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Introduction

A new technique for preconditioning electric field integral equations (EFIEs) by
leveraging Calderón identities is presented. In contrast to all previous Calderón
EFIE preconditioners, the proposed preconditioner is purely multiplicative in nature,
applicable to open and closed structures, straightforward to implement, and easily
interfaced with existing method of moments codes. Numerical results demonstrate
that the method of moments (MoM) matrix equations obtained using the proposed
preconditioner converge rapidly, independently of the discretization density.

Background

Let Γ and n̂r denote an orientable PEC surface residing in a homogeneous medium
with electric permittivity ǫ and magnetic permeability µ, and its outward pointing
unit normal at r, respectively. The current J(r) induced on Γ by the incident
electric field Ei(r) satisfies the EFIE

T (J) = −n̂r × Ei. (1)

(For the definition of T , see [1].) To solve EFIE (1) using the MoM, Γ is ap-
proximated by a mesh of planar triangles with minimum edge size δ, and J(r) is
approximated as J(r) ≈

∑N
n=1

Infn(r) where fn(r), n = 1, . . . , N are Rao-Wilton-
Glisson div-conforming basis functions defined on the mesh’s N internal edges. To
determine the coefficients In, the above expression for J(r) is substituted into (1)
and the resulting equation is tested with curl-conforming functions n̂r×fn yielding
the N × N EFIE MoM system

¯̄Z Ī = V̄ (2)

where (¯̄Z)i,j =
〈

n̂r × f i,T (f j)
〉

, (V̄)i = −
〈

n̂r × f i, n̂r × Ei
〉

, and (Ī)j = Ij. For
large N , (2) only can be solved iteratively. Unfortunately, T ’s singular values reside
on two branches accumulating at zero and infinity, and therefore ¯̄Z has a high
condition number when δ → 0. Under these conditions, the iterative solution of (2)
converges slowly. To solve this problem, consider the Calderón preconditioned EFIE

T 2 (J) = −T
(

n̂r × Ei
)

. (3)

Its discretization leads to well-conditioned EFIE MoM systems independently of δ
because T 2’s singular values all reside on one branch accumulating at −1/4. Un-
fortunately, the direct discretization of T 2 is infeasible as T (fn) is not available in
closed-form. Invariably, bottlenecks in indirectly discretizing T · T can be traced
to the need to construct a well-conditioned Gram matrix linking the domain and
range of the EFIE operator. That said, a variety of methods that discretize each
factor in the product T 2 using ad hoc integration rules and/or operatorial manip-
ulations exists [2, 3, 4]. Unfortunately, none of them can be implemented directly
starting from an implementation of the impedance matrix ¯̄Z (which is a matrix pro-
duced by any standard EFIE MoM code) and this compromises these techniques’s
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Figure 1: (a) RWG div-conforming basis function (f), (b) RWG curl-conforming
basis function (n̂r × f), (c) BC quasi-curl-conforming basis function (linear combi-
nation of div-conforming RWGs defined on the barycentric mesh)

current impact on the computational electromagnetics state of the art. This paper
presents a Calderón multiplicative preconditioner (CMP) that is trivially integrated
into existing EFIE MoM codes. As an added advantage over existing Calderón pre-
conditioners, the proposed preconditioner not only applies to closed structures, but
(with minor modifications) to open ones as well.

Calderón Multiplicative Preconditioner

Starting from an arbitrary mesh of planar triangles that discretize Γ, further termed
the initial mesh, a barycentric mesh is obtained by adding the three medians to each
triangle (Fig. 1(a)); denote by N b the number of edges in the barycentric mesh. Note
that a set of N b RWG basis functions f b can be defined on this barycentric mesh
(in what follows, f b

i will denote the RWG function defined on the i-th edge of the
barycentric mesh). The proposed preconditioner adopts a discretization of the dual
of the range of T on the barycentric mesh using the Buffa-Christiansen (BC) div-
conforming basis functions fBC [5]. The BC basis functions are defined on the
edges of the initial mesh (in the following fBCi will denote the BC function defined
on the i-th edge of the initial mesh) and are linear combinations of div-conforming
RWGs defined on the barycentric mesh (Fig. 1(c)). These functions are strictly div-
conforming (by construction); they also are quasi-curl-conforming in that they very
much behave like curl-conforming RWGs (Fig. 1(c)). As a consequence, the Gram
matrix linking BC and curl-conforming RWGs is well-conditioned since it behaves
like the Gram matrix linking curl- and curl-conforming RWGs whose condition num-
ber is notoriously low [2]. These insights lead to the following discretization strategy
for T 2 = T · T : the right operator T is discretized using div-conforming RWGs f

(source) and curl-conforming RWGs n̂r × f (test), while the left operator is dis-
cretized by using div- and quasi-curl-conforming BCs fBC (source) and curl- and
quasi-div-conforming BCs n̂r×fBC (test). The inverse Gram matrix between n̂r×f

and fBC links the two discretizations. In other words
(

T 2
)

dis
= ¯̄ZBC

¯̄G−1

m
¯̄Z (4)

where (¯̄Z)i,j = 〈n̂r × f i,T (f j)〉, ( ¯̄ZBC)i,j = 〈n̂r × fBCi,T (fBCj)〉, and ( ¯̄Gm)i,j =
〈n̂r × f i,fBCj〉. The implementation of (4) can be reconducted to the computa-

tion of a single impedance matrix ¯̄Zb defined on the barycentric mesh, computable
(and compressible) using standard codes. This is accomplished by using two trans-

formation matrices ¯̄P ∈ RNb
×N and ¯̄R ∈ RNb

×N . ¯̄P’s and ¯̄R’s column indices
point to edges on the initial mesh, while ¯̄P’s and ¯̄R’s row indices point to edges
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Figure 2: Analysis of scattering from a space shuttle with a waveguide antenna: (a)
mesh (b) waveguide detail (c) number of iterations (d) absolute value of the current
density induced on the radar dish’s surface

on the barycentric one. On the ith-row of ¯̄P there are the coefficients of the BC
basis function fBCi written as a linear combination of barycentric RWG functions.
Similarly, on the ith-row of ¯̄R there are the coefficients of the standard RWG basis
function f i written as a linear combination of barycentric RWG functions. The
explicit expression for all these coefficients, in the case of closed and open struc-
tures, can be found in [1]. By using these matrices, equation (4), and by defining
(¯̄Zb)i,j =

〈

n̂r × f b
i ,T (f b

j)
〉

,
(

V̄b
)

i
= −

〈

n̂r × f b
i , n̂r × Ei

〉

, and ¯̄Q = ¯̄P ¯̄G−1
m

¯̄RT , it

can be shown [1] that ¯̄ZBC
¯̄G−1

m
¯̄Z =

(

¯̄PT ¯̄Zb ¯̄Q ¯̄Zb ¯̄R
)

and that (3) is converted

into matrix equation
(

¯̄PT ¯̄Zb ¯̄Q ¯̄Zb ¯̄R
)

Ī =
(

¯̄PT ¯̄Zb ¯̄Q
)

V̄b (5)

which is the proposed CMP. The vector ¯̄I ∈ CN is the same as that appearing in
(2), i.e. it contains expansion coefficients for RWGs defined on the initial mesh.

Numerical Results

The performance of the proposed method is demonstrated by analyzing scattering
from a space shuttle model (Fig. 2) and a radar dish (Fig. 3). Both structures are
excited by z-polarized plane waves incident from the y direction, and nonuniformly
discretized; a simple scaled version of (5) is used as detailed in [1]. The shuttle is
about 3λ long at the simulation frequency f = 15 MHz. A waveguide antenna is
located on one side of the shuttle’s fuselage (Fig. 2(b)). The shuttle is discretized
with elements that average λ/10 in size, except of the region near the waveguide
where the average element size is around λ/1200. The number of standard RWG
functions is N = 29, 409. The iterative solver required 6, 032 and 89 iterations for
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Figure 3: Analysis of scattering from radar dish: (a) mesh –note the densely pop-
ulated feed– (b) absolute value of the current density induced on the radar dish’s
surface (c) number of iterations.

the relative residual error of the diagonally and CMP-preconditioned EFIE MoM
systems’ solutions to reach 10−6 (Fig. 2(c)). Fig. 2(d) shows the absolute value of
the current induced on the shuttle’s surface in dB scale from three different views.
The relative norm of the difference between the solutions of the diagonally and
CMP-preconditioned EFIE MoM systems is 0.1024%. The radar dish diameter is
4λ at the simulation frequency f = 1.2 GHz. The maximum and minimum edge
size of the discretization are around λ/10 and λ/650 respectively. The number of
standard RWG functions is N = 47, 009. The iterative solver required 3, 251 and 60
iterations for the relative residual error of the diagonally and CMP-preconditioned
EFIE MoM systems’ solutions to reach 10−6 (Fig. 3(c)). Fig. 3(b) shows the absolute
value of the current induced on the radar dish’s surface in dB scale. The relative
norm of the difference between the solutions of the diagonal preconditioned and
CMP preconditioned EFIE MoM systems is 0.1639%.
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