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Abstract With recent technological advances in re-
mote sensing sensors and systems, very high-
dimensional hyperspectral data are available for a
better discrimination among different complex land-
cover classes. However, the large number of spectral
bands, but limited availability of training samples
creates the problem of Hughes phenomenon or ‘curse
of dimensionality’ in hyperspectral data sets.
Moreover, these high numbers of bands are usually
highly correlated. Because of these complexities of
hyperspectral data, traditional classification strategies
have often limited performance in classification of
hyperspectral imagery. Referring to the limitation of
single classifier in these situations, Multiple Classifier
Systems (MCS) may have better performance than
single classifier. This paper presents a new method
for classification of hyperspectral data based on a band
clustering strategy through a multiple Support Vector

Machine system. The proposed method uses the band
grouping process based on a modified mutual information
strategy to split data into few band groups. After the band
grouping step, the proposed algorithm aims at benefiting
from the capabilities of SVM as classification method.
So, the proposed approach applies SVM on each band
group that is produced in a previous step. Finally, Naive
Bayes (NB) as a classifier fusion method combines de-
cisions of SVM classifiers. Experimental results on two
common hyperspectral data sets show that the
proposed method improves the classification accu-
racy in comparison with the standard SVM on
entire bands of data and feature selection methods.

Keywords Hyperspectral . Support VectorMachine .

Multiple Classifier System . Bayesian Theory

Introduction

With the development of the remote-sensing imaging
technology and hyperspectral sensors, classification of
hyperspectral image is becoming more and more wide-
spread in different applications (Jia 2002; Goel et al.
2003; Li et al. 2011). These data cover in most cases a
wide spectral range from the visible to the short-wave
infrared with a narrow band width for each single chan-
nel, resulting in hundreds of data channels. Thanks to
this amount of information, it is feasible to deal with
applications that require a precise discrimination in the
spectral domain. In this context, hyperspectral images
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have been successfully used for supervised classifica-
tion problems that require very precise description in
spectral feature space.

An extensive literature is available on the classifi-
cation of hyperspectral images. Maximum likelihood
or Bayesian estimation methods (Jia 2002), decision
trees (Goel et al. 2003), neural networks (Del frate et
al. 2007), genetic algorithms (Vaiphasa 2003), and
kernel-based techniques (Müller et al. 2001; Camps-
Valls and Bruzzone 2005) have been widely investigat-
ed in this direction. One of the most popular classifica-
tion methods is Support Vector Machines (SVM)
defined by Vapnik, a large margin based classifier with
a good generalization capacity in the small-size training
set problem with high-dimensional input space (Vapnik
1998). Recently, SVMs have been successfully applied
in the classification of hyperspectral remote-sensing
data. Camps-Valls and Bruzzone (2005) demonstrated
that SVMs perform equal or better than other classifiers
in terms of accuracy on hyperspectral data.

At the same time, hyperspectral images are usually
composed of tens or hundreds of close spectral bands,
which result in high redundancy and great amount of

computation time for image classification. Large num-
ber of features can become a curse in terms of accuracy
if enough training samples are not available, i.e. due to
the Hughes phenomenon in most of traditional classifi-
cation techniques (Li et al. 2011). Hughes phenomenon
means that when the training sample number is a con-
stant, the precision of classification will be decreased
with the increasing of the dimensionality. It implies that
the required number of training samples for supervised
classification increases as a function of dimensionality.

Conventional classification strategies often can-
not overcome mentioned problem. Alternatives like
Multiple Classifier Systems (MCS) are successfully
applied on various types of data to improve single
classifiers results. Multiple Classifier System
(MCS) can improve classification accuracy in com-
parison to a single classifier by combining differ-
ent classification algorithms or variants of the
same classifier (Kuncheva 2004). In such systems
a set of classifiers is first produced and then com-
bined by a specific fusion method. The resulting
classifier is generally more accurate than any of
the individual classifiers that make up the ensemble.

Fig. 2 AVIRIS Indian Pine
Data, a) Original data and b)
Ground truth
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Fig. 1 A multiple SVM system based on band grouping of hyperspectral images

J Indian Soc Remote Sens



Multiple classifier systems can be used to improve
classification accuracy in remote sensing data sets
(Benediktsson and Kanellopoulos 1999).

The first step of this paper lies in the problem
formulation of the extraction of band groups from
hyperspectral data to produce a multiple classifier
system. This method tries to split the entire high
dimensional hyperspectral space into few band groups
for classification while it can overcome Hughes phe-
nomenon or curse of dimensionality. The proposed
approach decomposes high number of spectral bands
into few uncorrelated groups. After that SVMs are
applied on each group which was produced in the
previous step. After producing an ensemble of classi-
fiers, a classifier fusion method based on the Bayesian
theory is applied in the multiple classifier system to
fuse the outputs of SVM classifiers.

Band Grouping of Hyperspectral Imagery

Basic principle of the band grouping of hyperspectral
imageries is that the adjacent bands which have high
correlation are be grouped into one group and the ones
with little redundancy should be separated into differ-
ent groups. Band grouping of hyperspectral imageries
as primary step of feature selection is investigated in a
wide range of investigations.

Feature selection (Band Selection) algorithms suit-
ably select a (sub)optimal subset of the original set of
features while discarding the remaining features to the
classification problem of hyperspectral images.
Feature selection techniques generally involve both a
search algorithm and a criterion function. The search

algorithm generates possible “solutions” of the feature
selection problem (i.e., subsets of features) and com-
pares them by applying the criterion function as a
measure of the effectiveness of each solution.

Benediktsson and Kanellopoulos (1999) pro-
posed absolute correlation as a measure of the
spectral bands similarity. After computing correla-
tion matrix between bands, they applied a manual
clustering to split hyperspectral image. Prasad and
Bruce (2008) proposed a divide and conquer ap-
proach that partitions the hyperspectral space into
contiguous subspaces using the reflectance infor-
mation. In another article (Martinez-Uso et al.
2006) they used a clustering method in relation-
ship to hyperspectral, multi-temporal classification.
After partitioning hyperspectral data using reflec-
tance information, they used Linear Discriminant
Analysis (LDA) on each subspace that ensures
good class separation in their clustering method.

Table 1 AVIRIS Indian Pine lands cover classes and available
reference samples

Class Land Cover Class Samples

1 Corn-no till 1434

2 Corn-minimum till 834

3 Grass/pasture 497

4 Grass/trees 747

5 Hay-windrowed 489

6 Soybeans-no till 968

7 Soybeans-minimum till 2468

8 Soybeans-clean till 614

9 Woods 1294

Fig. 3 ROSIS Pavia University Data, a) Original data and b)
Ground truth

Table 2 ROSIS Pavia University lands cover classes and avail-
able reference samples

Class Land Cover Class Samples

1 Trees 524

2 Asphalt 548

3 Bitumen 375

4 Gravel 392

5 Painted metal sheets 265

6 Shadows 231

7 Self-Blocking Bricks 514

8 Meadows 540

9 Bare Soil 532
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The resulting system is capable of performing re-
liable classification even when relatively few train-
ing samples are available for a given date.

Martinez-Uso et al. (2006) applied a grouping-
based band selection using information measures
on hyperspectral data. They used band grouping as
a primary step for a band selection technique. Guo
et al. (2006) found that the grouping based on the
simple criterion of only retaining features with
high associated mutual information (MI) values is
problematic when the bands were highly correlat-
ed. It is also presented that mutual information by
itself would not be suitable as a similarity mea-
sure. The reason is that it can be low because
either the two bands present a weak relation (such
as it should be desirable) or the entropies of these
variables are small (in such a case, the variables
contribute with little information).

Thus, it is convenient to define a strategy that mod-
ifies the results of band grouping using mutual informa-
tion. This paper applies a hybrid band grouping strategy
based on genetic algorithm and support vector machine
on the primary results of mutual information.
Furthermore Li et al. (2011) applied this method for
feature selection on hyperspectral data. Experimental
results on two reference data sets have shown that this
approach is very competitive and effective.

Classification of Hyperspectral Imagery
Using Support Vector Machine (SVM)

SVMs separate two classes by fitting an optimal linear
separating hyper plane to the training samples of the
two classes in a multidimensional feature space. The
optimization problem being solved is based on struc-
tural risk minimization and aims to maximize the
margins between the optimal separating hyper plane
and the closest training samples also called support
vectors (Weston and Watkins 1999; Scholkopf and
Smola 2002). Let, for a binary classification problem
in a d-dimensional feature space xi be a training data
set of L samples with their corresponding class labels
yi ∈ {1, −1}. The hyper plane f(x) is defined by the
normal vector w and the bias b where bj j= wk k is the
distance between the hyper plane and the origin,

f ðxÞ ¼ w:xþ b ð1Þ
For linearly not separable cases, the input data are

mapped into a high-dimensional space in which the
new distribution of the samples enables the fitting of a
linear hyper plane. The computationally extensive
mapping in a high dimensional space is reduced by
using a positive definite kernel k, which meets
Mercers conditions (Scholkopf and Smola 2002).

f xið Þf xj
� � ¼ k xi; xj

� � ð2Þ
where ϕ is mapping function. The final hyper plane
decision function can be defined as:

f ðxÞ ¼
XL
i¼1

aiyik xi; xj
� �þ g ð3Þ

where αi are Lagrange multipliers.
Recently, SVMs have attracted increasing attention

in remote-sensed hyperspectral data classification
tasks and an extensive literature is available. Melgani
and Bruzzone (2004) applied SVM for classification
of hyperspectral data. They obtained better classifica-
tion results compared to other common classification
algorithms. In Watanachaturaporn and Arora (2004)

Table 3 Final band grouping results on AVIRIS data

Groups 1 2 3 4 5 6 7 8 9 10 11 12

Bands 1–18 19–33 34–44 45–57 58–77 78–105 106–125 126–131 132–147 148–157 158–170 171–202

Bands
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I 
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e

Fig. 4 Mutual Information results of AVIRIS data
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study the aim is to investigate the effect of some
factors on the accuracy of SVM classification. The
factors considered are selection of multiclass method,
choice of the optimizer and the type of kernel function.
Tarabalka et al. (2010) present a novel method for
accurate spectral-spatial classification of hyperspectral
images using support vector machines. Their proposed
method, improved classification accuracies in compar-
ison to other classification approaches.

Multiple Classifier System (MCS)

Combining classifiers to achieve higher accuracy is
an important research topic with different names
such as combination of multiple classifiers, Multiple
Classifier System (MCS), classifier ensembles and clas-
sifier fusion. In such systems a set of classifiers is first
produced and then combined by a specific fusionmethod.
The resulting classifier is generally more accurate than
any of the individual classifiers that make up the ensem-
ble (Kuncheva 2004; Kuncheva and Whitaker 2003).

The possible ways of combining the outputs of the
L classifiers in a MCS depend on what information
can be obtained from the individual members.
Kuncheva (2004) distinguishes between two types of
classifier outputs which can be used in classifier com-
bination methods. The first types are classifiers that
produce crisp outputs. In this category each classifier
only outputs a unique class and finally a vector of
classes is produced for each sample. The second type
of classifier produces fuzzy output which means that in
this case the classifier associates a confidence measure-
ment for each class and finally produces a vector for
every classifier and a matrix for ensemble of classifier.

The key to the success of classifier fusion is that,
intuitively at least, a multiple classifier system should
build diverse and partially uncorrelated classifiers.
Diversity among classifiers is the notion describing the
level to which classifiers vary in data representation,
concepts, strategy etc. Consequently, this should be
reflected in different classifiers making errors for differ-
ent data samples. As shown in many papers, such phe-
nomenon of disagreement to errors is highly beneficial
for combining purposes (Kuncheva and Whitaker
2003). Most of the diversity measures have already been
studied for artificial data by Kuncheva (2004) and real
world data sets by Ruta and Gabrys (2000). In the
simplest case, a measure can be applied for examining T
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diversity between exactly two classifiers. Such mea-
sures are usually referred to as pair-wise diversity mea-
sures (PDM). For more than two classifiers, PDM is
typically obtained by averaging the PDM’s calculated
for all pairs of classifiers from the considered pool of
classifiers. Disagreement (Diss) and Double Fault (DF)
are two important diversity measures. Disagreement
takes the form of a ratio between the numbers of sam-
ples for which the classifiers disagreed, to the total
number of observations. This can be written as:

Diss ¼ NFT þ NTF

N
ð4Þ

Where NFF represents the number of elements
which both classifiers classified incorrectly, NTF is
the number of elements which the 1st classifier clas-
sified correctly and the 2nd classifier classified incor-
rectly, and NFT stands for the 2nd classifier classified
correctly and the 1st classifier classified incorrectly.
Second, the “Double Fault” estimates the probability
of coincident errors for a pair of classifiers, which is

DF ¼ NFF

N
ð5Þ

These two measures vary between [0–1]. If the dis-
agreement measure is greater the diversity is greater how-
ever if the double fault measure is lower the diversity is
greater. (This means that the relationship between dis-
agreement measure and diversity of classifiers is straight
but the relationship between DF and diversity is reverse).

The performance of a multiple classifier system es-
sentially depends on another major factor related to the
classifier’s pool: correlation. The correlation between
the classifiers to be fused needs to be small to allow
performance improvement in classifier fusion. Goebel et
al. (2002) introduced a simple computational method for
evaluating the correlation between two classifiers which
can be extended for more than two classifiers. Kuncheva

andWhitaker (2003) investigated the effects of indepen-
dence between individual classifiers on classifier fusion.
They showed that independent classifiers offer a dra-
matic improvement over the accuracy of fusion corre-
lated results. For each classifier, a confusion matrix M
can be generated using the labelled training data . The
confusion matrix lists the true classes versus the esti-
mated classes. Goebel et al. (2002), describe a classifier
correlation analysis for two classifiers.

ρ ¼ 2� NFF

NTF þ NFT þ 2� NFF
ð6Þ

Goebel et al., proposed an extension of the 2 class
correlation coefficient to n different classifiers as follows:

ρn ¼
nNf

N � Nf � Nt þ nNf
ð7Þ

where n is the number of classifiers, N represents the
number of samples,Nt is the number of samples for which
all classifiers had a right answer and N f is the number of
samples for which all classifiers had a wrong answer.

In recent years, more studies applied a classifier
fusion concept to improve classification results on re-
motely sensed data (Waske and Van der linden 2008;
Ceamanos et al. 2010). Producing a multiple classifier
system with low correlation and high diversity between
single classifiers can be useful for improving the classi-
fication accuracy in particular for multisource data sets
and hyper dimensional imagery.

SVM-based MCS for Classification
of Hyperspectral Image

A multiple SVM system based on the band grouping
for classification of hyperspectral images is introduced
in this paper. Figure 1 shows the general structure of
the proposed methodology. The proposed method

Table 5 Comparison of classification strategies on AVIRIS data set

Training Size Fusion methods Full data Feature Selection Methods

WMV SVM NB SFSS SFBS

%5 84.222 85.111 86 82 83.10 84

%10 90.444 91.556 92.889 89.778 90.24 90.40

%20 93.111 93.556 94 91.222 91.8 93

J Indian Soc Remote Sens



starts by splitting the hyperspectral image into few
band groups based on the modified mutual informa-
tion strategy.

First, the adjacent bands which exhibit a high mu-
tual information measure are grouped into one group
through a computation of the similarity measure of the
spectral information. The major benefit of the pro-
posed method is related to this step. All researches in
feature selection techniques tried to select just useful
bands while the proposed method tries to prevent
losing information in feature selection by a system
that enables the use of the entire high dimensional
hyperspectral in few band clusters.

Second, the proposed methodology applies a SVM
classifier for classification of each band group which
is produced in the previous step. While conventional
methods use SVM for the whole hyperspectral data by
definition of one single kernel function which may not
be adapted to the whole diversity of information, the
proposed method uses one SVM for each band group.
In fact, the kernel of each individual classifier applied
on each band group is adjusted according to the cor-
responding data. Finally, generated classification re-
sults fused to improve classification accuracy. In order

to show the performance of the proposed method,
results compared with two common classification
strategies on hyperspectral data: feature selection
method and standard SVM on entire bands.

Band Grouping Based on Mutual Information

As stated in the previous section, Mutual Information
is applied to split hyperspectral data into few band
groups. The entropy is a measure of uncertainty of
random variables, and is a frequently-used evaluation
criterion of feature selection (Martinez-Uso et al.
2006; Guo et al. 2006). If a discrete random variable
X has Φ alphabets and the probability density function
is p(x), x ∈ Φ, the entropy of X is defined as:

HðX Þ ¼ �
X
x2

pðxÞ log pðxÞ ð8Þ

In the task of band grouping, the entropy of each
band is computed by using all spectral information of
this band. For two discrete random variables X and Y,
which have Φ and Ψ alphabets and their joint proba-
bility density function is p(x, y),x ∈ Φ, y ∈ Ψ, the joint
entropy of X and Y is defined as:

H X ; Yð Þ ¼ �
X
x2

X
y2

p x; yð Þ log p x; yð Þ ð9Þ

The mutual information is usually used to measure
the correlation between two random variables and it is
defined as:

MI X ;Yð Þ ¼ HðX Þ þ HðY Þ � H X ; Yð Þ ¼ HðX Þ � H X=Yð Þ
ð10Þ

In Eqs. 9 and 10, X and Y represent pixel value of
two adjacent bands.

Fig. 6 Comparison between
classification maps of
AVIRIS data for, a) Stan-
dard SVM b) Naive Bayes
fusion method
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Fig. 5 Comparison between overall accuracies of different
classification strategies on AVIRIS data
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The basic principle of the band grouping is that the
adjacent bands which have high correlation should be
grouped into one group and the ones with little redun-
dancy should be separated into different groups.
Proposed method used Mutual Information to measure
the correlation between adjacent bands.

The redundancy between two bands is greater when
the value of MI is larger (Li et al. 2011). During the
process of band grouping based on the MI, the basic
principle is that the bands are divided into groups
according to local minima points of bands’ MI. These
local minima points can be obtained automatically by
comparing the neighbourhoods of every point.

After this initial band grouping, since the MI only
considers the correlation between bands, Genetic
Algorithm–Support Vector Machine (GA-SVM)
searches for the best combination of bands with more
similar information. Since there are hundreds of bands
in the hyperspectral imagery, the search space for GA
directly on the original band space will be too huge.
First, mutual information is employed to partition the
bands into disjoint subspace, thus getting the
irredundant set of bands and reducing the search space
at the same time. Second, GA–SVM is adopted to search
for the optimal combination of bands (Li et al. 2011).

Classifier Fusion Based on Naive Bayes

Naive Bayes is a statistical classifier fusion method
that can be used for fusing the outputs of individual
classifiers. The essence of NB is based on the
Bayesian theory (Kuncheva 2004). Denote by p(.)
the probability. In Eqs. 11, 12 and 13 Dj, (j=1,…, L)
is ensemble of classifiers where s=[s1,…, sL] denote
the output labels vector of the ensemble for unknown
sample x. Also, ωk, (k=1,…, c) denote the class labels
and c is the number of classes.

p S wk=ð Þ ¼ p s1; s2; . . . ; sL wk=ð Þ ¼
YL
i¼1

p si wk=ð Þ ð11Þ

Then the posterior probability needed to label x is

p wk S=ð Þ ¼ p wkð Þp S wk=ð Þ
pðSÞ ¼

p wkð ÞQ
L

i¼1
p Si wk=ð Þ

pðSÞ ; k ¼ 1; . . . ; c

ð12Þ
The denominator does not depend on ωk and can be

ignored, so the final support for class ωk is

μkðxÞ / p wkð Þ
YL
i¼1

p si wk=ð Þ ð13Þ

Where x is the sample of data with unknown class
label. The maximum membership rule (μ) will label x
in ωk class (winner class).

The practical implementation of the Naive Bayes
(NB) method on a data set with cardinality N is
explained below. For each classifier, a c×c Confusion
Matrix CMi is calculated by testing data set (Kuncheva
2004). The (g, h)th entry of this matrix, cmi

k;h is the

number of elements of the data set whose true class label
was ωk and were assigned by the classifier to class ωh.
ByNhwe denote the total number of elements of data set
from class ωh. Taking cmi

k;hi
=Nk as an estimate of the

posterior probability, and Nk/N as an estimate of the
prior probability, the final support of class ωk for un-
known sample x is

μkðxÞ /
1

NL�1
k

YL
i¼1

cmi
k;hi

ð14Þ

The maximummembership rule will label x in ωk class.
The Bayes classifier has been found to be surprising-

ly accurate and efficient in many experimental studies.
Kuncheva applied NB combination method on artificial
data as classifier fusion strategy (Kuncheva 2004). The
NB classifiers have been successfully applied in text
classification for example: Xu et al. (1992) applied NB
as classifier fusion method in applications to handwrit-
ing recognition. These researches have indicated the

Table 6 Correlation and diversity measures for AVIRIS data set

Data Set Correlation Disagreement
(Diss) ↓

Double Fault
(DF) ↑

Indian Pine 0.180 0.008 0.991
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Fig. 7 Comparison of class accuracies between standard SVM
and fusion methods for AVIRIS data
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considerable potential of Naive Bayes approach for the
supervised classification of various types of data.

SVM and Fusion Process

As mentioned in SVM-based MCS for Classification of
Hyperspectral Image section after band grouping, SVM
classifiers are separately applied to each group. It is
worth underlining that the kernel-based implementation
of SVMs involves the problem of the selection of mul-
tiple parameters, including the kernel parameters (e.g.,
parameters for the Gaussian and polynomial kernels)
and the regularization parameter C.

In our proposed method, the kernel of each individ-
ual classifier is adjusted according to the correspond-
ing band group properties. This paper utilized one-
against-one multi class SVM with Radial Basis
Function (RBF) kernel (see Eq. 15) as base classifier
(Imbault and Lebart 2004).

K x; x0ð Þ ¼ exp �λ x� x0k k2
� �

ð15Þ

Parameter C is the cost of the penalty. The choice of
value for parameter C influences the classification out-
come. If C is too large, then the classification accuracy
rate is very high in the training stage, but very low in the
testing stage. If C is too small, then the classification
accuracy rate is unsatisfactory, making the model use-
less. Parameter γ has a much stronger impact than

parameter C on classification outcomes, because its
value influences the partitioning outcome in the feature
space. An excessive value for parameter γ leads to over-
fitting, while a disproportionately small value results in
under-fitting. This paper utilized Grid search as a tech-
nique to adjust parameters of kernels. The search range
for C (SVM parameter) is in [2−2, 210], and [2−10, 22] for
γ (Kernel Parameter). Grid search is the simplest way to
determine the values for parameters C and γ. Sets of
values for parameters C and γ that produce the highest
classification accuracy rate in this interval are found by
setting the upper and lower limits (search interval) for
parameters C and γ and the jumping interval in the
search. Various pairs of (C, γ) values are tried and the
one with the best cross-validation accuracy is picked.
Methods for obtaining the optimal parameters in the
SVM are currently still under development. In this paper
we applied this simple method to select the best param-
eters of SVM classifiers. You can see more details in
Hsu et al. (2010). After producing of single classifiers
for the MCS, the proposed method applies three fusion
strategies. The first one is a fusion strategy based on the
Naive Bayes. The second method is Weighted Majority
Voting (WMV) which is based on the voting strategies
and can be applied to a multiple classifier system as-
suming that each classifier gives a single class label as
an output and is proposed by Kuncheva (2004). In this
fusion method, overall accuracies of classifiers are in-
troduced as the weights of the classifiers. In addition, the
final fusion strategy used an additional SVM on the
outputs of SVM classifiers. Outputs of each primary
SVM on each band group used as new feature vector
for new classification. All results from fusion strategies
are compared to a standard SVM which is applied on
full data with all hyperspectral bands.

Experimental Results

Data Sets

The proposed method was tested on two well-known
hyperspectral data sets. The first data set is made up of

Table 7 Final band grouping results on ROSIS data

Groups 1 2 3 4 5 6 7 8

Bands 1–22 23–33 34–46 47–57 58–73 74–84 85–93 96–103

Bands

M
I 

va
lu

e

Fig. 8 Mutual Information results on ROSIS data
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a 145*145 pixel portion of the AVIRIS image acquired
over north-western US, Indian Pine, captured in
June1992. The Indian Pine data is available in Purdue
University site. The second data set is from Pavia
University which is another common hyperspectral data
set. This data has been captured by the German ROSIS
sensor during a flight campaign over Pavia, northern Italy.

AVIRIS data contains 220 spectral bands in wave-
length range 0.4–2.5 μm but not all of the 220 original
bands are utilized in the experiments since 18 bands are
affected by atmosphere absorption phenomena and are
consequently discarded. Hence, the dimensionality for
the AVIRIS Indian Pine data set is considered 202. In
this experiment Fig. 2 shows original data and ground
truth of the AVIRIS Indian Pine data. From the 16
different land-cover classes available in the original
ground truth, seven are discarded; since only a few
training samples related to these classes are available.
The remaining nine land-cover classes are used to gen-
erate the training and test data sets (Table 1).

In ROSIS data, there exist 103 spectral bands which
covering the wavelength range from 0.43 to 0.86 μm.
This data set exhibits 610*340 pixels with 1.3 m per
pixel geometric resolution. Pavia University data is
available in Pavia University site. Figure 3 and
Table 2 show ROSIS Pavia University data set.

Experimental Results on AVIRIS Data Set

In the first step of the proposed method, it is necessary
to perform band grouping process based on the mutual

information processing in order to split hyperspectral
data into band groups. Figure 4 shows the obtained
results for AVIRIS data by using mutual information
as similarity measure between adjacent bands. In this
figure, local minima points correspond to the bands
with low redundancy. Initial band groups would be
produced based on these points. Moreover, a threshold
is considered related to the minimum number of bands
in each cluster. Table 3 shows the final band grouping
results after pruning MI-based groups by applying
GA-SVM. This table shows that the proposed band
grouping method produced 12 combinations of bands
on AVIRIS hyperspectral image.

After band grouping, one-against-one SVM was
applied on 12 band clusters. As proposed in 5.2,
proposed strategy applied grid search as the model
selection of SVM classifier. The search range for C
is in [2−2, 210], and [2−10, 22] for γ.

Table 4 represents the overall accuracy of SVM
classifiers which are applied to each band combina-
tion. In order to investigate the impact of the number
of labelled data on the classifier performance, all ex-
periments were applied to different percentage of
training and testing data sets. After producing the
multiple of classifiers for AVIRIS data, three decision
fusion strategies (i.e. Naive Bayes, Weighted Majority
Voting and SVM) are applied to the results of band
group’s classification. In order to show the merits of
the proposed methodology, this paper compares a
standard SVM on entire bands of AVIRIS data and
two feature selection methods. The feature selection

Table 9 Comparison between classification strategies on ROSIS data

Training Size Fusion methods Full data Feature Selection Methods

WMV SVM NB SFSS SFBS

%5 88.667 89.778 90.222 87.778 88.7 89

%10 91.778 92 92.444 90.667 91.8 92

%20 93.111 93.333 95.111 93.111 93.8 93.4

Table 8 Overall Accuracy of SVM classifiers on bands groups of ROSIS data for different training size

Training
size

Band
Group#1

Band
Group#2

Band
Group#3

Band
Group#4

Band
Group#5

Band
Group#6

Band
Group#7

Band
Group#8

%5 60.778 52.333 52.446 49.778 60.778 61.556 55.348 45.231

%10 61.778 54 63.642 51.333 61.556 60.444 56.284 46.468

%20 62.333 54.866 64.111 53.556 62 66 57 47.021
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strategies are the “sequential forward floating selec-
tion” (SFFS) and the “sequential backward floating
selection” (SBFS) techniques, which identify the best
feature subset that can be obtained by starting from an
empty set SFFS or from the complete set of features
SFBS and adding to SFS or removing from SBS the
current feature subset one feature at a time until the
desired number of features are achieved. More details
have been provided by Pudil et al., in (1994).

Table 5 compares the results of the three fusion
strategies with standard SVM and with the feature
selection methods for different percentage of train-
ing samples. In terms of classification performance,
this table shows that the resulting classification after
classifier fusion is generally more accurate than
standard SVM.

The overall results in Fig. 5 clearly demonstrate that
the proposed multiple classifier system outperforms
the feature selection strategies in terms of accuracy,
irrespective of the number of training samples. This
improvement benefits from splitting all bands of the

hyperspectral data into some band groups and apply-
ing the multiple classifier system on the produced
band groups.

From the classification accuracy viewpoint, all
three fusion strategies resulted in satisfactory results
when compared with the standard SVM. In more
detail, the Naive Bayes fusion strategy represented
the best accuracy with a gain in overall accuracy of
94 % with 20 % training samples that caused accuracy
improvement of standard SVM up to 3.2 %. The
analysis of Fig. 5 shows two other fusion methods,
Weighted Majority Voting and SVM-based fusion;
perform better than the standard SVM up to 0.88 %
and 1.3 % respectively. Figure 6 shows the classifica-
tion map for NB fusion method and standard SVM on
AVIRIS data. This visual interpretation supports the
results of the statistical accuracy assessment.

Figure 7 demonstrates the accuracies of different
classification strategies for all nine classes of the
AVIRIS data set. For some classes, one (e.g. Class
9#Woods), two (e.g. Class 6#Soybeans-no till) or all
three (e.g. Class 7#Soybeans-minimum till) fusion
algorithms perform better than the results of standard
SVM in terms of classification accuracy. This suggests
that the decomposition of hyperspectral classification
problem into a multiple of classifiers represents an
effective way of improving the overall discrimination
capability.

As shown in Fig. 7, the NB fusion method out-
performs most standard SVM class accuracies or at
least achieves similar results. Although the NB

Fig. 10 Comparison between classification maps of ROSIS data for, a) Standard SVM and b) Naive Bayes fusion method
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Fig. 9 Comparison between overall accuracies of different
classification strategies on ROSIS data
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method improves the overall accuracy of standard SVM
and other fusion methods, there are still some classes for
which this method produced lower accuracies than other
methods specially for class 2 (Corn-minimum till) and
class 4 (Grass/trees). Since the diversity and correlation
between classifiers are the basic assumption of an ade-
quate classifier combination, this paper also computed
the measures Disagreement and Double Fault for the
AVIRIS data set (Table 6).

Results show that the MCS applied to AVIRIS data
has low correlation and high diversity between classi-
fiers. This is the most important cause of high perfor-
mance of multiple classifier system in the proposed
methodology.

Experimental Results on ROSIS Data Set

In order to prove the efficiency of the proposed meth-
odology, further experiments are performed on the
second hyperspectral data set. Regarding the band
grouping similar results are obtained on ROSIS
Pavia University data set as for AVIRIS data set but
with fewer groups. Figure 8 shows the mutual infor-
mation result on 103 spectral bands of ROSIS data.

The initial band groups are generated based on the
MI measures pruned by using the proposed GA-SVM
strategy. Table 7 represents final 8 band groups on this
data set. The results of SVM classifier for this data set
are shown in Table 8 in terms of overall accuracies.

For comparative purposes, all three decision fusion
methods, standard SVM and feature selection methods
are applied on the ROSIS data set.

Similar to Table 5 for AVIRIS data, Table 9 compares
results of fusion methods and standard classifier as well
as feature selection strategies for ROSIS data set. It can
be observed that all three decision fusion methods spe-
cially NB improve the results of traditional classification
results on full data. Figure 9 represents overall accura-
cies of all applied classification strategies

The comparison of accuracy improvement of
Bayesian fusion algorithm with respect to the standard
SVM on two hyperspectral images illustrates that the
AVIRIS data exhibited higher performance. The com-
parison of the results of Tables 5 and 9 show that this
improvement for AVIRIS data is 3.2 % while it is 2 %
for the ROSIS data.

Figure 10 represents the visual classification results
of standard classification and NB fusion methods for
ROSIS data. In order to compare the classification

methods in terms of single class accuracies, Fig. 11
illustrates class accuracies for all classification strate-
gies. Similar to results on first hyperspectral image,
Bayesian fusion strategy (NB) outperforms standard
SVM. However, for class 1 (Trees) and class 8 (Self-
Blocking Bricks), NB method exhibits lower accura-
cies in comparison with the standard classifier. Finally,
Table 10 demonstrates the correlation and diversity
measures of the classifiers in MCS for the ROSIS data.
The comparison between the results of the two data
sets shows that the MCS for the first data set is
superior with respect to correlation and diversity mea-
sures. It means that multiple classifier system for the
AVIRIS data set exhibits higher diversity and lower
correlation measures in comparison ROSIS data.

Discussion and Conclusion

In this paper, the performance of a SVM based multi-
ple classifier system for classification of hyperspectral
imageries is assessed. The proposed approach applies
a band grouping system based on the modified mutual
information on hyperspectral image, in order to split it
into few band groups. After that SVM classifiers are
trained on each group to produce a multiple classifier
system. Finally decision fusion strategies are applied
to fuse the decisions of all the classifiers.

The first objective of the proposed method con-
cerns the effectiveness of the band grouping strategy

Table 10 Correlation and diversity measures for ROSIS data
set

Data Set Correlation Disagreement
(Diss) ↓

Double Fault
(DF) ↑

Pavia
University

0.312 0.219 0.781
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Fig. 11 Comparison of class accuracies between standard SVM
and fusion methods for ROSIS data

J Indian Soc Remote Sens



to solve the high dimensionality problem of
hyperspectral data. Some previous researches only
tried to select useful bands in dimension reduction
techniques to overcome data redundancies .
Nevertheless, the main drawback of dimension reduc-
tion techniques is related to the loss information
through elimination of some bands. Using band group-
ing, the proposed method tries to overcome this weak-
ness by enabling the use of the entire high dimensional
hyperspectral image space. Using the conventional
SVM for the whole heterogeneous data requires the
definition of one single kernel function, which may
not be suitably adapted to the whole diversity of
information. It might be more adequate to take advan-
tage of this heterogeneity by splitting the data into a
few distinct subsets, defining a kernel function that is
adapted for each data source separately and fuses the
derived outputs. To achieve this, band grouping step
of the proposed method overcomes this difficulty. In
fact, the kernel of each individual classifier on each
band cluster is adjusted according to the correspond-
ing properties of those band clusters.

The second objective of the work is concerned with
combining different classification results to improve
the classification accuracy. Multiple classifier systems
– combining the results of a set of base learners –have
demonstrated promising capabilities in improving
classification accuracy. As result, in this paper all
decision fusion algorithms outperformed standard
SVMs which use the entire set of bands of the
hyperspectral image. Comparing the results of all the
experiments carried out on the two considered datasets
show that the proposed SVM-based MCS provided
higher accuracy than an SVM standard classifier and
feature selection strategies. Because of the high ro-
bustness and accuracy of Bayesian decision fusion
method (NB) this method outperforms the two other
fusion strategies.

In comparison with the other research papers in
terms of classification accuracy, Ceamanos and his
colleagues (2010) received approximately 91 % over-
all accuracy for 25 % of training samples with 6
classifiers on Indiana data set in a SVM ensemble
system while the results were improved by our pro-
posed method to be up to 3 % for 12 classifiers. The
results obtained by the proposed MCS classification
approach gave both better classification accuracies and
a higher robustness compared to the traditional classi-
fiers as conclusion of this paper. Further studies will

focus on the new decision fusion methods, novel band
grouping strategies and using of new classification
methods especially fuzzy classifiers. In addition, to
improve classification results after solving Hughes
problem, the spatial information can be integrated.
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