parameter values located after this line will have no influence
on the run. This statement is useful for quick modification of an input file, in that ID/parameter pairs can
be shuffled either before or after the end_of_options line within the same file to set up different runs. The
sphere_sizes_and_positions ID has the same effect as end_of_options when sphere sizes and positions
are read from a separate file, yet when the sizes/positions are appended to the input file the ID preceding
the data must be sphere_sizes_and_positions.

3.3 Parallel considerations

The code employs parallelization during four computational tasks: 1) the matrix–vector product Hi−j aj

appearing in Eq. (4); 2) the solution of Eq. (29) for the different right-hand-side vectors; 3) computation of
the expansion coefficients for the random orientation scattering matrix representation; and 4) calculation of
the near field values. The last two steps involve a straightforward distribution of non–recursive computational
tasks among the NP processors used in the run. The first two tasks, however, occur simultaneously during
calculation of the T matrix. The strategy used is to subdivide the NP processors via NP = N1 ·N2. Each
member of the N2 group is involved in a solution, for given right–hand–side, to Eq. (29), and associated with
this member are the N1 processors which are used to perform the matrix–vector product during iteration.
The maximum efficiency is obtained when N1 is made as small as possible and, by extension, N2 as large as
possible; this minimizes the overall amount of data transfer among processors required to complete a T matrix
calculation. In general, the minimum value of N1 will be determined by the ratio of the memory required
to store the complete set of translation matrix elements to the memory available to a single processor, with
the latter quantity user–set by the variable max_memory_per_processor.

In fixed orientation calculations the matrix–vector product in Eqs. (4) is computed using the minimum
of (NS , NP ) processors. That is, for a calculation involving 10 spheres, run on 30 processors, 20 of the
processors will be idle during solution of Eq. (4). All processors will be put to use for subsequent near field
calculations, if performed.
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3.4 Output

3.4.1 Run (intermediate) print file

The purpose of the run output is to inform the user of the options and parameters of the calculation,
including the number of equations in Eq. (4), the memory used to store the translation matrices, and an
estimate of the time required to complete the calculation. Intermediate output, of a form dependent on the
run options (i.e., fixed or random) will appear in the run print file during execution. Warnings and errors
will also appear here.

Runs on parallel platforms should have the run print file set to a filename as opposed to the standard
output; parallel jobs typically have the standard output redirected to a file, and choosing a set run print file
will result in a somewhat cleaner output than what would be produced by redirection. Each write statement
to the run file is followed, in the code, by a flush statement, and this allows the user to follow the output,
without appreciable buffer delay, by refreshing the file in the viewing application.

3.4.2 Output file

Information included in the output file includes

• The relevant run parameters and options for the run, i.e., fixed or random, incident angles, GB, etc.

• A listing of the sphere properties, enumerated in the same order as given in the position file. Sphere
data includes the size parameter and k – scaled position with respect to the focal point, refractive
index, the unpolarized extinction, independent scattering, and absorption efficiencies, and the ratio of
actual to Lorenz-Mie absorption efficiencies. For fixed orientation the efficiencies are computed from
the average of the β and α incident polarization values, and will correspond to values for unpolarized
incident radiation. Both the fixed and random orientation efficiency results account for the specified
GB conditions.

• The total extinction, scattering, and absorption efficiencies of the target, for unpolarized incident
radiation and defined with respect to the volume–mean size parameter, and the asymmetry parameter.

• For fixed orientation calculations, the total efficiency factors for incident polarization parallel and
perpendicular to the scattering plane (new in revision 1.2).

• The scattering matrix values for the set range of scattering angles. The phase function S11 is normalized
so that

1

2

∫ π

0

S11(θ) sin θ dθ = 1 (37)

and the remaining elements are scaled by S11 at the same angle, i.e., S12(θ)/S11(θ). The listing
is limited to the matrix values Sij with j ≥ i. In the case of random orientation the lower diagonal
elements can be obtained from symmetry. Users who need the full scattering matrix for fixed orientation
will need to modify the output statements in the main program.

• For random orientation runs, the coefficients for the generalized spherical function expansion of the
random orientation scattering matrix. The expansion includes orders 0 to 2L, where L is the order of
the T matrix. Users can consult the main program to see the use of these coefficients in calculating
scattering matrix values.
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3.4.3 Near field file

The first line in the near field file contains the pair NF,X′ and NF,Y ′ , which are the number of data points
in the X ′ and Y ′ directions:

NF,X′ = 1 +
X ′

2 −X ′
1

∆x
, NF,Y ′ = 1 +

Y ′
2 − Y ′

1

∆x
(38)

The second line contains the number NI.S., which is the number of spheres with boundaries that intersect
the near field plotting plane. The next NI.S. lines contain kX ′

i,I.S., kY ′
i,I.S., and Ri,I.S., which denote the

X ′ and Y ′ position of the ith intersecting sphere’s origin when projected onto the plotting plane, and the
radius of the circle formed on the plane by the intersection of the sphere. This information can be used with
a graphics package to draw the locations of the sphere boundaries on top of the field plots. The remaining
NF = NF,X′ ·NF,Y ′ lines in the file contain the calculation points and field values. The first pair of numbers
is the position kX ′, kY ′ of the data point, and the remaining columns for the line depend on the choice
of near_field_output_data. For option 0 the single number |E|2 is written, option 1 writes the real and
complex parts of the 3 cartesian components of the complex vector E (six numbers in all), and option 2
writes the complex electric E and magnetic H field vectors (12 numbers). The cartesian components are
based on the target reference frame. The electric and magnetic field values are scaled to the corresponding
field amplitudes of the incident field at the target origin. Using this convection, the magnetic field values for
a general VSWF expansion are calculated by

H(r) =
m

i

∑

n=1

n
∑

m=−n

2
∑

p=1

gmnp Nmn3−p(r) (39)

in which g denote the coefficients of the expansion (a, f , or the internal field coefficients for regions inside a
sphere) and m is the local refractive index, which will be 1 for regions outside a sphere. Observe that the
operation 3− p switches the mode from one to the other.

4 Examples

4.1 Calculation of random orientation properties for a
spherical cluster

The first example will demonstrate how MSTM is used to calculate the random–orientation properties of a
spherical cluster of spheres. The target is shown in Fig. 3, and consists of NS = 375 spheres distributed
uniformly into a spherical volume with an average volume fraction of c = 0.1. The spheres are identical,
with size parameter xS = 2 and refractive index m = 1.31 + 0.1i. The size parameter of the circumscribing
sphere of the target is xC = xs(NS/c)

1/3 = 31.1.
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Figure 3: NS = 375 spherical cluster

The input file for the run is

number_spheres

375

sphere_position_file

ran375fvp1.pos

output_file

example_1.dat

run_print_file

run.dat

length_scale_factor

2.d0

real_ref_index_scale_factor

1.31d0

imag_ref_index_scale_factor

0.1d0

fixed_or_random_orientation

1

min_scattering_angle_deg

0.d0

max_scattering_angle_deg

180.d0

number_scattering_angles

361

gaussian_beam_constant

0.0d0

gaussian_beam_focal_point

0.d0,0.d0,0.d0
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calculate_t_matrix

1

Options/parameters not listed are taken to be the default values; the options relating to the GB are actually
the default conditions (i.e., a plane wave) and could have been omitted. Options relating to fixed orientation
calculations – which are not relevant to this run – could also have appeared in the file with no harm done.

The run was executed on the COE HPCC on 128 processors. The file run.dat provides a listing of the
intermediate results:

input file is mstm.inp

position data has 4 records

number of spheres, volume size parameter: 375 0.14422E+02

position file:ran375fvp1.pos

output file:example_1.dat

length, ref. indx. scale factors: 2.000 1.310 0.100

thetamin, thetamax, num. theta: 0.0 180.0 361

epsmie, epssoln, max number iterations: 0.1000E-03 0.1000E-09 2000

plane wave incidence

random orientation calculations

t matrix calculated, stored in file tmatrix-temp.dat

t matrix convergence epsilon: 0.1000E-03

number of processors, number groups, memory per processor: 128 128 917.796

maximum translation matrix storage: 917.7960 MB

minimum translation matrix storage: 917.7960 MB

maximum sphere order: 5

estimated T matrix order: 39

number of equations: 26250

time per iteration: 5.45 sec

time per group solution: 1.65 min

estimated t matrix calcuation time: 41.28 min

n # its qext qabs qsca error est. time rem.

1 16 0.34450E-01 0.11447E-01 0.23003E-01 0.34450E-01 41.28 min

2 16 0.87042E-01 0.29132E-01 0.57910E-01 0.52592E-01 41.28 min

3 16 0.15827E+00 0.53259E-01 0.10501E+00 0.71231E-01 41.28 min

4 16 0.24947E+00 0.84319E-01 0.16515E+00 0.91197E-01 41.28 min

5 16 0.36046E+00 0.12224E+00 0.23822E+00 0.11099E+00 41.28 min

6 16 0.49013E+00 0.16672E+00 0.32340E+00 0.12967E+00 41.28 min

7 16 0.63884E+00 0.21770E+00 0.42114E+00 0.14871E+00 41.28 min

8 16 0.80638E+00 0.27489E+00 0.53150E+00 0.16755E+00 39.52 min

9 16 0.99261E+00 0.33865E+00 0.65396E+00 0.18623E+00 39.52 min

10 16 0.11980E+01 0.40888E+00 0.78915E+00 0.20542E+00 39.52 min

11 14 0.14224E+01 0.48543E+00 0.93692E+00 0.22432E+00 40.83 min

12 14 0.16638E+01 0.56818E+00 0.10956E+01 0.24146E+00 40.83 min

13 15 0.19214E+01 0.65672E+00 0.12646E+01 0.25754E+00 36.57 min

14 15 0.21965E+01 0.75106E+00 0.14454E+01 0.27516E+00 36.57 min

15 15 0.24885E+01 0.85160E+00 0.16369E+01 0.29199E+00 36.57 min

16 15 0.27937E+01 0.95747E+00 0.18362E+01 0.30516E+00 36.88 min

(and after some time...)

35 14 0.74080E+01 0.27411E+01 0.46668E+01 0.15455E-02 10.28 min
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36 15 0.74084E+01 0.27415E+01 0.46670E+01 0.48490E-03 9.07 min

37 15 0.74086E+01 0.27416E+01 0.46670E+01 0.14070E-03 6.65 min

38 15 0.74086E+01 0.27416E+01 0.46670E+01 0.37832E-04 4.51 min

T matrix converged, order: 38

execution time: 46.72 min

t matrix read time: 20.85 sec

d matrix calculation, order+degree per proc.: 46.32

d matrix time: 10.26 sec

scat matrix coef time: 1.88 sec

The processors for this particular run are set up so that each processor independently performs a solution
to Eq. (29), i.e., N1 = 1 and N2 = 128 (Sec. (3.3)). This requires the processor to store the complete set
of translation matrices, which amount to around 1 GB. The number of equations in the listing refers to
the number of unknowns in Eqs. (4). The columns show the current order to the T matrix solution, the
average number of iterations required for a solution, the current values of random–orientation efficiency
factors (defined relative to the volume mean size parameter), the error, and the estimated time required for
the solution to complete. The time estimate is just that – it can be too low or too high – but it typically
is in the right ballpark. Note that the first set of solutions to Eqs. (29) performed by the 128 processors
covered orders 1-7 (7 orders would require 2 · 7 · 9 = 126 solutions, including degree and mode), and the first
seven orders listed therefore have the same estimated time remaining. The T matrix for this run converged
in 38 orders, and the actual execution time was 46.7 min. The last few lines list the times associated
with calculating the expansion coefficients for the random orientation scattering matrix; this calculation will
typically be a small fraction of the overall computation.

The output file is example_1.dat, and a selection of the file is shown in Fig. 4. The sphere positions for
the position file used in the calculations are ordered from the center of the cluster outwards, and the results
show a relative decrease in absorption for spheres closer to the center; this is expected because propagation
of radiation into the cluster is attenuated by absorption.

4.2 Electric field distribution in a slab of spheres

This example run calculates the electric field distribution in and about a cylindrically–shaped cluster. The
target, illustrated in Fig. 5, consists of NS = 3000 identical spheres with xS = 4, m = 1.6 + 0.01i, uni-
formly and randomly packed into a circular cylinder of radius = axial length, with an average volume
fraction of 0.5. The target is excited with an x̂–polarized Gaussian profile beam of width kω0 = 20
(gaussian_beam_constant=0.05) which propagates along the axis of the cylindrical target and is focussed
on the target center.

The input file for the run is as follows

number_spheres

3000

sphere_position_file

cyl3000fvp5.pos

output_file

example_2a.dat

run_print_file

run.dat

length_scale_factor

4.d0
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Figure 4: Output file listing for example 1.

22



Figure 5: NS = 3000 sphere target

real_ref_index_scale_factor

1.6d0

imag_ref_index_scale_factor

0.01d0

fixed_or_random_orientation

0

track_iterations

1

calculate_scattering_coefficients

1

scattering_coefficient_file

amn_cylslab.dat

scattering_plane_angle_deg

0.d0

incident_azimuth_angle_deg

0.d0

incident_polar_angle_deg

0.d0

gaussian_beam_constant

0.05d0

gaussian_beam_focal_point

0.d0,0.d0,0.d0

calculate_near_field

1

near_field_plane_coord

1

near_field_plane_position
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0.d0

near_field_plane_vertices

-80.d0,-80.d0,80.d0,80.d0

spacial_step_size

.2d0

polarization_angle_deg

0.d0

near_field_output_file

nf-temp.dat

near_field_output_data

1

plane_wave_epsilon

0.01d0

The job was run on 128 processors. After about 10 minutes of run time, the intermediate output file run.dat
contains

input file is mstm.inp

position data has 4 records

number of spheres, volume size parameter: 3000 0.57690E+02

position file:cyl3000fvp5.pos

output file:example_2a.dat

length, ref. indx. scale factors: 4.000 1.600 0.010

thetamin, thetamax, num. theta: 0.0 180.0 181

epsmie, epssoln, max number iterations: 0.1000E-03 0.1000E-09 2000

gaussian incident beam: 1/width: 0.0500

beam focal point: 0.000 0.000 0.000

fixed orientation calculations

scattering plane, incident alpha, beta: 0.00 0.00 0.00

common expansion epsilon: 0.1000E-02

scattering coefficients calculated, stored in file amn_cylslab.dat

near field calculated, stored in file nf-temp.dat

near field data output option: 2

near field plane, position: 1 0.000

near field plane vertices: -80.000 -80.000 80.000 80.000

spacial step size: 0.2000

polarization angle, deg.: 0.00

plane wave epsilon: 0.10000E-01

number of processors, number groups, memory per processor: 128 1 1107.756

maximum translation matrix storage:1134.3418 MB

minimum translation matrix storage:1087.0775 MB

maximum sphere order: 7

estimated T matrix order: 101

number of equations: 378000

time per iteration: 38.04 sec

iter, err: 1 0.30257E+02

iter, err: 2 0.25037E+03

iter, err: 3 0.35267E+04

iter, err: 4 0.58164E+01

iter, err: 5 0.74634E+01

iter, err: 6 0.37805E+02
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iter, err: 7 0.14465E+03

iter, err: 8 0.27319E+02

This shows that the calculation consists of solving 3.78×105 complex–values equations for the two incident
polarization states. This solution will take some time to converge via iteration – almost nine hours, in this
case – and that is why the track_iterations option is set; it allows one to gauge whether the solution is
getting anywhere. The final lines of the run file appear as

iter, err: 850 0.37878E-09

iter, err: 851 0.20156E-09

iter, err: 852 0.17621E-09

max iterations, soln error: 937 0.84522E-10

execution time: 8.576 hours

near field calculations

plane, position: 1 0.000

rectangular plot vertices:

min: -80.000 -80.000

max: 80.000 80.000

number of plotting points, step size: 641601 0.200

max plane wave order: 127

estimated time remaining: 6.79 min

estimated time remaining: 4.96 min

estimated time remaining: 3.17 min

estimated time remaining: 1.56 min

estimated time remaining: 0.00 sec

The near field grid specified in the input file consists of the square on the y − z plane of −80 ≤ ky ≤ 80

and −80 ≤ kz ≤ 80, with a step size of ∆ky = ∆kz = 0.2. The polarization angle is 0, i.e., in the β̂ direction,
and since β = 0 (incidence along the z axis), the incident polarization points in the x direction. The plane
on which the field is mapped is therefore perpendicular to the incident polarization direction. Figure 6 shows
results from the calculations. Plotted is the real part of the x component of electric field. The plot on the
left is the grid generated by the original input file, and the plot on the right provides a higher resolution map
in the region of the focal point. Numbers for the second plot were generated from a recalculation of the field
distribution using the scattering coefficients generated from the original calculation. Per the information in
run.dat, calculation of the near field values required around 7 minutes, as opposed to around 9 hours to
calculate the scattering coefficients. The input file for this second run is

number_spheres

3000

sphere_position_file

cyl3000fvp5.pos

output_file

temp.dat

run_print_file

run.dat

length_scale_factor

4.d0

real_ref_index_scale_factor

1.6d0

imag_ref_index_scale_factor

0.01d0
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Figure 6: Re x̂ ·E distributions, y − z plane, x = 0.

fixed_or_random_orientation

0

calculate_scattering_coefficients

0

scattering_coefficient_file

amn_cylslab.dat

scattering_plane_angle_deg

0.d0

incident_azimuth_angle_deg

0.d0

incident_polar_angle_deg

0.d0

gaussian_beam_constant

0.05d0

gaussian_beam_focal_point

0.d0,0.d0,0.d0

calculate_near_field

1

near_field_plane_coord

1

near_field_plane_position
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0.d0

near_field_plane_vertices

-25.d0,-50.d0,25.d0,0.d0

spacial_step_size

.1d0

polarization_angle_deg

0.d0

near_field_output_file

nf-temp.dat

near_field_output_data

2

plane_wave_epsilon

0.01d0

A 3–D representation of the field – in which the z axis is represented by time – is shown in the animation
cyl-z-movie5.avi. The animation shows a color density plot of |E|2 in the x−y planes, with the animation
variable being the z position of the plane. Sphere boundaries are denoted by black lines, and they grow and
diminish as the plane sweeps through the spheres. The localization and diffusion of the field can be directly
observed. The frames for the animation were created by a simple modification of the main program, and
this modification is discussed in the next section.

5 Code elements and customization

The prepackaged main program allows for a wide set of calculation and output options, yet many users may
prefer to modify the main program to enable a looped set of calculations (i.e., over a set range of sphere
size parameters or incident angles) or to generate output not provided by the standard package (such as
scattering matrix values over a hemisphere or near field values on a non–rectangular grid). The purpose of
this section is to describe the basic structure, calculation sequence, and subroutine calling conventions, with
the intention of giving the user sufficient information to modify the code to their own purposes.

5.1 Standard main program structure

The listing for the standard main program is sparsely commented. Given here is a more detailed description
of the code. The preamble (declarations) is skipped, yet note that the implicit none convention is used
throughout and all variables must be explicitly declared.

1. Read input file parameters and options (using either the default input file or that specified from the
command line):

printinputdata=1

numargs=mstm_nargs()

if(numargs.eq.0) then

inputfile=’mstm.inp’

else

call mstm_getarg(inputfile)

endif

call inputdata(inputfile,printinputdata)
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mstm_nargs and mstm_getarg is aliases for command line number of arguments and retrieval. These
functions/subroutines need to be defined appropriate to the user’s compiler in mstm-intrinsics.f90.

2. Retrieve run and sphere variables, and allocate arrays:

call getspheredata(number_spheres=nsphere)

allocate(xsp(nsphere),rpos(3,nsphere),nodr(nsphere),ntran(nsphere), &

ri(nsphere),sphereblk(nsphere),sphereoff(nsphere))

call getspheredata(sphere_size_parameters=xsp,sphere_positions=rpos, &

sphere_refractive_indices=ri,volume_size_parameter=xv)

call getrunparameters(mie_epsilon=epsmie,translation_epsilon=epstran, &

solution_epsilon=epssoln,max_number_iterations=niter, &

fixed_or_random_orientation=fixedorrandom,output_file=outfile, &

min_scattering_angle_deg=theta1d,max_scattering_angle_deg=theta2d, &

number_scattering_angles=numtheta,gaussian_beam_constant=cbeam, &

gaussian_beam_focal_point=gbfocus,run_print_unit=runprintunit, &

max_memory_per_processor=maxmbperproc)

if(numtheta.gt.0) then

allocate(smt(4,4,numtheta))

endif

The arrays xsp, rpos, nodr, ntran, ri are the size parameters, x, y, z positions, refractive indices,
and sphere–based and target–based order limits for the spheres. The subroutines getspheredata and
getrunparameters retrieve the sphere and run information as read from the input and sphere position
files.

3. Calculate single–sphere properties (Mie coefficients, expansion order limits, etc.):

call miecoefcalc(nsphere,xsp,ri,epsmie)

call getmiedata(sphere_order=nodr,max_order=nodrmax,number_equations=neqns, &

sphere_block=sphereblk,sphere_block_offset=sphereoff)

The arrays sphereblk, sphereoff are used to define the address of the scattering coefficients for a
particular sphere in a single, compacted array containing the scattering coefficients for all the spheres.
neqns is the number of complex equations in Eq. (4).

4. Initiate the MPI environment and determine the distribution of processors into groups for T matrix
calculation:

call ms_mpi(mpi_command=’init’)

call ms_mpi(mpi_command=’size’,mpi_size=numprocs)

call ms_mpi(mpi_command=’rank’,mpi_rank=rank)

call mpisetup(nsphere,nodr,fixedorrandom,maxmbperproc,runprintunit)

call mpirottranmtrxsetup(nsphere,nodr,rpos,(1.d0,0.d0))

call ms_mpi(mpi_command=’barrier’)

Precisely what happens in this step depends on whether the code is run on a serial (compiled with
mpidefs-serial.f90) or a parallel (mpdefs-parallel.f90) machine. Note that only aliases of the
MPI instructions appear in the main program and the subroutines in mstm-modules.f90; the con-
nections between the aliases and the actual MPI instructions are contained in either mstm-parallel
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or mstm-serial. When a serial job is run, the MPI instructions basically do nothing except return.
The structure of the MPI alias subroutine calls will be discussed in a subsequent section. numprocs

and rank are the number of processors and rank (processor ID) for the run. Subroutine mpisetup

partitions the processors into groups for solution of Eq. (29). Subroutine rotranmtrxsetup calculates
and stores the translations matrices for the interaction equations.

5. Determine the orders required to expand the sphere–based expansions about the target origin:

call tranorders(nsphere,nodr,rpos,epstran,ntran,nodrt)

6. The code now reaches a branch based on the fixed or random orientation option.
If fixed_or_random_orientation = 1 (random orientation option), then

6.a. Calculate the T matrix per the sequential solutions to Eq. (29) and write/append to file, or read
the T matrix from the specified file:

call getrunparameters(calculate_t_matrix=calctmatrix,t_matrix_file=tmatrixfile, &

t_matrix_convergence_epsilon=epstcon)

allocate(qext(nsphere,1), qabs(nsphere,1))

if(calctmatrix.ge.1) then

if(rank.eq.0) time1=mytime()

call tmatrixsoln(neqns,nsphere,nodr,nodrt,xsp,rpos,epssoln,&

epstcon,niter,calctmatrix,tmatrixfile,qext,qabs,qsca,istat)

if(rank.eq.0) then

time2=mytime()-time1

call timewrite(runprintunit,’ execution time:’,time2)

endif

call rottranmtrxclear()

else

if(rank.eq.0) then

open(3,file=tmatrixfile)

read(3,*) nodrt

close(3)

write(runprintunit,’(’’ t matrix order:’’,i5)’) nodrt

call flush(runprintunit)

endif

nodrta(1)=nodrt

call ms_mpi(mpi_command=’bcast’,mpi_send_buf_i=nodrta, &

mpi_number=1,mpi_rank=0)

nodrt=nodrta(1)

call ms_mpi(mpi_command=’barrier’)

endif

The subroutine tmatrixsoln is called only to calculate elements of the T matrix, either from the
beginning or from the next order of a partially–calculated matrix. If calctmatrix = 0, indicating
the T matrix already exists in the file, the file is opened and the order nodrt of the T matrix is
read.

6.b. Calculate the random orientation efficiency factors, the scattering matrix expansion coefficients,
and the scattering matrix values for the specified range of scattering angles:
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nblkt=nodrt*(nodrt+2)

nodrg=nodrt*2

allocate(smc(4,4,0:nodrg))

call ranorientscatmatrix(xv,nsphere,nodrt,nodrg,cbeam, &

tmatrixfile,smc,qext,qabs)

if(rank.eq.0) then

qexttot=sum(qext(:,1)*xsp*xsp)/xv/xv

qabstot=sum(qabs(:,1)*xsp*xsp)/xv/xv

qscatot=qexttot-qabstot

asymparm=dble(smc(1,1,1)/smc(1,1,0))/3.d0

call ranorienscatmatrixcalc(numtheta,theta1d,theta2d,&

1,smc,nodrg,smt)

endif

smc is the array of scattering matrix expansion coefficients and smt is the 4×4×numtheta array
of scattering matrix values. Only the upper triangular elements are computed.

7. If fixed_or_random_orientation = 0 (fixed orientation option), then

7.a. Calculate the sphere scattering coefficients per solution to Eq. (4) for the set α, β and write to
file, or read sphere scattering coefficients from file:

call getrunparameters(calculate_scattering_coefficients=calcamn, &

scattering_coefficient_file=amnfile, &

scattering_plane_angle_deg=phideg, &

incident_azimuth_angle_deg=alphadeg, &

incident_polar_angle_deg=betadeg, &

track_iterations=trackiterations)

alpha=alphadeg*pi/180.d0

beta=betadeg*pi/180.d0

phi=phideg*pi/180.d0

allocate(amnp(neqns,2))

allocate(qext(nsphere,2), qabs(nsphere,2))

if(calcamn.eq.1) then

if(rank.eq.0) time1=mytime()

call fixedorsoln(neqns,nsphere,nodr,alpha,beta,cbeam,gbfocus, &

xsp,rpos,epssoln,epstran,niter,amnp,qext,qabs,qsca,maxerr, &

maxiter,trackiterations,istat)

if(rank.eq.0) then

time2=mytime()-time1

write(runprintunit,’(’’ max iterations, soln error:’’, &

& i6,e13.5)’) maxiter,maxerr

call timewrite(runprintunit,’ execution time:’,time2)

open(3,file=amnfile)

do i=1,nsphere

write(3,’(6e13.5)’) qext(i,:),qabs(i,:),qsca(i,:)

allocate(amnp1(0:nodr(i)+1,nodr(i),2), &

amnp2(0:nodr(i)+1,nodr(i),2))

ip1=sphereoff(i)+1

ip2=sphereoff(i)+sphereblk(i)

amnp1=reshape(amnp(ip1:ip2,1),(/nodr(i)+2,nodr(i),2/))
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amnp2=reshape(amnp(ip1:ip2,2),(/nodr(i)+2,nodr(i),2/))

do n=1,nodr(i)

do m=-n,n

if(m.le.-1) then

ma=n+1

na=-m

else

ma=m

na=n

endif

write(3,’(4e17.9)’) amnp1(ma,na,1),amnp2(ma,na,1)

write(3,’(4e17.9)’) amnp1(ma,na,2),amnp2(ma,na,2)

enddo

enddo

deallocate(amnp1,amnp2)

enddo

close(3)

endif

else

if(rank.eq.0) then

open(3,file=amnfile)

do i=1,nsphere

read(3,’(4e13.5)’) qext(i,:),qabs(i,:),qsca(i,:)

allocate(amnp1(0:nodr(i)+1,nodr(i),2), &

amnp2(0:nodr(i)+1,nodr(i),2))

do n=1,nodr(i)

do m=-n,n

if(m.le.-1) then

ma=n+1

na=-m

else

ma=m

na=n

endif

read(3,’(4e17.9)’) amnp1(ma,na,1),amnp2(ma,na,1)

read(3,’(4e17.9)’) amnp1(ma,na,2),amnp2(ma,na,2)

enddo

enddo

ip1=sphereoff(i)+1

ip2=sphereoff(i)+sphereblk(i)

amnp(ip1:ip2,1)=reshape(amnp1(0:nodr(i)+1,1:nodr(i),1:2), &

(/sphereblk(i)/))

amnp(ip1:ip2,2)=reshape(amnp2(0:nodr(i)+1,1:nodr(i),1:2),&

(/sphereblk(i)/))

deallocate(amnp1,amnp2)

enddo

close(3)

endif

nsend=neqns*2

call ms_mpi(mpi_command=’bcast’,mpi_send_buf_dc=amnp, &
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mpi_number=nsend,mpi_rank=0)

endif

For most applications, the VSWH expansion functions such as amnp are stored in a rank–3 matrix,
with elements given by

amnp =

{

a(n+ 1,−m, p), −n ≤ m ≤ −1

a(m, n, p), 0 ≤ m ≤ n
(40)

The dimensions of the array a are a(0:L+1,L,2), where L is the maximum order. The subroutine
fixedorsoln returns a rank-2 array amnp(neqns,2), in which the second dimension denotes the
incident polarization state (β or α) and the first dimension contains the corresponding scattering
coefficients for the spheres, in fortran–convention compacted order.

7.b. Calculate the sphere efficiency factors, the common–origin, rotated scattered field expansion, and
the scattering matrix values for the set range of scattering angles:

qext(:,1)=(qext(:,1)+qext(:,2))*.5d0

qabs(:,1)=(qabs(:,1)+qabs(:,2))*.5d0

qsca(:,1)=(qsca(:,1)+qsca(:,2))*.5d0

qexttot=sum(qext(:,1)*xsp*xsp)/xv/xv

qabstot=sum(qabs(:,1)*xsp*xsp)/xv/xv

qscatot=qexttot-qabstot

call rottranmtrxclear()

allocate(amnp0(0:nodrt+1,nodrt,2,2),pmnp0(0:nodrt+1,nodrt,2,2))

do k=1,2

call amncommonorigin(neqns,nsphere,nodr,ntran,nodrt,rpos, &

amnp(1:neqns,k),amnp0(0:,1:,1:,k))

call rotvec(alpha,beta,0.d0,nodrt,nodrt,amnp0(0:,1:,1:,k),1)

enddo

allocate(gmn(0:2))

call s11expansion(amnp0,nodrt,0,1,gmn)

asymparm=dble(gmn(1)/gmn(0))/3.d0

do i=1,numtheta

thetad=theta1d+(theta2d-theta1d)*(i-1)/max(1.d0,dble(numtheta-1))

costheta=cos(thetad*pi/180.d0)

call scatteringmatrix(amnp0,nodrt,xv,costheta,phi,sa,smt(:,:,i))

enddo

deallocate(amnp0,pmnp0,gmn)

8. Write calculation results to output file. These steps are straightforward and need no explanation aside
from the code list.

9. If fixed_or_random_orientation = 0 and calculate_near_field = 1, calculate the near field values
on the specified array and write to the near field output file.

if(fixedorrandom.eq.0) call getrunparameters(calculate_near_field=calcnf)

if(fixedorrandom.eq.0.and.calcnf.eq.1) then

call getrunparameters(near_field_plane_coord=nfplane, &

near_field_plane_position=nfplanepos,near_field_plane_vertices=nfplanevert, &

spacial_step_size=deltax,polarization_angle_deg=gammadeg, &
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near_field_output_file=nfoutfile,near_field_output_data=nfoutdata, &

plane_wave_epsilon=epspw)

nfoutunit=2

if(rank.eq.0) then

open(nfoutunit,file=nfoutfile)

endif

gamma=gammadeg*pi/180.d0

call nearfieldgridcalc(neqns,nsphere,nodr,alpha,beta,cbeam,xsp,rpos,ri,amnp, &

nfplane,nfplanepos,nfplanevert,deltax,gamma,nfoutunit,epspw, &

nfoutdata,runprintunit)

if(rank.eq.0) then

close(nfoutunit)

endif

endif

5.2 MPI alias instructions

To facilitate the compilation and execution of the code on both serial and parallel machines, the main program
and the subroutine modules employ aliases to the standard MPI instruction set. The association of the aliases
with the MPI commands is performed solely within mpidefs-serial.f90 or mpidefs-parallel.f90. The
general format of the call to the alias subroutine is as follows

call ms_mpi(mpi_command=command ,mpi_recv_buf_type =recvbuf , &

mpi_send_buf_type =sendbuf ,mpi_number=number , &

mpi_comm=comm ,mpi_group=group ,mpi_rank=rank , &

mpi_size=size ,mpi_new_comm=newcom , &

mpi_new_group=newgroup ,mpi_new_group_list=newgrouplist , &

mpi_operation=operation )

All of the arguments are optional with the exception of mpi_command, and usage of the subroutine involves
the keyword format as shown above. The arguments are as follows:

mpi_command: Character string denoting MPI command. Options are ’init’, ’finalize’, ’size’, ’rank’, ’group’,
’incl’, ’create’, ’barrier’, ’bcast’, ’send’, ’recv’, ’reduce’, and ’allreduce’, and the commands correspond
directly to the associated MPI standard instructions.

mpi_send_buf_type: Send buffer for MPI operations. Options for type are i (integer), r (single precision
real), c (single precision complex), dp (double precision), and dc (double precision complex). If the
command is either ’reduce’ or ’allreduce’, and mpi_send_buf_type is not present in the argument list,
the subroutine defaults to mpi_send_buf_type = mpi_in_place. The variable associated with the
buffer must be an array of at least rank 1; if you need to send a single scalar element, you need to
equate it to a scratch array of rank 1 and length 1. For example,

integer :: nodrt

call ms_mpi(mpi_command=’bcast’,mpi_send_buf_i = nodrt, . . .

will likely produce a compilation error. The way to do it is

integer :: nodrt, nodrt_temp(1)

nodrt_temp(1)=nodrt

call ms_mpi(mpi_command=’bcast’,mpi_send_buf_i = nodrt_temp, . . .

nodrt=nodrt_temp(1)

33



mpi_recv_buf_type: Receive buffer for MPI operations. Options for type are the same as above.

mpi_number: Number of buffer elements sent/received. Integer.

mpi_comm: MPI communicator, integer. Default (if not present) is mpi_comm_world.

mpi_group: MPI group, integer.

mpi_rank: MPI rank, integer.

mpi_size: MPI size (number of processors in group and/or communicator), integer.

mpi_new_comm: MPI communicator handle for new group creation, integer. Associated with ’create’ com-
mand.

mpi_new_group: MPI group ID for new group creation, integer. Associated with ’incl’ command

mpi_new_group_list: Listing of processor ranks for new group , integer rank 1 array. Associated with
’incl’ command.

mpi_operation: Operation command for ’reduce’ and ’allreduce’ commands. Options are ms_mpi_max,
ms_mpi_min, and ms_mpi_sum. These three variables are integers and are defined globally once the ’init’
command has been called, so the sum operation would be invoked by mpi_operation = ms_mpi_sum,
as written.

Observe that there is no mpi_type argument to the ms_mpi subroutine. The buffer type is now implicit in
the type of the send and/or receive buffer, i.e., i, r, etc.

5.3 Code modification and customizing

The user with average fortran knowledge should be able to modify the main program to suit their specialized
computational needs. As an example, the modified main program mstm-nfloop.f90 was used to create the
’frames’ of the near field animation in cyl-z-movie5.avi. The preamble to the code is not included in this
description. The point of the code is to generate a file of 2–D maps, each at some point z on the x−y plane,
of the field magnitude in the cylindrically–shaped target excited by a GB. The scattering coefficients have
been previously calculated and are stored in the file amn_cyl.dat.

• The initial lines assign values to the sphere data and run parameters. The variables zmin, zmax, and
numcases are the minimum and maximum kz positions and the number of frames.

nsphere=3000

scalefac=4

rireal=1.6

riimag=0.01

alphadeg=0.d0

betadeg=0.d0

amnfile=’amn_cyl.dat’

spherefile=’cyltest.pos’

outfile=’test2.dat’

nfoutfile=’nf-cyl-z.dat’

cbeam=0.05d0

34

mstm-nfloop.f90
cyl-z-movie5.avi


gbfocus=(/0.d0,0.d0,0.d0/)

runprintunit=3

nfoutunit=2

epsmie=1.d-4

epstran=1.d-6

epssoln=1.d-10

epspw=0.01d0

niter=2000

numcases=401

zmin=-50.d0

zmax=50.d0

nfplane=3

nfplanevert(1,1)=-50.d0

nfplanevert(1,2)=50.d0

nfplanevert(2,1)=-50.d0

nfplanevert(2,2)=50.d0

nfoutdata=0

gammadeg=0.d0

deltax=0.5d0

• This sets up the sphere property arrays, and reads the position data from the position file.

allocate(xsp(nsphere),rpos(3,nsphere),nodr(nsphere),ntran(nsphere), &

ri(nsphere),sphereblk(nsphere),sphereoff(nsphere), &

qext(nsphere,2), qabs(nsphere,2), qext(nsphere,2))

open(1,file=spherefile)

do i=1,nsphere

read(1,*) xspfile,rposfile

xsp(i)=xspfile*scalefac

rpos(:,i)=rposfile(:)*scalefac

ri(i)=dcmplx(rireal,riimag)

enddo

xv=scalefac*dble(nsphere)**(1.d0/3.d0)

close(1)

alpha=alphadeg*pi/180.d0

beta=betadeg*pi/180.d0

gamma=gammadeg*pi/180.d0

• This calculates the Mie coefficients and order limits. It is important to use the same epsmie value
here as was used when originally calculating the scattering coefficients; this will insure that the order
limits calculated by miecoefcalc are the same as those appearing in the scattering coefficient file
amn_cyl.dat.

call miecoefcalc(nsphere,xsp,ri,epsmie)

call getmiedata(sphere_order=nodr,max_order=nodrmax,number_equations=neqns, &

sphere_block=sphereblk,sphere_block_offset=sphereoff)

• This reads the scattering coefficients from the file

if(allocated(amnp)) deallocate(amnp)
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allocate(amnp(neqns,2))

open(3,file=amnfile)

do i=1,nsphere

read(3,’(4e13.5)’) qext(i,:),qabs(i,:),qsca(i,:)

allocate(amnp1(0:nodr(i)+1,nodr(i),2),amnp2(0:nodr(i)+1,nodr(i),2))

do n=1,nodr(i)

do m=-n,n

if(m.le.-1) then

ma=n+1

na=-m

else

ma=m

na=n

endif

read(3,’(4e17.9)’) amnp1(ma,na,1),amnp2(ma,na,1)

read(3,’(4e17.9)’) amnp1(ma,na,2),amnp2(ma,na,2)

enddo

enddo

ip1=sphereoff(i)+1

ip2=sphereoff(i)+sphereblk(i)

amnp(ip1:ip2,1)=reshape(amnp1(0:nodr(i)+1,1:nodr(i),1:2),(/sphereblk(i)/))

amnp(ip1:ip2,2)=reshape(amnp2(0:nodr(i)+1,1:nodr(i),1:2),(/sphereblk(i)/))

deallocate(amnp1,amnp2)

enddo

close(3)

• Initialize the MPI environment.

call ms_mpi(mpi_command=’init’)

call ms_mpi(mpi_command=’size’,mpi_size=numprocs)

call ms_mpi(mpi_command=’rank’,mpi_rank=rank)

call ms_mpi(mpi_command=’barrier’)

• and this is the loop to calculate the frames. Each frame is appended to the near field output file
nfoutfile. The option near_field_output_data = 0 (= nfoutdata in the code) is used, so that the

single real number |E|2 is written for each point; this results in a much smaller data file.

if(rank.eq.0) then

open(nfoutunit,file=nfoutfile)

open(runprintunit,file=’run_raw.dat’)

call writerundata(runprintunit)

endif

do case=1,numcases

nfplanepos=zmin+(zmax-zmin)*dble(case-1)/dble(numcases-1)

call nearfieldgridcalc(neqns,nsphere,nodr,alpha,beta,cbeam,xsp,rpos,ri,amnp, &

nfplane,nfplanepos,nfplanevert,deltax,gamma,nfoutunit,epspw, &

nfoutdata,runprintunit)

enddo

if(rank.eq.0) then

close(nfoutunit)
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close(runprintunit)

endif

call ms_mpi(mpi_command=’finalize’)

end

6 Revisions

1.2 (21 February 2011)

• The normalization of the phase function S11 was changed to

1

2

∫ π

0

S11(θ) sin θ dθ = 1

• Fixed orientation results now output the efficiency factors for parallel and perpendicular polarization.

• A bug was fixed in the calculation of the fixed orientation scattering matrix. Additional bug fixes for
calling of flush subroutine and opening/closing the input file.

• An appendix was added to the manual, for defining the definitions of the various mathematical quan-
tities. This appendix will expand with time.

Appendix: Mathematical relations and definitions

The purpose of this section is to identify the various mathematical quantities appearing in the formulation,
and to link the quantities with their coding. Two resources will be used for coding, being 1) the MSTM Fortran-
90 subroutines and functions, and 2) the Mathematica symbolic mathematics package. More often than
not, the definitions of functions presented here will not entirely line up with ”traditional” or ”established”
definitions. In particular, the normalizations used for harmonic functions can be different than reported
elsewhere.

Vector Spherical Wave Functions

The VSWF used in the formulation and the code are defined by

N
(ν)
mn2(r) =

(

2

n(n+ 1)

)1/2

∇×
(

rψ(ν)
mn(r)

)

(41)

N
(ν)
mn1(r) =

1

k
∇×N

(ν)
mn2(r) (42)

where ψ denotes the scalar wave function;

ψ(ν)
mn(r) =

{

jn(kr)Ymn(cos θ, φ) ν = 1
hn(kr)Ymn(cos θ, φ) ν = 3

(43)
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with jn and hn = jn + i yn representing the spherical Bessel and Hankel functions and Ymn denoting the
spherical harmonic,

Ymn(cos θ, φ) =

(

2n+ 1

4π

(n−m)!

(n+m)!

)1/2

Pm
n (cos θ) eimφ (44)

where Pm
n is the Associated Legendre function.

The cartesian components of the VSWF are given as

(x̂+ i ŷ) ·N(ν)
mn1(r) = −

(

2

n(n+ 1)(2n+ 1)

)1/2
[

n

(

(n+m+ 1)(n+m+ 2)

2n+ 3

)1/2

ψ
(ν)
m+1n+1(r)

− (n+ 1)

(

(n−m)(n−m− 1)

2n− 1

)1/2

ψ
(ν)
m+1n−1(r)

]

(45)

(x̂− i ŷ) ·N(ν)
mn1(r) =

(

2

n(n+ 1)(2n+ 1)

)1/2
[

n

(

(n−m+ 1)(n−m+ 2)

2n+ 3

)1/2

ψ
(ν)
m−1n+1(r)

+ (n+ 1)

(

(n+m)(n+m− 1)

2n− 1

)1/2

ψ
(ν)
m−1n−1(r)

]

(46)

ẑ ·N(ν)
mn1(r) =

(

2

n(n+ 1)(2n+ 1)

)1/2
[

n

(

(n+m+ 1)(n−m+ 1)

2n+ 3

)1/2

ψ
(ν)
mn+1(r)

+ (n+ 1)

(

(n+m)(n−m)

2n− 1

)1/2

ψ
(ν)
mn−1(r)

]

(47)

(x̂+ i ŷ) ·N(ν)
mn2(r) = −i

(

2(n−m)(n+m+ 1)

n(n+ 1)

)1/2

ψ
(ν)
m+1n(r) (48)

(x̂− i ŷ) ·N(ν)
mn2(r) = −i

(

2(n+m)(n−m+ 1)

n(n+ 1)

)1/2

ψ
(ν)
m−1n(r) (49)

ẑ ·N(ν)
mn2(r) = −im

(

2

n(n+ 1)

)1/2

ψ(ν)
mn(r) (50)

These functions are calculated in the subroutine

subroutine vwhcalc(rpos,ri,nodr,itype,vwh)

and inspection of the subroutine will reveal the roles of the arguments.

Wigner D functions

The definition of the D(n)
mk functions used in the code is

D(n)
mk(x) = (−1)m+k

[

(n− k)!(n+ k)!

(n−m)!(n+m)!

(

1 + x

2

)m+k (
1− x

2

)k−m
]1/2

P
(k−m,k+m)
n−k (x) (51)

where P
(k−m,k+m)
n−k (x) is the Jacobi Polynomial. The Mathematica function definition for the D(n)

mk function
is
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drot[m_, n_, k_, x_] := (-1)^(m + k)((n - k)!(n + k)!/(n - m)!/(n + m)!)^(1/2)

((1 + x)/2)^((m + k)/2)((1 - x)/2)^((k - m)/2)JacobiP[n - k, k - m, k + m, x]

The functions are calculated in MSTM via recurrence relations in the subroutine

subroutine rotcoef(cbe,kmax,nmax,dc)

which returns an array for |k| ≤ kmax and n = 0, 1, . . . nmax, |m| ≤ n. The function argument cbe = x. The
addressing convention is

dc(k, n ∗ (n+ 1) + m) = D(n)
km

Translation matrix elements

The explicit formula for the translation matrix elements is

Jmnpklq(r) = −(−1)m [4π(2n+ 1)(2l + 1)]
1/2

i
n−l

n+l−|p−q|
∑

|n−l|+|p−q|,2

i
w

(2w + 1)1/2
Cw

−mnkl C
w
−1n 1l ψ

(1)
k−mw(r) (52)

The ”2” appearing in the summation limit denotes that w runs over every other value, starting with the lower
and ending with the upper limit. The formula for H is identical, except that the outgoing wave function is
used. The C quantities are shorthand for the Clebsch–Gordan coefficients,

Cw
mnkl = C((n,m), (l, k), (w,m+ k)) (53)

The Mathematica definition of the CG coefficients is simply

cc[m_, n_, k_, l_, w_] := ClebschGordan[{n, m}, {l, k}, {w, m + k}]

The MSTM code uses a recursive procedure to calculate the CG coefficients, employing both downward and
upwards recursion.
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