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Abstract: The nonlocal nature of the fractional derivative

makes the numerical treatment of fractional differential

equations expensive in terms of computational accuracy

in large domains. This paper presents a new multiple-

step adaptive pseudospectral method for solving nonlin-

ear multi-order fractional initial value problems (FIVPs),

based on piecewise LegendreśGauss interpolation. The

fractional derivatives are described in the Caputo sense.

We derive an adaptive pseudospectral scheme for approx-

imating the fractional derivatives at the shifted Legendreś

Gauss collocation points. By choosing a step-size, the orig-

inal FIVP is replaced with a sequence of FIVPs in subinter-

vals. Then the obtained FIVPs are consecutively reduced

to systems of algebraic equations using collocation. Some

error estimates are investigated. It is shown that in the

present multiple-step pseudospectral method the accu-

racy of the solution can be improved either by decreas-

ing the step-size or by increasing the number of colloca-

tion points within subintervals. Themain advantage of the

present method is its superior accuracy and suitability for

large-domain calculations. Numerical examples are given

to demonstrate the validity and high accuracy of the pro-

posed technique.
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1 Introduction

Fractional calculus has a long history because, starting

from a letter from Leibniz to L’Hospital in 1695, it has been

developing up to now. In spite of this long history, only

in recent decades fractional calculus and fractional differ-

ential equations have found applications in several differ-

ent disciplines, such as in the fields of Bode’s analysis of

feedback amplifiers, aerodynamics and polymer rheology,

chemistry, engineering, finance and so forth [1ś3]. Some

natural physics processes and dynamic system processes

with memory can be better described by fractional differ-

ential equations [4] because the fractional order differen-

tial operators arenon-local operators. A reviewof someap-

plications of fractional derivatives in continuum and sta-

tistical mechanics is given by Mainardi [5]. In mechanics,

for example, fractional derivatives have been successfully

used to model damping forces with memory effect or to

describe state feedback controllers [6]. In particular, the

BagleyśTorvik equation [1, 7, 8] with 1/2-order derivative

or 3/2-order derivative describes motion of real physical

systems, an immersed plate in a Newtonian fluid and a gas

in a fluid, respectively. In addition, almost all systems con-

taining internal damping are not suitable to be described

properly by the classical methods, but the fractional cal-

culus represents one of the promising tools to incorporate

in a single theory both conservative and nonconservative

phenomena [9]. Recently, Tenreiro-Machado [10] investi-

gated a new application of fractional calculus to memris-

tor systems which generalize the notion of electrical ele-

ments.

Due to the increasing applications and because of the

difficulties in attaining the analytical solutions for most

of the fractional differential equations the need for find-

ing efficient computational algorithms for obtaining nu-

merical solutions arises. The numerical solution of frac-

tional differential equations has attached considerable at-

tention from many researchers. During the past decades,

an increasing number of numerical schemes are being de-

veloped. These methods include finite difference approx-

imation methods [11], collocation methods [12ś14], the
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Adomian decomposition method [15ś17], variational iter-

ation method [18], operational matrix methods [19ś25],

and homotopy method [26, 27]. Kumar and Agrawal [28]

presented polynomial approximated methods to a class of

fractional differential equationby considering the fact that

fractional differential equation can be reduced to Volterra

type integral equation. According to quadrature formula

approach, Diethelm [29] proposed an implicit algorithm

for the approximated solution to an important class of frac-

tional differential equation. Esmaeili et al. [30] utilized the

pseudospectral method for solving fractional differential

equations. Maleki et al. [31] proposed a single-step adap-

tive pseudospectral method for solving a class of multi-

term fractional boundary value problems. Kazem et al. [32]

constructed a general formulation for the fractional-order

Legendre functions to obtain the solution of the fractional-

order differential equations using the Tau method. Rad et

al. [33] presented a numerical solution of fractional dif-

ferential equations with a Tau method based on Legendre

andBernstein polynomials. Baffet andHesthaven [34] pro-

posed a kernel compression scheme for solving fractional

differential equations.

Pseudospectral or orthogonal collocation methods

are efficient and highly accurate techniques for numeri-

cal solution of differential equations [35, 36]. The three

most commonly used sets of collocation points are Gauss,

GaussśRadau, and GaussśLobatto points. They differ sig-

nificantly in that the Gauss points include neither of the

endpoints, the GaussśRadau points include one of the

endpoints, and the GaussśLobatto points include both

of the endpoints. On bounded domains, pseudospectral

methods are usually based on Jacobi and shifted Jacobi

polynomials or even nonclassical orthogonal polynomi-

als [37]. The main characteristic behind the approach us-

ing this technique is that it reduces a problem to those of

solving a system of algebraic equations. Pseudospectral

methods can be categorized into global (single-interval)

and adaptive (multiple-interval) schemes. Global pseu-

dospectral methods use global polynomials together with

Gaussian quadrature collocation points which is known to

provide accurate approximations that converge exponen-

tially for problems whose solutions are smooth over the

whole domain of interest [35]. On the other hand, adap-

tive pseudospectral methods increase the utility of pseu-

dospectral methods while attempting to maintain as close

to exponential convergence as possible. They allow the

number of subintervals, subinterval widths, and polyno-

mial degrees to vary throughout the time interval of inter-

est.

Since a fractional derivative is a non-local operator, it

is very natural to consider a global method like the global

pseudospectral method for its numerical solution [12].

However, a global pseudospectral method is not suited for

large intervals because for ensuring the convergence, the

length of interval on which the underlying problems are

defined shouldbe limited [38].On theotherhand, in global

pseudospectral methods it is not convenient to resolve the

corresponding discrete system with very large number of

collocation points. To remove this deficiency, adaptive ver-

sion of pseudospectral method, which is based on the do-

main decomposition procedure, is considered [38ś40]. To

the best of our knowledge, adaptive pseudospectral meth-

ods are not well studied for solving fractional differential

equations.

In the present paper, we propose an efficient multiple-

step adaptive pseudospectral method based on shifted

Legendre polynomials for the numerical solution of the

linear and nonlinear multi-order fractional initial value

problems (FIVPs), which involve Caputo fractional deriva-

tives. First, a step-size is considered and then the multi-

order FIVP is replaced with a sequence of FIVPs in subin-

tervals, where the initial conditions of the kth FIVP (kth

step) are determined using the approximate solution ob-

tained earlier at step k−1. By using the Caputo definition, a

stable numerical scheme is derived for approximating the

fractional derivatives at shifted LegendreśGauss (ShLG)

collocation points. The obtained FIVPs in subintervals are

then step by step reduced to systems of algebraic equa-

tions using collocation based on the ShLGpoints. Some er-

ror estimates and convergence properties of the proposed

method are investigated. The method is demonstrated by

several examples of varying complexity and is found to

be a viable method for efficiently and accurately solving

multi-order FIVPs.

The proposed method has the following advantages:

First, in the presentmethod the FIVP is solved step by step,

thus, instead of a large scale algebraic system relatively

small scale algebraic systems are obtained in subintervals,

which greatly reduces the computational complexity and

storage requirements. Besides, accurate results can be ob-

tained with a moderate number of collocation points in

each subinterval. Second, the present method can be im-

plemented for large-domain calculations. Third, this new

algorithm also works well even for some solutions having

oscillatory behavior.

The outline of this paper is as follows: We begin by in-

troducing some necessary definitions of the fractional cal-

culus theory and mathematical preliminaries of Legendre

polynomials which are required for our subsequent devel-

opment. In Section 3, the statement of the problem is pre-

sented. Section 4 is devoted to explanation of the proposed

method and some error estimates. In Section 5, we report
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our numerical findings and demonstrate the accuracy and

validity of the proposed method. Finally, in Section 6 we

provide conclusions.

2 Preliminaries

2.1 Definitions of fractional derivatives

In this subsection, we start by recalling the essential def-

initions of the fractional calculus. There are various def-

initions related to fractional integration and differentia-

tion, such as GrünwaldśLetnikov’s definition, Riemannś

Liouville’s definition and Caputo definition [1]. Suppose

α > 0, n = [α] + 1, where [α] denotes the integer part of

α, and the function f (x) has n continuous bounded deriva-

tives in [0, T], f ∈ Cn[0, T], for every T > 0.

Definition 1. The RiemannśLiouville fractional deriva-

tive of order α > 0 is defined by

D
α f (x) =

(︂
d

dx

)︂n
1

Γ(n − α)

x∫︁

0

f (t)

(x − t)α+1−n
dt. (2.1)

Definition 2. The Caputo derivative of fractional order α >

0 is defined as

Dα f (x) =
1

Γ(n − α)

x∫︁

0

f (n)(t)

(x − t)α+1−n
dt. (2.2)

Recall that for α ∈ N (N = {1, 2, . . .}), the Caputo differen-
tial operator coincides with the usual differential operator

of an integer order. Further, it is seen that fractional differ-

ential operators are defined through convolution integrals.

Therefore, unlike integer order derivatives, they are non-

local operators. They depend on all function values from

its lower limit t = 0 up to the evaluation point t = x. This

characteristic makes their evaluation more complicated.

Recalling the fact that the GrünwaldśLetnikov defini-

tion coincides with the RiemannśLiouville derivative, it is

pointed out that the RiemannśLiouville derivative has cer-

tain disadvantages when trying to model real-world phe-

nomena with fractional differential equations [41]. There-

fore, we shall use a modified fractional differential opera-

tor Dα proposed by Caputo in his work on the theory of vis-

coelasticity [42]. The reason for adopting the Caputo def-

inition is as follows: in order to produce a unique solu-

tion for differential equations, it is required to specify ad-

ditional conditions. For the case of differential equations

with the Caputo derivatives, these additional conditions

are just the traditional conditions, which are akin to those

of classical differential equations. In contrast, for differen-

tial equations with the Riemann-Liouville derivatives, we

are forced to specify some fractional derivatives of the un-

known solution at the initial point x = 0, which are func-

tions of x. In practical applications, these initial values

are frequently not available, and it may not even be clear

what their physical meaning is (see [43]). For more details

about the mathematical properties of fractional deriva-

tives, see [1ś4].

2.2 Basic properties of Legendre and shifted

Legendre polynomials

The well-known Legendre polynomials, Pi(z),

i = 0, 1, . . . , can be determined by the following re-

currence relation:

Pi+1(z) =
2i + 1

i + 1
zPi(z)−

i

i + 1
Pi−1(z), i = 1, 2, . . . , (2.3)

where P0(z) = 1 and P1(z) = z. If Pi(z) is normalized so

that Pi(1) = 1, then for any i, the Legendre polynomials in

terms of power of z are

Pi(z) =
1

2i

[ i2 ]∑︁

k=0

(−1)k

(︃
i

k

)︃(︃
2i − 2k

i

)︃
zi−2k ,

where
[︁
i
2

]︁
denotes the integer part of i

2 . Also, they are or-

thogonal with respect to L2 inner product on the interval

[−1, 1] with the weight function w(z) = 1, that is

1∫︁

−1

Pi(z)Pj(z) dz =
2

2i + 1
δij ,

where δij is the Kronecker delta. The LegendreśGauss (LG)

collocation points −1 < z1 < z2 < . . . < zN−1 < 1 are the

roots of PN−1(z). There are no explicit formulas for the LG

points; however, they can be computed numerically using

existing subroutines. The LG points have the property that

1∫︁

−1

p(z) dz =

N−1∑︁

j=1

wjp(zj),

is exact for polynomials of degree at most 2N − 3, where

wj =
2

(1 − z2j )[P
′
N−1(zj)]

2
, j = 1, 2, . . . , N − 1, (2.4)

are the LG quadrature weights. Formore details about Leg-

endre polynomials, see [35].

The shifted Legendre polynomials on the interval x ∈
[a, b] are defined by

̂︀Pi(x) = Pi
(︂

1

b − a
(2x − a − b)

)︂
, i = 0, 1, 2, . . . ,
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which are obtained by an affine transformation from the

Legendre polynomials. The set of shifted Legendre poly-

nomials is a complete L2(a, b)-orthogonal systemwith the

weight function w(x) = 1. Thus, any function f ∈ L2(a, b)
can be expanded in terms of shifted Legendre polynomi-

als. The shifted LegendreśGauss (ShLG) collocation points

a < x1 < x2 < . . . < xN−1 < b on the interval [a, b], are

obtained by shifting the LG points, zj, using the transfor-

mation

xj =
1

2

(︀
(b − a)zj + a + b

)︀
, j = 1, 2, . . . , N − 1. (2.5)

Thanks to the property of the standard LG quadrature, it

follows that for any polynomial p of degree at most 2N −3

on (a, b),

b∫︁

a

p(x) dx =
b − a

2

1∫︁

−1

p

(︂
1

2

(︀
(b − a)z + a + b

)︀)︂
dz

=
b − a

2

N−1∑︁

j=1

wjp

(︂
1

2

(︀
(b − a)zj + a + b

)︀)︂

=

N−1∑︁

j=1

̂︀wjp(xj), (2.6)

where ̂︀wj = b−a
2 wj, 1 ≤ j ≤ N − 1 are the ShLG quadrature

weights.

3 Problem statement

Consider the IVP of multi-order fractional differential

equation

Dνy(x) = F
(︀
x, y(x), Dα1y(x), . . . , Dαm y(x)

)︀
, x ≥ 0,

(3.1)

with initial conditions

y(r)(0) = dr , r = 0, 1, . . . , l − 1, (3.2)

where l − 1 < ν ≤ l, 0 < α1 < α2 < · · · < αm < ν, and

Dα denotes the Caputo fractional derivative of order α de-

fined by (2.2). We assume that the continuous function F

satisfies a uniform Lipschitz condition with Lipschitz con-

stant L in all its arguments except for the first on a suitable

domain. For details about the existence, uniqueness and

continuous dependence of the solution to this problem re-

fer to [44].

4 Multiple-step adaptive

pseudospectral method for FIVPs

In this section we derive the multiple-step adaptive pseu-

dospectral method and apply it to solve the multi-order

FIVP (3.1)ś(3.2). To solve this problem, we first replace it

with a sequence of problems in subintervals. Then these

problems are step by step reduced to systems of algebraic

equations using collocation based on the ShLG collocation

points.

4.1 Problem replacement

Let h > 0 be the step-size. Consider the subintervals Ik =

[(k − 1)h, kh], k = 1, 2, . . . and let yk(x) be the solution of

the FIVP in the subinterval Ik. The FIVP (3.1)ś(3.2) can be

replaced with the following sequence of FIVPs on subin-

tervals Ik:

Dνy(k)(x) = F
(︀
x, yk(x), D

α1y(k)(x), . . . , D
αm y(k)(x)

)︀
,

x ∈ Ik , k = 1, 2, . . . (4.1)

y(r)k
(︀
(k − 1)h

)︀
= y(r)k−1

(︀
(k − 1)h

)︀
, r = 0, 1, . . . , l − 1,

(4.2)

where the notation y(k) means that the function y is con-

sidered up to the kth subinterval, i.e.,

y(k)(x) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

y1(x), x ∈ I1;
y2(x), x ∈ I2;
...

yk(x), x ∈ Ik.

Note that the reason for introducing this notation is the

non-locality of the Caputo differential operator. It is impor-

tant to mention that, according to (4.2), the initial condi-

tions for step k (except for the first step where the initial

conditions are available in (3.2)) are determined based on

the solution obtained earlier at step k − 1. We choose to

solve this sequenceof problemsvia LegendreśGauss adap-

tive pseudospectralmethodbecause of its high accuracy in

large domain calculations.

4.2 Piecewise polynomial interpolation

Consider the ShLG collocation points (k−1)h < xk1 < · · · <

xk,N−1 < kh on the kth subinterval Ik, k = 1, 2, . . ., ob-

tained using the relation (2.5). Obviously,

xkj =
h

2
(zj + 2k − 1), j = 1, 2, . . . , N − 1. (4.3)
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Also, consider two additional noncollocated points xk0 =

(k−1)h and xkN = kh. Let us consider the space of polyno-

mials of degree at most N on the subinterval Ik as

PN(Ik) = span{Lk0(x), Lk1(x), . . . , LkN(x)},

where

Lki(x) =

N∏︁

l=0,l≠i

x − xkl
xki − xkl

, i = 0, 1, . . . , N,

is a basis of Lagrange polynomials on subinterval Ik that

satisfy Lki(xkj) = δij where δij is the Kronecker delta

function. The L2(Ik)-orthogonal projection IN : L2(Ik) →
PN(Ik) is a mapping in a way that for any yk ∈ L2(Ik) we

have

⟨IN(yk) − yk , ϕk⟩ = 0, ∀ ϕk ∈ PN(Ik),

or equivalently

IN(yk)(x) =

N∑︁

i=0

ykiLki(x), x ∈ Ik , (4.4)

where yki = yk(xki). Here, it can be easily seen that for i =

0, 1, . . . , N and k = 1, 2, . . . , we have

Lki(x) = L1i (x − xk0) , x ∈ Ik . (4.5)

Thus, by utilizing Eq. (4.5) for Eq. (4.4), the approximation

of yk(x) within each subinterval Ik can be restated as

yk(x) ≃ IN(yk)(x) =

N∑︁

i=0

ykiL1i (x − xk0) = Y
T

kLk(x), x ∈ Ik ,

(4.6)

where Yk and Lk(x) are (N + 1) × 1 matrices given by

Yk = [yk0, . . . , ykN ]
T

and Lk(x) = [L10(x−xk0), . . . , L1N(x−

xk0)]
T

. It is observed that the series (4.6) includes the

Lagrange polynomials associated with the noncollocated

points xk0 = (k − 1)h and xkN = kh, i.e., the initial and ter-

minal points of each subinterval. This thenallowsmore ac-

curate initial conditions to be obtained for the sequence of

problems (4.1)ś(4.2). Moreover, it is seen from (4.6) that in

the present multiple-step scheme, it is only needed to pro-

duce the basis of Lagrange polynomials L1i(x) at the first

step, which reduces the number of arithmetic calculations

and storage requirements especially when the number of

steps is large. Now consider the interval [0, T] such that for

a positive integer K,
K⋃︀
k=1

Ik = [0, T]. For N > 1we introduce

the piecewise polynomials space

ΨN
Ik = {y ∈ C[0, T] : yk = y|Ik ∈ PN(Ik)},

which is the space of the continuous functions over [0, T]

whose restrictions on each subinterval Ik are polynomi-

als of degree ≤ N. Then, for any continuous function y in

[0, T], the piecewise interpolation polynomial, ψN(y), co-

incides on each subinterval Ik with the interpolating poly-

nomial IN(y) of yk = y|Ik at the ShLG points.

Next, in a typical collocation method the derivatives

of the unknown function yk are approximated by the an-

alytic derivatives of the interpolating polynomial [35, 36].

The polynomials of degree N − l, (IN(yk))
(l), are called

LegendreśGauss interpolation derivatives of yk [35]. By dif-

ferentiating (4.6), l times, the ShLG interpolation deriva-

tives of the function y on each subinterval Ik, k = 1, 2, . . .,

are obtained as

y(l)k (x) ≃ (IN(yk))
(l)(x) = Y

T

kL
(l)
k (x), x ∈ Ik , l > 1,

(4.7)

where L(l)
k
(x) = dl

dxl
Lk(x).

4.3 Error estimates

In this subsection, we give some estimates for the errors of

piecewise LegendreśGauss interpolation and its integer-

order and fractional-order derivatives. We recall that de-

noted by y(l) the distributional derivative of function y of

order l, the Sobolev space of integer order r ≥ 0 in the in-

terval (a, b) is defined by [35]

Hr(a, b) = {y ∈ L2(a, b) : for 0 ≤ l ≤ r, y(l) ∈ L2(a, b)}.
(4.8)

The associated norm is

‖y‖Hr(a,b) =

⎛
⎝

r∑︁

l=0

b∫︁

a

|y(l)(x)|2dx

⎞
⎠

1/2

=

(︃
r∑︁

l=0

‖y(l)‖2L2(a,b)

)︃1/2

. (4.9)

According to the error bounds (5.4.33) and (5.4.34)

of [35], the following error estimates hold.

Theorem 1. Let yk ∈ Hr(Ik) with integers 1 ≤ r ≤ N + 1,

then

⃦⃦
yk − IN(yk)

⃦⃦
L2(Ik)

≤ ChrN−r‖y(r)k ‖L2(Ik), (4.10)

and for 1 ≤ l ≤ r, we have

⃦⃦
⃦y(l)k − (IN(yk))

(l)
⃦⃦
⃦
L2(Ik)

≤ Chr−lN2l−r− 1
2 ‖y(r)k ‖L2(Ik), (4.11)

where C is a generic positive constant that depends on r, but

which is independent of h, N and any function.

Proof. Consult [40].
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Similar results hold for the piecewise interpolation error

y−ψN(y) in thenormsof the Sobolev spaces (see Theorem1

of [40]). In the next theorem, we shall give an estimate in

the maximum norm.

Theorem 2. Let yk ∈ Hr(Ik) with integers 1 ≤ r ≤ N + 1,

then for 0 ≤ l ≤ r we have

⃦⃦
⃦y(l)k (x) − (IN(yk))

(l)(x)
⃦⃦
⃦
L∞(Ik)

≤ Chr−l−
1
2 N2l−r+ 3

2 ‖y(r)k ‖L2(Ik).
(4.12)

Proof. For any f ∈ H1(Ik) with f (0) = 0, using Hölder’s

inequality one has

|f (x)|2 =
x∫︁

0

d

dt
(f 2(t)) dt ≤ 2 ‖f‖L2(Ik)

⃦⃦
⃦⃦ df
dt

⃦⃦
⃦⃦
L2(Ik)

≤ h−1 ‖f‖2L2(Ik) + h
⃦⃦
⃦⃦ df
dt

⃦⃦
⃦⃦
2

L2(Ik)

.

For x ∈ Ik, this inequality, along with (4.10) and (4.11),

leads to

⃒⃒
⃒y(l)k (x) − (IN(yk))

(l)(x)
⃒⃒
⃒
2
≤h−1

⃦⃦
⃦y(l)k − (IN(yk))

(l)
⃦⃦
⃦
2

L2(Ik)

+ h
⃦⃦
⃦y(l+1)k − (IN(yk))

(l+1)
⃦⃦
⃦
2

L2(Ik)

≤Ch2r−2l−1N4l−2r+3‖y(r)k ‖2L2(Ik),

and the proof is completed.

The following theorem gives an estimate for the piecewise

interpolation fractional derivatives error, Dαy − DαψN(y),

in the maximum norm. In what follows, similarly to the

definition of y(k) in Subsection 4.1, the notation ψ
k
N means

that the piecewise interpolation is considered up to the kth

subinterval Ik.

Theorem 3. Let α > 0 and n = [α]+1. Suppose yk ∈ Hr(Ik),
k = 1, 2, . . ., for 1 ≤ n ≤ r, then

⃦⃦
⃦Dαy(k)(x) − DαψkN(y)(x)

⃦⃦
⃦
L∞(Ik)

≤ Cαh
r−α− 1

2 N2n−r+ 3
2

k∑︁

s=1

‖y(r)s ‖L2(Is), (4.13)

where Cα depends on α, but which is independent of h, N

and any function.

Proof. Let x ∈ Ik, then, using the definition of Caputo frac-
tional derivative (2.2) and by triangular and Hölder’s in-

equalities, we obtain

⃒⃒
⃒Dαy(k)(x) − DαψkN(y)(x)

⃒⃒
⃒

=
1

Γ(n − α)

⃒⃒
⃒⃒
⃒⃒
⃒

k−1∑︁

s=1

∫︁

Is

y(n)s (t) − (IN(ys))
(n)(t)

(x − t)α−n+1
dt

+

x∫︁

(k−1)h

y(n)
k
(t) − (IN(yk))

(n)(t)

(x − t)α−n+1
dt

⃒⃒
⃒⃒
⃒⃒
⃒

≤
1

Γ(n − α)

⎛
⎜⎝
k−1∑︁

s=1

∫︁

Is

⃒⃒
⃒y(n)s (t) − (IN(ys))

(n)(t)
⃒⃒
⃒

(x − t)α−n+1
dt

+

x∫︁

(k−1)h

⃒⃒
⃒y(n)k (t) − (IN(yk))

(n)(t)
⃒⃒
⃒

(x − t)α−n+1
dt

⎞
⎟⎠

≤
1

Γ(n − α)
(︃

k∑︁

s=1

⃦⃦
⃦y(n)s (x) − (IN(ys))

(n)(x)
⃦⃦
⃦
L∞(Is)

⃦⃦
⃦(x − t)n−α−1

⃦⃦
⃦
L1(Is)

)︃

≤
1

(n − α)Γ(n − α)
hn−α

k∑︁

s=1

⃦⃦
⃦y(n)s (x) − (IN(ys))

(n)(x)
⃦⃦
⃦
L∞(Is)

≤
1

Γ(n − α + 1)
C hr−α−

1
2 N2n−r+ 3

2

k∑︁

s=1

‖y(r)s ‖L2(Is),

where Theorem 2 has been used for the last inequality.

Remark 1. The estimates (4.10)ś(4.13) indicate that the

errors decay as h → 0. Meanwhile, for fixed h, the er-

rors decay as N and r increase. So, the smoother the exact

solutions, the smaller the numerical errors. Furthermore,

one can deduce that for increasing the computational ac-

curacy, increasing the mode N suitably is more effective

than decreasing the step-size h. However, a step-size h ≤ 1

would provide more rapid convergence rate.

Remark 2. If y(r) ∈ L∞(0, kh) and 2n +2 ≤ r ≤ N +1, then

for k > 1, Theorem 3 implies

⃦⃦
⃦Dαy(k)(x) − DαψkN(y)(x)

⃦⃦
⃦
L∞(0,kh)

≤ Cαh
r−α− 1

2 N2n−r+ 3
2

k∑︁

s=1

√
h‖y(r)s ‖L∞(Is)

≤ Cαk h
r−αN2n−r+ 3

2 ‖y(r)‖L∞(0,kh), (4.14)

which means that the point-wise error of piecewise in-

terpolation fractional derivatives accumulates linearly in

terms of k.
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4.4 Numerical evaluation of Caputo

fractional derivatives

As in a typical pseudospectral method [35], it is crucial

to evaluate the values of Dαy(x) at the ShLG collocation

points xkj , k = 1, 2, . . . , j = 1, . . . , N − 1, using an ac-

curate and stable numerical method. In this subsection,

we present a stable scheme for approximating the values

of Dαy(xkj). Our technique is based on the direct usage of

the Caputo definition. From the definition of the Caputo

fractional derivative (2.2) and using Eqs. (4.6) and (4.7), we

have

Dαy(xkj) = D
αy(k)(xkj) ≈ D

αψkN(y)(xkj)

=
1

Γ(n − α)

⎛
⎜⎝
k−1∑︁

s=1

∫︁

Is

Y
T

sL
(n)
s (t)

(xkj − t)α−n+1
dt +

xkj∫︁

xk0

Y
T

kL
(n)
k
(t)

(xkj − t)α−n+1
dt

⎞
⎟⎠ .

(4.15)

To calculate the integrals on the right-hand side of

Eq. (4.15), the Gaussian quadrature rule (2.6) is used in

each subinterval. Therefore,

∫︁

Is

Y
T

sL
(n)
s (t)

(xkj − t)α−n+1
dt ≈

h

2

N−1∑︁

i=1

wi
Y
T

sL
(n)
s (xsi)

(xkj − xsi)α−n+1
:= Hs,n,j ,

(4.16)

s = 1, . . . , k − 1.

Moreover, in order to use the Gaussian integration for-

mula in subinterval Ik for the last integral in Eq. (4.15), the

change of variables τ = h
x1j

(t − xk0) + xk0 should be ap-

plied, which yields

xkj∫︁

xk0

Y
T

kL
(n)
k
(t)

(xkj − t)α−n+1
dt =

x1j
h

xkN∫︁

xk0

Y
T

kL
(n)
k

(︀ x1j
h
(τ − xk0) + xk0

)︀
(︀
x1j −

x1j
h
(τ − xk0)

)︀α−n+1 dτ

≈
x1j
2

N−1∑︁

i=1

wi
Y
T

kL
(n)
k

(︀ x1jx1i
h

+ xk0
)︀

(︀
x1j −

x1jx1i
h

)︀α−n+1

:= ̃︀Hk,n,j . (4.17)

Substituting (4.16) and (4.17) into (4.15), results

Dαy(xkj) ≈ D
αψkN(y)(xkj) ≈

1

Γ(n − α)

(︃
k−1∑︁

s=1

Hs,n,j + ̃︀Hk,n,j

)︃
.

(4.18)

Unfortunately, the numerical evaluation (4.18) can be

problematic in finite arithmetic. In fact, it is not stable

when α changes between two consecutive positive inte-

gers. This problem arises from the fact that the coefficients(︀
x1j −

x1jx1i
h

)︀n−α−1
in (4.17) become large when α increases.

We remedy this deficiencybyutilizing integrationbyparts.

By integrating by parts, Eq. (4.17) reads

xkj∫︁

xk0

Y
T

kL
(n)
k
(t)

(xkj − t)α−n+1
dt ≈

1

n − α

(︁
xn−α1j Y

T

kL
(n)
k (xk0) + ̃︀Hk,n+1,j

)︁
.

(4.19)

Finally, substituting (4.16) and (4.19) into (4.15) we arrive

at the following approximation:

Dαy(xkj) ≈D
αψkN(y)(xkj)

≈
1

Γ(n − α)

k−1∑︁

s=1

Hs,n,j

+
1

Γ(n − α + 1)

(︁
xn−α1j Y

T

kL
(n)
k (xk0) + ̃︀Hk,n+1,j

)︁

:=dαk,j , k = 1, 2 . . . ; j = 1, . . . , N − 1. (4.20)

The stability and more accuracy of the approxima-

tion (4.20) compared to that of the approximation (4.18)

is illustrated in Fig. 1, where we plotted the maximum ab-

solute errors Eα = max {
⃒⃒
⃒Dαy(xkj) − dαk,j

⃒⃒
⃒ , k = 1, 2; j =

1, . . . , N − 1} obtained by (4.18) and (4.20) for the func-

tion y(x) = x5/2, x ∈ [0, 1] for 0 < α < 2 and differ-

ent values of N. As we can see, the approximate values

obtained by using (4.18) become quite inaccurate when α

goes to 1 or 2. In contrast, (4.20) leads to much more ac-

curate approximations of Dαy(xkj). In addition, Fig. 1 il-

lustrates the convergence of the approximation (4.20). In-

deed, the convergence of the approximation (4.20) is a con-

sequence of Theorems 1ś3 and the high accuracy of the

Gaussian quadrature rule provided that the function y is

sufficiently smooth.

4.5 The multiple-step collocation method

Consider the problem replacement as explained in Sub-

section 4.1. Collocating the kth FIVP in subinterval Ik, k =

1, 2, . . . given by Eq. (4.1) at the ShLG collocation points

xkj for j = 1, 2, . . . , N − l +1 using Eqs. (4.6) and (4.20), we

obtain the collocation condition

dνk,j−F
(︁
xkj , ykj , d

α1
k,j , . . . , d

αm
k,j

)︁
= 0, j = 1, 2, . . . , N−l+1,

(4.21)

Moreover, the initial conditions of the kth FIVP in subinter-

val Ik given by Eq. (4.2), are approximated using Eqs. (4.6)

and (4.7) as

Y
T

kL
(r)
k (xk0) − Y

T

k−1L
(r)
k−1(xk0) = 0, r = 0, 1, . . . , l − 1.

(4.22)

We note that the vector Yk−1 is obtained earlier at step

k − 1. Also, the initial conditions of the first step are given
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Fig. 1:Maximum absolute errors Eα for the function y(x) = x5/2 by

using (4.18) (left) and by using (4.20) (right).

by (3.2). At step k, k = 1, 2, . . ., Eq. (4.21) together with

Eq. (4.22) give a system of equations with N + 1 set of al-

gebraic equations, which can be solved with one of the

knownmethods to find the unknowns ykj of the vector Yk.

Consequently, the unknown function yk(x) in Eq. (4.6) can

be calculated at the kth step, which is indeed the approx-

imate solution of the FIVP (3.1)ś(3.2) on the subinterval

[(k − 1)h, kh).

Remark 3. As the error estimates and the numerical

evaluations in subsections 4.3 and 4.4 promise us, the

interpolation error and the error in its Caputo derivative

in the proposed multi-step LG pseudospectral method

decays as fast as the global smoothness of the underlying

solution permits. Specially, since the function F in (3.1) is

continuously differentiable, then in step k, DνψkN(y)(x) −

F
(︁
x, IN(yk)(x), D

α1ψkN(y)(x), . . . , D
αmψkN(y)(x)

)︁
goes

to Dνy(k)(x) − F
(︀
x, yk(x), D

α1y(k)(x), . . . , D
αm y(k)(x)

)︀
as

k, N → ∞ and the point-wise error of the numerical

solution accumulates linearly in terms of the number of

steps k. This convergence property will also be discussed

in the next section via several test examples.

5 Numerical examples

In this section, we solve several linear and nonlinear

FIVPs with the method based on preceding sections,

to support our theoretical discussion. Comparisons

of the results obtained with those obtained by other

methods and also with the exact solutions reveal that

the present method is very effective, convenient and

accurate. All computations were performed on a 2.2 GHz

Core i5 machine with 4 GB RAM running MATHEMATICA

10.0 (Wolfram Research, Champaign, Illinois). All CPU

times shown include the total time required to solve the

sequence of algebraic systems on all steps. Note that the

CPU time is highly dependent on the number of steps and

the number of collocation points in each step.

Example 1. As the first example, we consider the fol-

lowing linear FIVP [28]

Dαy(x) + y(x) = 0, 0 < α ≤ 2, (5.1)

y(0) = 1, y′(0) = 0. (5.2)

The condition y′(0) = 0 is only for 1 < α ≤ 2. The exact

solution of this problem is given by y(x) = Eα(−x
α), where

Eα(z) =
∞∑︀
k=0

zk

Γ(αk+1)
is the Mittag-Leffler function [1] of order

α.

This problem was solved by applying the technique

described in Section 4. In Table 1, the computational times

are given and the absolute errors for α = 0.85, x ∈ [0, 5]

and different values of h and N are compared with the er-

rors obtained in [19] by using the oprationalmatrix of frac-

tional derivatives of Legendre polynomials. From Table 1,

we see that in the present multiple-step pseudospectral

method the accuracy can be improved with both decreas-

ing the step-size and increasing the number of collocation

points in subintervals. With regard to CPU time, it is seen

that the computation time is growing as h decreases and

N increases. This is due to the non-local nature of Caputo

derivative and increment in the size of the algebraic sys-

tems to be solved. Table 2 compares the maximum abso-

lute errors in the interval [0, 1] for h = 0.25, N = 30 and

different values of α with the errors obtained in [19], [20]

and [33] which indicates that the present method is more

accurate. Also, the numerical results for y(x), x ∈ [0, 10]

with h = 1, N = 30 and α = 0.75, 0.85, 0.95, 0.99, and

1 together with the exact solutions Eα(−x
α) are plotted in

Fig. 2, which shows that the numerical results are in high

agreement with the exact ones.

For 1 < α ≤ 2, Fig. 3 and Fig. 4 illustrate the numeri-

cal solutions by multiple-step pseudospectral method for
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Fig. 2: Comparison of y(x) for h = 1, N = 30 and 0 < α ≤ 1 with exact

solutions for Example 1. Points are discrete approximations
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Fig. 3: Comparison of y(x) for h = 1, N = 30 and α = 1.25, 1.5, 1.75

with exact solutions for Example 1.

x ∈ [0, 20], h = 1, N = 30 and the exact ones Eα(−x
α)

for α = 1.25, 1.5, 1.75, 1.85, 1.95, 1.99 and 2. Obviously

the numerical results highly agree with the exact ones. For

α = 1, the exact solution is given as y(x) = exp(−x), and

for α = 2, the exact solution is given as y(x) = cos(x). It is

seen in Figs. 2ś4 that as α approaches 1 or 2, the numerical

solution converges to the analytical solutions, i.e., in the

limit, the solution of the fractional differential equations

approaches to that of the integer-order differential equa-

tions.

Author of Ref. [14] solved this problem using cubic

B-spline wavelet collocation method and plotted the

numerical results for y(x) for various values of α. Com-

parison of Figs. 2ś4 of this paper with figures 1ś3 in [14]

reveals that the newmultiple-step pseudospectral method

approximates the solution more accurately. This example

also shows the efficiency of the presented method for

large domain calculations.

Example 2. Our second example covers the Bagleyś

Torvik equation that governs the motion of a rigid plate
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Fig. 4: Comparison of y(x) for h = 1, N = 30 and α =

1.85, 1.95, 1.99, 2 with exact solutions for Example 1.

immersed in a Newtonian fluid.

AD2y(x) + BD
3
2 y(x) + Cy(x) = f (x). (5.3)

Following [1], [6] and [8], we consider the case A = 1,

B = C = 1
2 and f (x) = 8v(x) − 8v(x − 1), where v(x) is

the Heaviside function, with the following homogeneous

initial conditions:

y(0) = 0, y′(0) = 0. (5.4)

An analytical solution of Equation (5.3) with homo-

geneous initial conditions (5.4) has been given by Pod-

lubny [1].

y(x) =

x∫︁

0

G3(x − t)f (t) dt,

G3(x) =
1

A

∞∑︁

k=0

(−1)k

k!

(︂
C

A

)︂k
x2k+1E(k)1

2 ,2+
3k
2

(︂
−
B

A

√
x

)︂
,

E(k)
λ,µ(z) =

dk

dzk
Eλ,µ(z) =

∞∑︁

j=0

(j + k)!zj

j!Γ(λj + λk + µ)
,

k = 0, 1, 2, . . . ,

where Eλ,µ is the Mittag-Leffler function in two parameters

and the G3 three-term Green’s function. However, in prac-

tice, these equations can not be evaluated easily for differ-

ent functions f (x) and also for large values of x.

Here, we solve this problem using the present

multiple-step pseudospectral method with the step-sizes

h = 1 and 0.5, and different values of N along the interval

[0, 30]. Because of propagation of the error due to solving

the problem step by step, the convergence at x = T is

representative of the convergence on the entire interval

[0, T]. The errors at x = 30 obtained using the present

method together with the computation times are given

in Table 3. The errors are computed with respect to the
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Table 1: Absolute errors for α = 0.85 in the interval [0, 5] for Example 1.

h = 1 (5 steps) h = 0.25 (20 steps)

N = 20 N = 30 N = 20 N = 30 Method [19]

CPU time (s) 7.78 54.75 90.22 312.63

x

0.1 1.7×10−4 8.5×10−5 5.8 × 10−5 2.5×10−5 8.0×10−4

0.2 1.2×10−4 8.4×10−5 3.4 × 10−5 1.8×10−5 1.2×10−3

0.3 1.3×10−4 6.6×10−5 2.6 × 10−5 1.2×10−5 6.6×10−4

0.4 1.3×10−4 5.5×10−5 2.2 × 10−5 9.8×10−6 8.0×10−4

0.5 7.3×10−5 4.7×10−5 1.8 × 10−5 8.2×10−6 7.5×10−4

0.6 8.9×10−5 4.1×10−5 1.3 × 10−5 6.3×10−6 5.9×10−4

0.7 7.4×10−5 3.4×10−5 1.1 × 10−5 5.5×10−6 7.6×10−4

0.8 4.3×10−5 2.9×10−5 7.7 × 10−6 3.9×10−6 1.8×10−4

0.9 3.9×10−5 1.9×10−5 7.3 × 10−6 3.6×10−6 6.2×10−4

1.0 4.1×10−5 1.9×10−5 6.3 × 10−6 3.1×10−6 1.5×10−4

2.0 1.2×10−5 5.8×10−6 5.3 × 10−7 5.0×10−7 ś

3.0 4.8×10−6 2.4×10−6 2.9 × 10−7 2.4×10−8 ś

4.0 2.3×10−6 1.2×10−6 3.2 × 10−7 7.0×10−8 ś

5.0 1.4×10−6 7.0×10−7 2.3 × 10−7 5.9×10−8 ś

Table 2: Comparison of maximum absolute errors in [0, 1] for Exam-

ple 1.

α Present method Method [19] Method [20] Method [33]

0.2 3.5×10−2 7.4×10−1 5.3×10−3 7.64 × 10−2

0.4 6.7×10−3 7.3×10−1 1.9×10−3 ś

0.6 6.9×10−4 6.7×10−3 1.5×10−3 ś

0.8 1.5×10−4 1.2×10−3 1.0×10−3 1.40 × 10−3

1.2 7.1×10−5 4.5×10−3 2.5×10−3 3.29 × 10−3

1.4 2.3×10−5 1.3×10−3 2.4×10−3 ś

1.6 1.9×10−5 3.1×10−4 ś ś

1.8 1.8×10−5 6.1×10−5 ś 4.29 × 10−5

value y(30) = −0.5115451206 obtained by the analytical

solution. In this problem it is seen that obtaining an

accurate solution requires significantly more CPU time

because, here, we have considered larger domain.

Fig. 5 shows the numerical solution obtained using

the present method with h = 1, N = 30 and the ex-

cellent agreement of our multiple-step pseudospectral so-

lution with the analytical solution. A numerical solution

of BagleyśTorvik equation (5.3)ś(5.4) along the interval

[0, 30] has been proposed in [6]. Later this problem was

solved in [8] using the Adomian decomposition method.

Note that some deviations of solutions obtained in [6]

and [8] from that of Podlubny [1] are exist (see [6] Fig. 3

and [8] Fig. 2). This demonstrates the superior accuracy of

the present solution.

From Fig. 5 it can be concluded that the solution of

this Bagley-Torvik equation oscillates and goes to zero as

x → ∞. In Fig. 6 we have plotted the numerical solution

obtained using the present method with h = 1, N = 20 on

the interval [0, 100], which confirms the abovementioned

tendency. It should be noted that it is very difficult and

time consuming to evaluate the analytical solution by

Podlubny [1] over the interval [0, 100]. In addition, the

truncated ADM series solution given in [8] up to 200

terms diverges after a certain time (see Fig. 7). Again, it

is observed that the present method is capable of giving

very accurate results even for large domain calculations.
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Numerical
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Fig. 5: Comparison of the present numerical solution and the analyt-

ical solution for Example 2.

Example 3. Consider the following nonlinear multi-

order FIVP

aD2y(x) + bDα2y(x) + cDα1y(x) + ey3(x)

= 2ax +
2bx3−α2

Γ(4 − α2)
+

2cx3−α1

Γ(4 − α1)
+
ex9

27
, 0 < α1 < α2 ≤ 1,

(5.5)
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Table 3: Absolute errors |y(30) − ψN (y)(30)| using the present method for Example 2.

N h = 1 (30 steps) CPU time (s) h = 0.5 (60 steps) CPU time (s)

5 5.19×10−4 0.36 2.06×10−4 1.58

10 5.47×10−5 7.97 2.16×10−5 35.94

20 6.30×10−6 264.52 3.10×10−6 731.16

30 1.81×10−6 578.23 7.09×10−7 1378.59
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Fig. 6: The Graph of Bagley-Torvik equation using the present

method with h = 1 and N = 20 on the interval [0, 100].
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Fig. 7: The Adomian Decomposition Method series solution of

Bagley-Torvik equation. The divergence after a certain time is ap-

parent.

y(0) = 0, y′(0) = 0, (5.6)

where a, b, c and e are real numbers. The exact solution

of this problem is given by y(x) = 1
3 x

3.

This problem was solved in [16] using Adomian de-

composition method (ADM) and a proposed numerical

method (PNM) in the interval [0, 2]. Here, we solve this

problem using the present multiple-step pseudospectral

method in the interval [0, 5] for (a = 1, b = 2, c = 1/2,

e = 1, α1 = 0.00196, α2 = 0.07621) and (a = 1, b = 0.1,

c = 0.2, e = 0.3, α1 =
√
5
5 , α2 =

√
2
2 ).

Table 4 shows a comparison between the present

solution and solutions obtained in [16] when (a = 1,

b = 2, c = 1/2, e = 1, α1 = 0.00196, α2 = 0.07621).

Also, Table 5 shows a comparison between the present

solution and solutions obtained in [16] when (a = 1,

b = 0.1, c = 0.2, e = 0.3, α1 =
√
5
5 , α2 =

√
2
2 ). From these

two tables it is seen that the present method is muchmore

accurate. Moreover, the convergence of the presented

method is apparent.

Example 4. Consider the following nonlinear multi-

order FIVP,

Dαy(x) + Dβy(x)Dγy(x) + y2(x)

= x6 +
6

Γ(4 − α)
x3−α +

36

Γ(4 − γ)Γ(4 − β)
x6−β−γ , (5.7)

y(0) = y′(0) = y′′(0) = 0, (5.8)

where α ∈ (2, 3), γ ∈ (1, 2) and β ∈ (0, 1). The exact solu-

tion to this problem is y(x) = x3.

In Table 6, we give the computational time and we

compare the absolute errors obtained by the present

multiple-step pseudospectral method for h = 1 and

N = 40 with the shifted Chebyshev collocation method

presented in [21], with different values of α, γ and β. Also

in Table 7 we compare themaximum absolute errors in the

interval [0, 1], obtained using the present method and the

shifted Jacobi collocation method [22], at α = 2.5, γ = 1.5,

β = 0.9 with various choices of h and N. In the case of

α = 2.7, γ = 1.7, β = 0.7, the approximate solution in the

interval [0, 6], obtained by the present method for h = 1

and N = 30 is shown in Fig. 8 to make it easier to compare

with the analytic solution.

Example 5. Consider the nonlinear multi-order FIVP

with oscillatory behavior,

Dαy(x) + Dβy(x) + e−y
2(x) = sin(2x), (5.9)

y(0) = 0, y′(0) = −1, (5.10)

where α ∈ (1, 2] and β ∈ (0, 1]. For α = 2 and β = 1 a nu-

meric solution can be obtained by direct numerical inte-
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Table 4: Comparison of absolute errors for (a = 1, b = 2, c = 1/2, e = 1, α1 = 0.00196, α2 = 0.07621) and h = 1 for Example 3.

CPU time (s) 0.52 15.71 118.32

x N = 10 N = 20 N = 30 PNM [16] ADM [16]

0.2 2.6 × 10−10 1.6 × 10−11 3.3 × 10−12 3.93409 × 10−5 9.12455 × 10−11

0.4 8.0 × 10−9 4.9 × 10−10 9.9 × 10−11 1.53545 × 10−4 4.08994 × 10−8

0.6 5.8 × 10−8 3.6 × 10−9 7.2 × 10−10 3.30564 × 10−4 1.46310 × 10−6

0.8 2.3 × 10−7 1.4 × 10−8 2.9 × 10−9 5.52441 × 10−4 1.89999 × 10−5

1.0 6.8 × 10−7 4.2 × 10−8 8.5 × 10−9 7.97757 × 10−4 1.50218 × 10−4

1.2 6.2 × 10−7 3.7 × 10−8 7.6 × 10−9 1.04618 × 10−3 9.63935 × 10−4

1.4 4.5 × 10−7 2.9 × 10−8 5.9 × 10−9 1.29004 × 10−3 5.97725 × 10−3

1.6 3.4 × 10−7 2.3 × 10−8 4.9 × 10−9 1.56444 × 10−3 3.82246 × 10−2

1.8 4.5 × 10−7 3.2 × 10−8 6.5 × 10−9 2.00641 × 10−3 2.55500 × 10−1

2.0 9.5 × 10−7 6.1 × 10−8 1.3 × 10−8 2.89864 × 10−3 1.83461 × 100

3.0 3.1 × 10−7 1.4 × 10−8 2.7 × 10−9 ś ś

4.0 4.9 × 10−6 7.5 × 10−9 2.0 × 10−9 ś ś

5.0 3.8 × 10−5 8.4 × 10−7 6.6 × 10−9 ś ś

Table 5: Comparison of absolute errors for (a = 1, b = 0.1, c = 0.2, e = 0.3, α1 =
√

5
5
, α2 =

√

2
2
) and h = 1 for Example 3.

CPU time (s) 0.53 15.59 118.73

x N = 10 N = 20 N = 30 PNM [16] ADM [16]

0.2 6.4 × 10−9 9.1 × 10−10 3.0 × 10−10 3.95794 × 10−5 4.41567 × 10−11

0.4 1.3 × 10−7 1.8 × 10−8 6.1 × 10−9 1.57803 × 10−4 6.65814 × 10−9

0.6 7.7 × 10−7 1.1 × 10−7 3.5 × 10−8 3.52193 × 10−4 1.26983 × 10−7

0.8 2.7 × 10−6 3.7 × 10−7 1.2 × 10−7 6.13120 × 10−4 1.05072 × 10−6

1.0 7.1 × 10−6 9.8 × 10−7 3.2 × 10−7 8.68269 × 10−4 5.74351 × 10−6

1.2 9.5 × 10−6 1.3 × 10−6 4.2 × 10−7 6.86241 × 10−4 2.64200 × 10−5

1.4 1.2 × 10−5 1.6 × 10−6 5.4 × 10−7 1.84769 × 10−3 1.20987 × 10−4

1.6 1.5 × 10−5 2.2 × 10−6 7.1 × 10−7 1.34530 × 10−2 5.96191 × 10−4

1.8 2.1 × 10−5 2.9 × 10−6 9.7 × 10−7 5.35383 × 10−2 3.18350 × 10−3

2.0 2.9 × 10−5 4.1 × 10−6 1.3 × 10−6 1.68659 × 10−1 1.83619 × 10−2

3.0 1.6 × 10−5 2.2 × 10−6 6.9 × 10−7 ś ś

4.0 6.4 × 10−7 3.4 × 10−7 1.1 × 10−7 ś ś

5.0 1.6 × 10−5 2.2 × 10−6 7.0 × 10−7 ś ś

Table 6: Comparison of absolute errors for Example 4.

α = 2.1, β = 0.1, γ = 1.1 α = 2.5, β = 0.99, γ = 1.99

x Present method Method [21] Present method Method [21]

CPU time: 94.67 s CPU time: 97.21 s

0 1.9 × 10−20 4.44 × 10−16 2.4 × 10−18 4.44 × 10−16

0.2 4.3 × 10−13 3.79 × 10−8 5.6 × 10−10 1.01 × 10−6

0.4 1.4 × 10−11 3.07 × 10−8 2.4 × 10−8 2.57 × 10−6

0.6 3.3 × 10−10 4.77 × 10−8 2.0 × 10−7 4.45 × 10−6

0.8 2.5 × 10−9 6.73 × 10−8 8.4 × 10−7 6.28 × 10−6

1.0 1.1 × 10−8 7.78 × 10−8 2.3 × 10−6 7.60 × 10−6

1.2 1.0 × 10−8 7.23 × 10−8 3.2 × 10−6 8.11 × 10−6

1.4 2.3 × 10−8 4.70 × 10−8 3.9 × 10−6 7.80 × 10−6

1.6 2.3 × 10−8 1.68 × 10−8 5.1 × 10−6 6.82 × 10−6

1.8 6.7 × 10−9 1.77 × 10−8 7.1 × 10−6 5.43 × 10−6

2.0 1.2 × 10−8 3.44 × 10−9 8.9 × 10−6 3.73 × 10−6

gration inMATHEMATICA, whichwe compare with the so-

lutionwe get by ourmultiple-step pseudospectral scheme.

In this case, the maximum absolute error on the interval

[0, 80] for h = 1, N = 10 is obtained as 1.37 × 10−8. Fig. 9

shows the oscillatory behavior of the solution to this case.
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Table 7: Comparison of maximum absolute errors on the interval [0, 1] for α = 2.5, β = 0.9, γ = 1.5 for Example 4.

Present method

N h = 1 CPU time (s) h = 0.5 CPU time (s) Method [22]

4 1.5 × 10−3 0.02 2.9 × 10−4 0.16 1.27 × 10−3

8 2.6 × 10−4 0.05 2.6 × 10−5 0.26 3.47 × 10−4

16 4.8 × 10−5 1.77 8.2 × 10−6 4.91 8.98 × 10−5

24 1.8 × 10−5 7.55 3.7 × 10−6 21.98 3.15 × 10−5

0 1 2 3 4 5 6
x
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200

yH
xL

Numerical

Exact

Fig. 8: Comparison of y(x) with h = 1, N = 30 for α = 2.7, β = 0.7,

γ = 1.7 for Example 4.

The exact solutions for the values of α ∈ (1, 2) and

β ∈ (0, 1) are not exist, and we remark that there is not a

built-in command inMATHEMATICA for solving fractional

differential equations. Therefore, to show the convergence

of the present method for this problem over an interval

[0, T], we suggest the following practical and easy-to-use

convergence index: As Remark 1 suggests us, we first set

h = 1 and thenwe solve the problem for different values of

N ≤ N̄ until the following convergence criteria is satisfied,

eN =
⃒⃒
ψN(y)(T) − ψN−1(y)(T)

⃒⃒
< ϵ,

where N̄ and ϵ are user defined values and may be vary

from one problem to another. If the specified convergence

tolerance ϵ hasnot been satisfied yet, thenwedecrease the

step-size h and solve the problem as above. It is important

to note that, due to the exponential convergence of pseu-

dospectral methods in a subinterval where the solution is

smooth and because h ≤ 1, there is no need to use very

large number of collocation points in subintervals. In this

example we set T = 50, ϵ = 10−6 and we limit N by setting

N̄ = 30.

Table 8 displays the values of eN and ψN(y)(50) for

h = 1 (50 steps) and various values of N, α and β. The CPU

times are also changed from 2 seconds for N = 5 to 1250

seconds for N = 25. This table demonstrates the accuracy

and convergence of the present multiple-step scheme in

large-domain calculations. Also, Figs. 10ś12 show the

approximate solutions for this problem with the values

of α and β given in Table 8. These figures illustrate the

different oscillatory behavior of the solutions to this prob-

lem for different values of α and β. Duan et al. [17] treat

a similar FIVP with the right hand side function equal to

1, which does not have oscillatory behavior, and solved

it by the Rach-Adomian-Meyers modified decomposition

method only over the interval [0, 3].
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Exact

Fig. 9: Comparison of y(x) with h = 1, N = 10 for α = 2 and β = 1 for

Example 5.

Example 6. Finally, to show that the proposed method is

also suited for systems of FIVPs, we consider the fractional

Lorenz system [45],

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

Dαy1(x) = σ(y2(x) − y1(x))

Dβy2(x) = Ry1(x) − y2(x) − y1(x)y3(x)

Dγy3(x) = y1(x)y2(x) + by3(x)

y1(0) = −15.8, y2(0) = −17.48, y3(0) = 35.64,

(5.11)

where 0 < α, β, γ ≤ 1 and y1, y2 and y3 are respectively

proportional to the convective velocity, the temperature
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Table 8: The values of ψN (y)(50) and eN for various values of α and β for Example 5.

α = 1.2, β = 0.8 α = 1.5, β = 0.5 α = 1.85, β = 0.05

N ψN (y)(50) eN ψN (y)(50) eN ψN (y)(50) eN

5 -10.227454 3.92 × 10−3 -1.931422 1.38 × 10−3 -0.715699 1.10 × 10−3

10 -10.225751 1.01 × 10−5 -1.930962 1.89 × 10−5 -0.717137 9.58 × 10−5

15 -10.225533 6.12 × 10−6 -1.930930 2.90 × 10−6 -0.717343 2.23 × 10−5

20 -10.225392 2.19 × 10−6 -1.930924 7.43 × 10−7 -0.717404 8.15 × 10−6

25 -10.225360 8.10 × 10−7 ś ś -0.717426 8.35 × 10−7
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Fig. 10: Computational results of y(x) with h = 1, N = 20 for α = 1.2,

β = 0.8 for Example 5.
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Fig. 11: Computational results of y(x) with h = 1, N = 20 for α = 1.5,

β = 0.5 for Example 5.

difference between descending and ascending flows, and

the mean convective heat flow, and σ, b and the so-called

bifurcation parameter R are real constants.

As in [45], we set σ = 10, b = −8
3 and R = 23.5. The

time range studied in this example is [0, 10]. The exact

solutions for different values of α, β and γ are not avail-

able; however, to show the effectiveness of our method,

we use the fact that the Caputo fractional order solutions

converge to the integer order solutions. Notably, our ex-

periment shows that the solutions of the fractional order

Lorenz system are sensitive to the step-size h, i.e., for en-

suring the high accuracy, small values of h are required.
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Fig. 12: Computational results of y(x) with h = 1, N = 20 for α =

1.85, β = 0.05 for Example 5.

Table 9 displays the values of ψN(y)(10) for N = 6, h =

0.05 (200 steps) and various values of α, β and γ. This ta-

ble demonstrates the convergence of the fractional order

solutions to the integer order solution. The CPU times are

around 447 seconds.

For the purpose of studying the effectiveness of the

fractional order parameters α, β and γ of the Lorenz sys-

tem, we plot the graphs of y1, y2 and y3 using present

method at different cases which are shown in Fig. 13.

Therefore, it may be concluded that the solutions of the

fractional Lorenz system become almost constant as x in-

creases. Moreover, the solutions remain constant in the

whole domain of interest as α, β, γ → 0, meanwhile they

show more oscillatory behavior as α, β, γ → 1.

6 Conclusions

Fractional differential equations growmore andmore pop-

ular nowadays to model science and engineering pro-

cesses. Therefore, findinga reliable andefficient technique

to solve them is very important. In this work, an efficient

multiple-step pseudospectral method based on the ShLG

collocation points has been proposed for numerically solv-

ing themulti-order FIVPs. Thismethod is easy to be imple-

mented for linear and nonlinear problems. We converted
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Table 9: The values of ψ6(y)(10) for h = 0.05 and various values of (α, β, γ) for Example 6.

(0.95, 0.95, 0.95) (0.99, 0.99, 0.99) (0.9999, 0.9999, 0.9999) (1, 1, 1)

ψ6(y1)(10) 7.72990806 5.16268791 5.21692823 5.22054356

ψ6(y2)(10) 7.74327347 4.22467454 4.08500765 4.07467005

ψ6(y3)(10) 22.47923256 21.46426815 21.54603815 21.57004284

Fig. 13: Computational results for Example 6 with h = 0.1 and N = 10.

the original FIVP to a sequence of FIVPs in subintervals

and solved them, stepby step, using collocation,where the

initial conditions of each stepwere obtained from the solu-

tion approximated earlier at its previous step. An accurate

and stable scheme has been introduced for approximat-

ing the values of fractional derivatives at the ShLG colloca-

tion points. The numerical results demonstrated the spec-

tral accuracy and convergence of the proposed method. It

was shown that the accuracy canbe improved either byde-

creasing the step-size or by increasing the number of col-

location points in subintervals. Moreover, this method is

valid for large-domain calculations and also for solutions

having oscillatory behavior. The achieved results are com-

pared with the exact solutions and with the solutions ob-

tained by some other numerical methods, which demon-

strate the validity and superior accuracy of the proposed

method.
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