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Abstract— The contribution of this paper is an experimen-
tally verified real-time algorithm for combined probabilistic
search and track using multiple unmanned aerial vehicles
(UAVs). Distributed data fusion provides a framework for
multiple sensors to search for a target and accurately estimate
its position. Vision based sensing is employed, using fixed
downward-looking cameras. These sensors are modeled to
include vehicle state uncertainty and produce an estimate
update regardless of whether the target is detected in the frame
or not. This allows for a single framework for searching or
tracking, and requires non-linear representations of the target
position probability density function (PDF) and the sensor
model. While a grid-based system for Bayesian estimation was
used for the flight demonstrations, the use of a particle filter
solution has also been examined.

Multi-aircraft flight experiments demonstrate vision-based
localization of a stationary target with estimated error co-
variance on the order of meters. This capability for real-time
distributed estimation will be a necessary component for future
research in information-theoretic control.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) have proven successful

in information gathering tasks, such as target search or

environmental sensing. To robustly estimate a target state,

an information gathering system must incorporate models

for uncertainty in the sensor, target model and a model for

its own state. Robust estimation becomes more important as

teams of agents use these estimates to plan their own motion,

as in [1–3]. In the case where an agent has noisy sensors,

or a limited sensor field of view, the use of probabilistic

estimation becomes more important to develop accurate

target estimates.

Traditionally, probabilistic ‘search’ problems represent the

unknown state of a target by decomposing the search space

into as many regions as is computationally feasible and

updating each region as it is observed. ‘Track’ problems

generally represent target state as a multivariate parameter-

ized PDF (often Gaussian), but the choice of representation

precludes incorporation of sensor readings that do not detect

the target. In this work, we present a unified framework

that accounts for ‘search’ by updating the target probability

density function even when the target is not detected, but

also achieves localization or tracking by updating an estimate

using multiple observations of the target.

Campbell et. al. [4] demonstrate a UAV based system

for geolocation; a sigma point filter is used to filter sensor
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data from a gimbaled camera to estimate target location.

Low-level target tracking guarantees that the target will be

observed at all times. The work presented here differs from

the work of [4] in that the search for targets is addressed

in addition to target localization. Additionally, this work

uses a decentralized multi-sensor approach, in which sensor

readings are fused across a team of vehicles.

Probabilistic maps for search have been used extensively;

recently the authors in [5] used probabilistic maps for pursuit

evasion games using unmanned helicopters. While search

was explicitly addressed, localization was not examined in

the framework of this paper.

The development of a unified framework for search and

track was first proposed in [6]. Furukawa et. al. use a grid-

based PDF to represent target position in the plane; this

approach is effective for search, but falls short computa-

tionally once the target has been effectively localized. The

precision of the estimate is limited by the resolution of

the grid, and states with more than two dimensions (such

as position and velocity in two dimensions) are difficult to

model. In this work, a particle filter is used, in addition to

a grid, in the hope that better localization results may be

obtained in a search and localization framework, with similar

computational effort.

The major contributions of this paper are the development

and demonstration of a UAV based system for decentralized

Bayesian search and localization. A grid-based Bayesian

filter and a particle filter are used to maintain a target

estimate. This system uses off the shelf hardware compo-

nents to search for targets, and once detected, localize their

position. High localization accuracy is achieved using low-

cost UAVs by modeling the sensor uncertainty and fusing

multiple observations using a Bayesian estimator.

II. DECENTRALIZED FILTERING FOR SEARCH AND

TRACK

A decentralized estimator provides a method to update an

estimate using multiple observations and a process model

of the target state evolution. Recursive Bayes estimation is

a method to update the filtering density p(xk|z1:k) using a

sensor model p(zk|xk), and a process model p(xk+1|xk).
The observation zk is applied in the update step (1a) and the

process model is applied in the prediction step (1b).

p(xk|z1:k) =
p(zk|xk)p(xk|z1:k−1)

p(zk|z1:k−1)
(1a)

p(xk+1|z1:k) =

∫
p(xk+1|xk)p(xk|z1:k)dxk (1b)
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The sensor fusion problem is also easily solved in this

framework using the sensor model p(zk|xk) to relate the

sensors. In our problem, the measurements (z1
k and z2

k) from

the two airplanes are independent so

p(zk|xk) = p(z1
k, z

2
k|xk) = p(z1

k|xk)p(z2
k|xk). (2)

In the case where our distributions are Gaussian and the

models are linear, (1) can be solved analytically and results in

the well-known Kalman Filter [7]. For almost all other cases,

analytical solutions cannot be obtained and approximations

have to be used. The most common approximation is the

Extended Kalman Filter (EKF) [8], that linearizes the system

around the current state estimate and assume Gaussian distri-

butions. To treat more complex distributions, the Unscented

Kalman Filter (UKF) can be used [9]. This filter uses sigma

points to represent the distribution undergoing a non-linear

transform. While this approach has been used successfully in

[4, 10], the EKF and UKF are unable to model highly multi-

modal or skewed distributions. Other methods for treating

arbitrary distributions with non-linear models are approxi-

mating the distributions spatially as a grid or with movable

gridpoints (particles). In the grid-case, (1) is computed for

each grid point. The case with particles result in the particle

filter, see [11].

In this paper, where a search task is treated, the distribu-

tions are far from Gaussian. A grid-based or particle filter

approach are therefore more suited, since they better captures

the successive application of ‘no detection’ updates on a prior

target distribution that might be uniform over a wide area.

Numerous approaches to data fusion have been explored

by Durrant-Whyte et. al. [12, 13]. These techniques, such as

the information filter and channel filter, often exploit the fil-

tering technique to minimize the information communicated

between nodes. In the work presented here, a parameteriza-

tion of the likelihood function p(zk|xk) is available and the

parameters are distributed among the aircraft. The estimate is

then updated using (1a). The likelihood function is given by

one of two functional forms for the vision sensor: the case

in which the target is observed at some camera coordinates

and the case where it is not observed.

III. MODELING AND IMPLEMENTATION

An accurate model that captures the inherent uncertainty of

an imperfect sensor is a crucial component of any real-world

estimation system. Including observations in which the target

is not detected enables probabilistic search and localization

using all available information and requires sensor models

for both the ‘detect’ (D) and ‘no detect’ (D̄) cases. The

‘detect’ sensor model p(Dk, zk|xk) is used to update the

estimate when the target is detected at image coordinates

zk = (u, v). The ‘no detect’ sensor model p(D̄k|xk) provides

the update when the target is not detected in the frame.

The time subscript will be dropped, assuming that all values

correspond to the present time.

The sensor is modeled as a standard pinhole camera and

the probability of detecting a target in the field of view is

based on the image resolution at the target location. The

visibility of a target in the field of view depends on the

Fig. 1. Coordinate systems. There is a fixed coordinate system and an
image coordinate system, the rotation between them is described by the
Euler angles ψ, θ, φ.

aircraft position T and orientation defined by the Euler angle

vector q = [ψ θ φ]. When the aircraft state is unknown, the

visibility is a random variable which can be conditioned on

the aircraft state estimates. We derive a probability of true

detection, p(D,V |x), and assume that the probability of false

detection is constant per frame, p(D, V̄ |x) = Pfalse. We also

assume that the location of a false detection is uniformly

distributed over the image area (3).

p(D, z|x)

= p(z|x,D, V )p(D,V |x) + p(z|x,D, V̄ )p(D, V̄ |x)

= p(z|x,D, V )p(D,V |x) + (image area)−1Pfalse (3)

The detection likelihood p(D,V |x) and localization like-

lihood p(z|x,D, V ) components of the model are derived

separately.

A. Target Localization Model

The aircraft translation T = [TXY h] and Euler angle

vector q define a transformation UT (x, T, q) : R2 → R
2

from ground to image coordinates, as shown in Fig. 1.

This transformation also depends on the intrinsic camera

parameters such as focal length, which are estimated using

standard calibration procedures, see e.g., [14]. If T and q are

known, we expect to observe the target at z = UT (x, T, q),
and so p(z|x,D, V ) = δz(z − UT (x, T, q)), where δz is a

two-dimensional delta function in image coordinates.

When the aircraft state is unknown, p(z|x,D, V ) requires

marginalizing over state estimates (4). We assume that each

of the Euler angles, altitude, and ground position are esti-

mated independently, breaking down p(T, q) by individual

state estimates.

p(z|x,D, V ) =

∫
T,q

p(z|x,D)p(T, q)

=

∫
T,q

δz(z − UT (x, T, q))p(T, q)

=

∫
δz(z − UT (x, T, q))p(TXY )

p(h)p(ψ)p(θ)p(φ) dTXY dh dψ dθ dφ (4)

For small estimation errors, the transformation UT (x, T, q)
can be approximated by a first order Taylor expansion about
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the state estimate, so that P (z|x,D, V ) for uncertain aircraft

state becomes a series of one-dimensional convolutions. The

partial derivatives of UT (x, T, q) with respect to translation

are simply components of the rotation matrix, and derivatives

with respect to the Euler angles are obtained by differentiat-

ing the rotation matrix.

When the UAV state estimation errors can be approxi-

mated as Gaussian or Gaussian mixture models (GMMs),

the PDF p(z|x,D, V ) will be Gaussian (or GMM) in image

coordinates z because the set of Gaussians is closed under

convolution. However, the likelihood function on ground

coordinates x will not be Gaussian or GMM due to the non-

linear dependance on the Euler angles. This is similar to the

effect seen in range-bearing sensors, where the likelihood

function has a characteristic banana-like shape due to the

bearing angle estimate uncertainty.

B. Target Detection Model

The probability of a true detection p(D,V |x) is a function

of the image resolution r(z, T, q) at the target’s image

coordinates, z = UT (x, T, q), as well as the visibility of

the target. The product of four step functions si(z) along

the edges of the image defines the visible region in image

coordinates. For uncertain aircraft state, marginalization is

required as in the previous section.

p(D,V |x) =

∫
T,q

p(D|V, x, T, q)p(V |x, T, q)p(T, q)

=

∫
T,q

p(D|V, r(z, T, q))

4∏
i=1

si(z)p(T, q) (5)

The dependence on resolution can be fitted to experimental

data including true and missed detections using Bayes’

rule (6). p(D) is the detection rate for the data set and

p(r(z, T, q)|D) and p(r(z, T, q)|D̄) can each be fitted as a

parametric distribution (in this case Gaussian) from the data

set.

p(D|r(z, T, q)) =

p(r(z, T, q)|D)p(D)

p(r(z, T, q)|D)p(D) + p(r(z, T, q)|D̄)p(D̄)
(6)

With the resolution and camera coverage expressed in

image coordinates, the aircraft state uncertainties will be

modeled independently as in the previous section and repre-

sented as a two-dimensional convolution mask in image co-

ordinates. Therefore the marginalization in (5) corresponds to

application of the convolution mask M(T̂ , q̂). We convolve

the aircraft state uncertainty with the nominal likelihood

function p(D|x; T̂ , q̂) based on the estimated state (T̂ , q̂).
Recall that detection likelihood function p(D|x) includes

both true and false detection.

p(D|x) = p(D,V |x) + p(D, V̄ |x)

= p(D|V, r(z, T̂ , q̂))
4∏

i=1

si(z) ∗M(T̂ , q̂) + Pfalse (7)

TABLE I

DETECTION MODELING BASED ON CALIBRATION DATA SET.

p(res|D) N (60, 40.06)
p(res|D̄) N (60, 62.03)
P (D|V ) 0.96
Pfalse 0.004

Fig. 2. An example of a no-detect likelihood function. Dark areas indicate
values close to 1, whereas the lighter areas indicate values closer to zero.

For Gaussian state estimates, the form of the detection

likelihood is convolution of a Gaussian and a step function

in two dimensions, resulting in cumulative Gaussian distri-

butions. As these have no closed form equation, Sigmoid

functions are used to approximate the image boundaries,

where the Sigmoid function parameters may vary for best

fit along each edge.

Fig. 2 shows an example no-detect likelihood function

used in the flight experiments. Dark areas of the plot indicate

values close to 1, whereas the lighter areas indicate values

closer to zero. The effect of decreasing camera resolution

may be seen in the upper right side of the field of view.

The camera and aircraft parameters for this example are

shown in Tables I and II, respectively. Representations such

as a particle filter or grid based filter are better suited than

EKF methods for this type of likelihood, which is obviously

neither Gaussian or convex.

C. Target Model

In this work, it is assumed that only a single target is in

the area of interest. Multiple targets have been consider in

[15]. The primary difficulty in dealing with multiple targets is

dealing with the problem of data association, or determining

which sensor measurement comes from which target. In this

work, we will not examine the data association problem, as

there is already a rich literature on the topic. Also, the target

is assumed to be static; no update step is necessary.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

Flight tests of a two-aircraft team with fixed downward-

looking cameras were performed at Camp Roberts, CA

in August of 2007. The airframe and infrastructure have

been previously described in [16, 17]. A series of flight

tests were performed to verify sensor modeling, localization
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Fig. 3. Cumulative Probability of Detection.

accuracy and system performance. Both grid-based Bayesian

estimation and particle filtering were tested as representations

for the estimated target state.

The grid representations were tested in flight, to update

the target position in real-time. Real-time target position

data was relayed over an 802.11b wireless link to a ground-

based visualization GUI. The particle filter representation

was tested post-flight, on the same data collected from the

grid-based flight; while the particle filter was not run in real

time, testing indicates that is fast enough to do so. Video

was processed at roughly four frames per second.

For the sake of real-time data fusion, likelihoods were

distributed between aircraft via an ad-hoc wireless network.

Flight tests indicated that the wireless network was sufficient

to ensure that all likelihoods were communicated between

aircraft.

A. Grid-based Estimation

Fig. 5 shows the evolution of the searching process with

dark areas representing high probability. Snapshots of the

search density function and aircraft trajectories are shown

during the ’search’ portion of the mission, at 70 and 105

seconds, before the target has been detected. UAV 2 detects

and localizes the target at roughly 120 seconds. For this flight

experiment, the prior was uniform over a one kilometer by

one kilometer square. Each grid cell has a width of 12.5

meters. In this flight, the system effectively localized the

target to within the resolution of the filter; a red star is used

to indicate target position when the target has been localized

to a single grid cell. Clearly, the granularity of the grid is a

limitation on the possible localization accuracy.

For the purposes of path planning for target search, [18]

demonstrated that cumulative probability of detection, p(D)
is an appropriate metric for determining the a priori value

of a search trajectory. When the target is not detected over a

series of k steps, the probability of detection may be found

by (8). Fig. 3 shows the cumulative probability of detection.

P (D) = 1 −

∫
p(xk|z1:k = D̄) dxk

= 1 −

∫
p(xk)

k∏
j=1

p(zj = D̄|X) dxk (8)

Fig. 4 shows post processing of the same flight data using

a grid cell size of 0.67 meters. Four consecutive filtering

PDFs are shown, beginning with the first observation of the

510 520 530 540

490

500

510

y
 (

m
)

510 520 530 540

490

500

510

510 520 530 540

490

500

510

x (m)

y
 (

m
)

510 520 530 540

490

500

510

x (m)

Fig. 4. Evolution of filtering PDF over four consecutive observations,
beginning with the first observation of the target. Dark area represents high
probability, and the mean of each PDF is marked.

target. Coverage of the entire search area at this grid density

would require over two million cells, which is not feasible

for real time performance on the current flight computer.

However, this post processing provides an idea of the system

performance that could be achieved with more computing

power using the same sensors. Because the quantization error

for the fine grid is greatly reduced, this implementation can

be used as a benchmark for comparing the accuracy of the

original grid and particle filter implementations.

B. Particle Filter Implementation

The particle filter used is the standard Sampling Im-

portance Resampling (SIR) particle filter first introduced

by [11]. For a more recent overview, see [19]. The SIR

version of the particle filter resamples the particles after each

time step, maintaining an equal weight for all particles. This

makes the probability proportional to the density of particles

in a certain area. The number of particles used is 6400, which

is equal to the number of cells in the one square kilometer

grid.

The initial probability is again uniform as in the previous

section. The target position is modeled as a random walk

according to

xk+1 = xk + wk, (9)

with Cov(wk) = diag(1, 1) because the resampling step

requires process noise. Fig. 5(b) shows the target location

estimate using a particle filter.

C. Error Analysis and Comparison

The implemented grid cell size of 12.5 meters limits the

localization accuracy through quantization effects, and can-

not be significantly reduced using the current flight computer.

The interpretation of the particle filter as an adaptive grid

suggests that bias in the estimate due to quantization can

be reduced without increasing computation cost by moving

particles to represent areas of interest in greater detail. This

is demonstrated in Fig. 5, where the particles concentrate
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Fig. 5. (a) Evolution of the grid-based PDF throughout the search and localization process, with high probability shown as dark (b) Evolution of the
particle filter throughout the search and localization process.

around the observed location of the target, and in Fig. 6

where the particle filter produces an estimate which closely

corresponds to that of the post-processed high-resolution

grid. Covariance ellipses corresponding to the filtering PDFs

also show the effect of a large grid size.

Fig. 7 shows time evolution of a scalar measure of

covariance for the three implementations. Again considering

the fine grid as a benchmark, we observe that the estimate

uncertainty decreases with the observations from each sensor

and otherwise remains constant for the stationary target.

The initial covariance for the fine grid represents a reduced

search area. After the target is observed, the square kilometer

grid always has higher uncertainty due to quantization.

The covariance of the particle filter becomes very small

when the target is observed, but then increases due to the

required artificial process noise. This increased uncertainty

is an artifact of the filter implementation and is a drawback

of particle filtering of a stationary target. The uncertainty

ellipse shown in Fig. 6 represents the minimum particle filter

uncertainty, which is achieved immediately after the final

observation.

In addition to quantization, aircraft state estimate uncer-

tainty also contributes to the estimation error. To analyze

the contribution of aircraft state uncertainty, we assume that

the camera is aligned with the aircraft e3 (local down)

axis and the target appears in the center of the image.

Therefore, the target position x lies along the e3 direction

with x · e3 = 0, where {ei} are fixed world coordinates.

The partial derivatives of the resulting expression (10) for x

result in the target position estimate uncertainties shown in

Table II, based on linearization at a set of nominal parameter

values.

The largest contributor to target estimate uncertainty is the

UAV’s position along the direction of motion, which has high

uncertainty due to 4 Hz GPS updates. This uncertainty will

be reduced in future work by filtering the GPS using angular

data. Pitch and roll angle also contribute significantly, espe-

cially for larger nominal angles or low quality INS sensors.

x = T̂Xe1 + T̂Y e2+

h

cosφ cos θ
(cosφ sin θ cosψ + sinφ sinψ)e1+

h

cosφ cos θ
(cosφ sin θ sinψ − sinφ cosψ)e2 (10)

V. CONCLUSIONS

This work presents a decentralized approach to target

search and localization using low-cost UAVs and sensors.

Using low-resolution fixed cameras, a team of UAVs can

successfully search a significant area and localize a target

with high accuracy by filtering multiple observations. This
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TABLE II

ERROR MODELING FOR LOCALIZATION

Parameter nominal σ σ localization (m)

TX (along-track) n/a 10.5 m 10.5
TY (cross-track) n/a 5.5 m 5.5
h 90 m 5.5 m 1.77
ψ 0 r 0.01 r 0.29
θ 0.17 r 0.05 r 4.65
φ 0.26 r 0.02 r 1.96

440 460 480 500 520 540 560

440

460

480

500

520

540

x (meters)

y
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Fine grid
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Particle

Fig. 6. Mean and covariance ellipse (sigma squared) for fine grid,
coarse grid, and particle filter final estimates. Note that the particle filter
representation achieves smaller bias error with computation cost similar to
the coarse grid.

work has demonstrated the importance of choosing an ap-

propriate representation for the target PDF. The grid-based

distribution is effective for the search problem, the particle

filter approach was shown to produce superior localization

under the same computational constraints.
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