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Abstract: We study integrable cocycles u(n, x) over an ergodic measure preserving
transformation that take values in a semigroup of nonexpanding maps of a nonpositively
curved space Y , e.g. a Cartan–Hadamard space or a uniformly convex Banach space. It
is proved that for any y ∈ Y and almost all x, there exist A ≥ 0 and a unique geodesic
ray γ (t, x) in Y starting at y such that

lim
n→∞

1

n
d(γ (An, x), u(n, x)y) = 0.

In the case where Y is the symmetric space GLN(R)/ON(R) and the cocycles take
values inGLN(R), this is equivalent to the multiplicative ergodic theorem of Oseledec.
Two applications are also described. The first concerns the determination of Poisson

boundaries and the second concerns Hilbert-Schmidt operators.

1. Introduction

Let (X, µ) be a measure space with µ(X) = 1 and let L : X → X be a measure
preserving transformation.Birkhoff’s pointwise ergodic theorem asserts that the ergodic
averages of a function f ∈ L1(µ),

1

n

n−1
∑

k=0
f (Lkx),

converge for µ-a.e. x to an L-invariant function f̄ ∈ L1(µ) when n → ∞.
Two important extensions of this theorem are the subadditive ergodic theorem of

Kingman [Ki] and the multiplicative ergodic theorem of Oseledec [O]. Both theorems
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have numerous applications and since the original proofs were published several alter-
native proofs of these theorems have appeared. Let us first recall Kingman’s theorem.
Let a : N × X → R ∪ {−∞} be a subadditive (measurable) cocycle, that is

a(n + m, x) ≤ a(n, Lmx) + a(m, x)

for n, m ≥ 1 and x ∈ X.Assume that
∫

X
a+(1, x)dµ(x) < ∞,

where a+(1, x) = max{0, a(1, x)}. Then the subadditive ergodic theorem asserts that
there is an L-invariant measurable function a : X → R ∪ {−∞} such that

lim
n→∞

1

n
a(n, x) = a(x)

for µ-a.e. x.
This result generalizes Birkhoff’s theorem, because

a(n, x) :=
n−1
∑

k=0
f (Lkx)

is a subadditive (in fact additive) cocycle.
Themultiplicative ergodic theorem of Oseledec is an extension of Birkhoff’s theorem

to products of matrices. Let A : X → GLN(R) be a measurable map and define the
(multiplicative) cocycle

A(n, x) = A(Ln−1x) · · · A(x).

Assume that
∫

X
log+ ||A(x)||dµ(x) < ∞ and

∫

X
log+ ||A−1(x)||dµ(x) < ∞,

where log+ a = max{0, log a}. Then the theorem of Oseledec asserts that for µ-a.e.
x the sequence A(n, x) is Lyapunov regular, which by definition means that there is a
filtration of subspaces

{0} = V x
0 ! V x

1 ! ... ! V x
s(x) = RN

and numbers λ1(x) < ... < λs(x)(x) such that for any v ∈ V x
i \ V x

i−1,

lim
n→∞

1

n
log ||A(n, x)v|| = λi (x)

and

lim
n→∞

1

n
log | detA(n, x)| =

s(x)
∑

i=1
λi (x)(dim V x

i − dim V x
i−1).

Let Wx
i be the orthogonal complement of V x

i−1 in V x
i and define a positive definite

matrix $(x) by requiring that $(x)w = eλi (x)w for any w ∈ Wx
i , 1 ≤ i ≤ s(x). The
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content of this theorem is that in a certain sense, A(n, x) behave asymptotically like the
iterates $(x)n.
The Lyapunov regularity is also easily seen to be equivalent to the statement that

there exists a positive definite symmetric matrix $ = $(x) such that

1

n
log ||An$

−n|| → 0 and
1

n
log ||$nA−1

n || → 0, (1.1)

where An denotes A(n, x).
Consider the symmetric space Y = GLN(R)/ON(R) and let y = ON(R). Let g be

an element inGLN(R) and let µi denote the eigenvalues of (ggt )1/2. The distance in Y
between y and gy is

d(y, gy) =
(

N
∑

i=1
(logµi)

2

)1/2

. (1.2)

Recall also that geodesics starting at y are of the form γ (t) = etH y, where H is a
symmetric matrix. Let$ = eH be some positive definite symmetric matrix. From (1.2)
it follows that

1

n
d($−ny, A−1

n y) → 0, (1.3)

is equivalent to (1.1).
Hence the Lyapunov regularity of A(n, x) is equivalent to the geometric statement

(1.3). For a discussion of this, see [Ka2]. In that paper, Kaimanovich obtained a complete
geometric description of sequences {yn} of points in Y for which there are a geodesic
ray γ and A ≥ 0 such that the distance from yn to γ (An) grows sublinearly in n.
This was done by taking advantage of the special structure of symmetric spaces of
noncompact type, and using hyperbolic geometry. After that, applying the subadditive
ergodic theorem, he could deduce (1.3).
The present paper studies themore general situationwhere the cocycles take values in

a semigroup of semicontractions (e.g. isometries) of a uniformly convex, nonpositively
curved in the sense of Busemann, complete metric space (Y, d). For definitions and
examples, we refer to Sect. 3.
Note that the asymptotics of the iteration of one single semicontraction ϕ : D →

D ⊂ Y is already nontrivial. For example, the case where D is a convex subset of a
Hilbert space was studied by Pazy [P]. See also [Be] for this topic, which goes back to
the work of Denjoy and Wolff on the iteration of an analytic map of the unit disk into
itself.
In several proofs of Oseledec’s theorem, the use of ergodic theory is reduced to the

application of a standard theorem, that ofBirkhoff orKingman. In contrast, this reduction
seems impossible to do for the proof of the multiplicative ergodic theorem given in this
paper. Instead,we establish a different kind of “maximal ergodic inequality”, Lemma4.1.
The arguments in the ergodic theoretic part of this paper are in the same spirit as those
commonly used to establish the subadditive ergodic theorem. Note that, in the ergodic
case, this theorem is here deduced as Corollary 4.3 of Proposition 4.2.
The paper is organized as follows. The section following this introduction, Sect. 2,

provides a concise formulation of themain result.All the terminology used is explained in
Sect. 3, which also contains one additional observation, Lemma 3.1. Section 4 proves the
needed ergodic lemmas about subadditive cocycles (Proposition 4.2 and Corollary 4.3).
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Section 5 gives the proof of the theorem. The final sections, Sects. 6 and 7, describe two
applications.

2. Formulation of the Main Result

Let (Y, d) be a uniformly convex, complete metric space satisfying the Busemann non-
positive curvature condition. Examples include CAT(0)-spaces and uniformly convex
Banach spaces. Let S be a semigroup of semicontractions D → D, where D is a
nonempty subset of Y , and fix a point y ∈ D.
Furthermore, let (X, µ) be a measure space withµ(X) = 1 and letL : X → X be an

ergodic and measure preserving transformation. Given a measurable map w : X → S,
put

u(n, x) = w(x)w(Lx) · · · w(Ln−1x) (2.1)

and denote u(n, x)y by yn(x).Assume that
∫

X
d(y, w(x)y)dµ(x) < ∞, (2.2)

then the following “multiplicative ergodic theorem” holds.

Theorem 2.1. For almost every x, the following limit exists:

lim
n→∞

1

n
d(y, yn(x)) = A (2.3)

and if A > 0, then for almost every x, there exists a unique geodesic ray γ (·, x) in Y
starting at y such that

lim
n→∞

1

n
d(γ (An, x), yn(x)) = 0. (2.4)

Remark 2.2. The existence of the limit (2.3) is well known. It is a standard consequence
of the subadditive ergodic theorem, here Corollary 4.3. In the caseA > 0, note that (2.4)
implies that yn converges to [γ ] in Y ∪ Y (∞), where Y (∞) denotes the ideal boundary
at infinity consisting of asymptote classes of rays.

Remark 2.3. Assume that S = & is a discrete cocompact group of isometries of a Cartan-
Hadamardmanifold Y . LetP be the (time 1)Markov operator associated to a&-invariant
Markov process on Y , with finite first moment and absolutely continuous transition
probabilities. Take a P -stationary initial distribution on Y, then it is not difficult to
construct a measure preserving system (X, µ, L) and a map w : X → &, such that
u(n, x)y and the corresponding sample path at time n stay within a finite distance from
each other for all n. The theorem then yields the result that for almost every sample path
there is a geodesic ray such that the distance from the sample path to this geodesic grows
sublinearly in n. In this context, we refer to Ballmann’s paper [Ba1] for comparison.

Remark 2.4. There is also an "invertible" version of Oseledec’s theorem, see [O], in
which one gets the approximation by the powers of the same matrix at both +∞ and
−∞, (the cocycle in question for negative n isA(n, x) = A(1, Ln)−1 · · ·A(1, L−1)−1).
In view of this result, one might wonder whether the analog statement for u(n, x) is true
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in general, that is, is it true that there always exists a bi-infinite geodesic approximating
both the backward and the forward orbit u(n, x)y in the sense of Theorem 2.1? In
general, however, the answer to this question is no. For example, let Y be the manifold
R × R with Riemannian metric (e−y + C)2dx2 + dy2. By some general results of
Bishop and O’Neill concerning so-called warped products, the space Y is a Cartan-
Hadamardmanifold. Consider for u(n, x) the powers of the parabolic isometryφ defined
by (x, y) *→ (x+1, y). Note that in this case the constantA in the theoremwill equalC.
If C > 0, then the forward and the backward orbit will converge to two different points
on the ideal boundary of Y . These two limit points must be fixed by φ. Now assume
that they can be connected by a geodesic in Y . Then, since the two endpoints are fixed
by φ, the displacement of φ is semidecreasing in both directions along this geodesic,
hence it is constant. This is impossible as φ is parabolic and Y has no parallel bi-infinite
geodesics.

3. Geometric Preliminaries

General references for this section are [Ba2] and [J].

3.1. Let (Y, d) be a metric space.A continuous map γ : I → Y,where I is an interval,
is called a (unit speed minimizing) geodesic, if for any s, t ∈ I ,

d(γ (s), γ (t)) = |s − t |.

A geodesic γ : [0, ω) → Y , such that limt→ω γ (t) does not exist, is called a ray. If
(Y, d) is complete, then for any ray, ω = ∞.
A point z is called a midpoint of x and y if

d(z, x) = d(z, y) = 1

2
d(x, y).

Ametric space (Y, d) is called convex if any two points in Y have a midpoint. If a convex
metric space (Y, d) is complete, then any two points can be joined by a geodesic.
A metric space (Y, d) is called uniformly convex if (Y, d) is convex and there is a

strictly decreasing continuous function g on [0, 1] with g(0) = 1, such that for any
x, y, w ∈ Y and midpoint z of x and y,

d(z, w)

R
≤ g

(

d(x, y)

2R

)

,

where R := max{d(x, w), d(y, w)}. See Fig. 1. An immediate consequence of this
property is that midpoints are unique, and hence so are geodesics between any two
points.

Spaces satisfying certain parallelogram inequalities, for example the Lp-spaces, 1 <
p < ∞, are uniformly convex, the original reference is [C]. For Lp, p ≥ 2,

g(ε) =
(

1− εp
)1/p

works in the definition. Further examples are Cartan-Hadamard manifolds (e.g. Eu-
clidean spaces, hyperbolic spaces, and symmetric spaces of noncompact type such as
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y

z

x

w

Fig. 1. The distance d(z, w) is less than the maximum of d(x, w) and d(y, w)

GLN(R)/ON(R)), or more generally CAT(0)- spaces (e.g. Euclidean buildings and R-
trees). For a general CAT(0)-space, g is as above with p = 2 and for trees one can also
take p = 1. A Banach space is CAT(0) if and only if it is a Hilbert space.
A convex metric space (Y, d) is said to be nonpositively curved in the sense of Buse-

mann if for any x, y, z ∈ Y and any midpoints mxz of x and z, and myz of y and
z,

d(mxz, myz) ≤ 1

2
d(x, y). (3.1)

Any uniformly convex Banach space, or more generally any strictly convex Banach
space, as well as any CAT(0)-space satisfies Busemann’s nonpositive curvature condi-
tion.

3.2. From now on, let (Y, d) be a uniformly convex, Busemann nonpositively curved,
complete metric space.
It follows from the Busemann condition (3.1) that t → d(γ1(t), γ2(t)) is a convex

function for any two geodesics γ1 and γ2. In particular, for two rays γ1 and γ2 starting
at y the function

t → 1

t
d(γ1(t), γ2(t)) (3.2)

is semiincreasing.
Let γi be any sequence of rays starting at y and assume that {γi (R)}∞i=1 is a Cauchy

sequence for every R. By the completeness of (Y, d), we can for each R define γ (R) =
lim γi (R). It is then immediate that γ is a ray starting at y and we say that γi converges
to γ .

Lemma 3.1. Let x, y, z ∈ Y and assume that

d(y, x) + d(x, z) ≤ d(y, z) + δd(y, x), (3.3)

where δ ∈ [0, 1]. Letw be the point on the geodesic between y and z such that d(y, w) =
d(y, x), then

d(w, x) ≤ f (δ)d(y, x),

where f is a function such that f (s) → 0 as s → 0. See Fig. 2.
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z

Fig. 2.

Proof. Let m be the midpoint of w and x. Uniform convexity implies that

d(m, z) ≤ max{d(w, z), d(x, z)}.
Since d(w, z) = d(y, z) − d(y, x) by the definition of w and d(x, z) ≤ d(y, z) −
d(y, x) + δd(y, x) by the inequality (3.3), we have that

d(m, z) ≤ d(y, z) − d(y, x) + δd(y, x).

Hence it follows, by the triangle inequality, that

d(y, m) ≥ d(y, x) − δd(y, x) = (1− δ)R, (3.4)

where R := d(y, x) = max{d(y, x), d(y, w)}. Uniform convexity now gives us that
d(m, y)

R
≤ g

(

d(w, x)

2R

)

.

From the inequality (3.4) and since g is decreasing we get

g−1(1− δ) ≥ d(w, x)

2R
.

Recalling that R = d(y, x) and letting f (δ) = 2g−1(1− δ), we have now obtained the
desired conclusion. +,

3.3. A semicontraction or nonexpanding map is a map ϕ : D → D, whereD is a subset
of Y, such that

d(ϕ(y), ϕ(z)) ≤ d(y, z)

for all y, z ∈ D. Any semigroup S of semicontractions is equipped with the Borel
σ -algebra associated to the compact-open topology on S.
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4. Ergodic Theoretic Part

Let (X, µ) be a measure space with µ(X) = 1 and let L : X → X be a measure
preserving transformation. Furthermore, leta : N×X→ Rbe a subadditive (measurable)
cocycle, that is

a(n + m, x) ≤ a(n, Lmx) + a(m, x) (4.1)

for n, m ∈ N, x ∈ X, (adopting the convention that a(0, x) ≡ 0). We will assume that
the following integrability condition is satisfied:

∫

X
a+(1, x)dµ(x) < ∞, (4.2)

where a+(1, x) = max{0, a(1, x)}. For each n, let

an =
∫

X
a(n, x)dµ(x). (4.3)

It follows from (4.1) and (4.2) that an ≤ a1 < ∞, but it is possible that an = −∞.
Since L preserves µ, the subadditivity condition (4.1) implies that an+m ≤ an + am for
every n, m ∈ N. It is now an elementary fact, see for example [Kr, p. 36], that the limit

A := lim
n→∞

1

n
an

exists and A < ∞.
Recall also the following observation of F. Riesz, which is proved by a simple in-

duction, see [Bi, p. 27]. Let c1, c2, ..., cn be a finite sequence of real numbers. Call cu a
leader if at least one of the sums

cu, cu + cu+1, ..., cu + ... + cn

is negative. Then the sum of the leaders is ≤ 0. (An empty sum is 0.)

Lemma 4.1. Suppose that A > 0. Let E1 be the set of x in X with the property that

there are infinitely many n such that

a(n, x) − a(n − k, Lkx) ≥ 0

for all k, 1 ≤ k ≤ n. Then µ(E1) > 0.

Proof. For every i ∈ N+ let us define a set

,i = {x ∈ X|∃k : 1 ≤ k ≤ i and a(i, x) − a(i − k, Lkx) < 0}
and a function

bi(x) = a(i, x) − a(i − 1, Lx).

It is clear that

a(n, x) − a(n − k, Lkx)

= bn(x) + bn−1(Lx) + ... + bn−k+1(Lk−1x) (4.4)
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and in particular

a(n, x) = bn(x) + bn−1(Lx) + ... + b1(L
n−1x). (4.5)

In view of (4.4), if Lkx ∈ ,n−k then

bn−k(L
kx) + ... + bn−j (L

jx) < 0

for some j, k ≤ j ≤ n − 1. From this and F. Riesz’s lemma about leaders (with
cu := bn−u(L

ux)) we deduce that for every x ∈ X and n ∈ N+,
∑

0≤k≤n−1,Lkx∈,n−k

bn−k(L
kx) ≤ 0. (4.6)

Using the L-invariance of µ, we get from the inequality (4.6) that

n
∑

j=1

∫

,j

bj (x)dµ(x) =
∑

0≤k≤n−1

∫

,n−k

bn−k(x)dµ(x)

=
∑

0≤k≤n−1

∫

L−k,n−k

bn−k(L
kx)dµ(x) (4.7)

=
∫

X

∑

0≤k≤n−1,Lkx∈,n−k

bn−k(L
kx)dµ(x) ≤ 0.

On the other hand, in view of (4.3), (4.5), and the L-invariance of µ,

an =
∫

X
a(n, x)dµ(x) =

n
∑

j=1

∫

X
bj (x)dµ(x). (4.8)

Since lim an/n = A > 0, there exists a number N such that

an >
2A

3
n (4.9)

for all n > N.
Let ,c

n denote the complement of ,n in X. Then in view of (4.7), (4.8), (4.9), and
the inequality bi(x) = a(i, x) − a(i − 1, Lx) ≤ a(1, x) ≤ a+(1, x), we have that

n
∑

j=1

∫

,c
j

a+(1, x)dµ(x) ≥
n

∑

j=1

∫

,c
j

bj (x)dµ(x) >
2A

3
n (4.10)

for all n > N . Let fn = ∑n
j=1 χ,c

j
, where χC denotes the characteristic function of a

set C ⊂ X. Let a+
1 =

∫

X a+(1, x)dµ(x) and

Bn = {x ∈ X : n ≥ fn(x) >
A

3a+
1

n}.

Since

Bc
n = {x ∈ X : A

3a+
1

n ≥ fn(x) ≥ 0},
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we have that

n
∑

j=1

∫

,c
j

a+(1, x)dµ(x) =
∫

X
fn(x)a+(1, x)dµ(x)

=
∫

Bn

fn(x)a+(1, x)dµ(x) +
∫

Bc
n

fn(x)a+(1, x)dµ(x)

≤ n

∫

Bn

a+(1, x)dµ(x) + A

3a+
1

n

∫

Bc
n

a+(1, x)dµ(x)

≤ n

∫

Bn

a+(1, x)dµ(x) + A

3
n.

Combining this inequality and the inequality (4.10) we get that
∫

Bn

a+(1, x)dµ(x) >
A

3
(4.11)

for all n > N .
The condition (4.2) implies the existence of δ > 0 such that

∫

C
a+(1, x)dµ(x) <

A

3
,

whenever µ(C) < δ. Hence it follows from (4.11) that µ(Bn) ≥ δ for every n > N . Let

Cn = {x ∈ X : x ∈ ,c
i for at least

A

3a+
1

n positive integers i},

so Bn ⊂ Cn and Cn+1 ⊂ Cn. Therefore, the measure of the set

⋂

n≥1
Cn = {x ∈ X : x ∈ ,c

i for infinitely many i}

is greater than or equal to δ > 0. Now recalling the definition of ,i we get the desired
statement. +,
Proposition 4.2. Suppose that L is ergodic and A > −∞. For any ε > 0, let Eε be the

set of x in X for which there exist an integerK = K(x) and infinitely many n such that

a(n, x) − a(n − k, Lkx) ≥ (A − ε)k

for all k, K ≤ k ≤ n. Let E = ⋂

ε>0 Eε, then µ(E) = 1.

Proof. For any ε > 0, let c(n, x) = a(n, x)− (A− ε)n. Then c is a subadditive cocycle
and by the definition of A,

lim
n→∞

1

n

∫

X
c(n, x)dµ = A − (A − ε) = ε > 0.

Note also that

a(n, x) − a(n − k, Lkx) ≥ (A − ε)k
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is equivalent to

c(n, x) − c(n − k, Lkx) ≥ 0.

Hence Lemma 4.1 applied to c gives that µ(Eε) > 0.
By the subadditivity property (4.1),

a(n, Llx) − a(n − k, Lk+lx) ≥ a(n + l, x) − a((n + l) − (k + l), Lk+lx) − a(l, x).

It follows that LlEε ⊂ E2ε for all l ≥ 0 and by ergodicity we then get that µ(E2ε) = 1.
Since this holds for every ε > 0 andEε ⊂ Eε′ , whenever ε < ε′, we have thatµ(E) = 1.
+,

Corollary 4.3 (Kingman). Suppose that L is ergodic and A > −∞. Then

lim
n→∞

1

n
a(n, x) = A

for almost every x.

Proof. Note that, by subadditivity, Proposition 4.2 implies that the set of x such that

lim inf
k→∞

1

k
a(k, x) ≥ A − ε

for any ε > 0 has full measure. If a(n, x) is an additive cocycle, then the a.e. convergence
is immediate, since in this case the above proposition can also be applied to −a(k, x).
In the case of a general subadditive cocycle a(n, x), we can therefore subtract the

additive cocycle

n−1
∑

i=0
a(1, Lix)

from a(n, x). This reduces the general case to the case of a nonpositive subadditive
cocycle, that is a(n, x) ≤ 0.
Fix an ε > 0 and takeM such that

1

M

∫

X
a(M, x)dµ(x) ≤ A + ε (4.12)

and let

aM(n, x) = a(nM, x) −
n−1
∑

i=0
a(M, LiMx).

This aM(n, x) is again a nonpositive subadditive cocycle. From the proposition and the
inequality (4.12), we have that

0 ≥ lim inf
n→∞

1

nM
aM(n, x) ≥ −ε.
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From this inequality, the nonpositivity and subadditivity of a(n, x), the L-invariance
and the convergence for additive cocycles, it follows that

lim sup
n→∞

1

n
a(n, x) − lim inf

n→∞
1

n
a(n, x) = lim sup

n→∞
1

nM
a(nM, x) − lim inf

n→∞
1

nM
a(nM, x)

= lim sup
n→∞

1

nM
aM(n, x) − lim inf

n→∞
1

nM
aM(n, x)

≤ − lim inf
n→∞

1

nM
aM(n, x) ≤ ε.

Since this holds for any ε > 0, the corollary is established. For more details, consult
[Kr, p. 37]. +,

5. Proof of the Theorem

5.1. Here we adopt the notations in Sect. 2 and we let a(n, x) = d(y, yn(x)). By the
triangle inequality, the equality (2.1), and the semicontraction property,

d(y, yn+m(x)) ≤ d(y, ym(x)) + d(ym(x), yn+m(x))

= a(m, x) + d(u(m, x)y, u(m, x)u(n, Lmx)y)

≤ a(m, x) + a(n, Lmx),

hence a is a subadditive cocycle. Furthermore, by the assumption (2.2),

∫

X
a+(1, x)dµ(x) =

∫

X
d(y, w(x)y)dµ(x) < ∞,

which means that the basic integrability condition (4.2) of the cocycle a is satisfied.
Corollary 4.3 (the subadditive ergodic theorem) then implies that

lim
n→∞

1

n
d(y, yn(x)) = A ≥ 0 (5.1)

for almost every x ∈ X.

5.2. Assume now thatA > 0.LetE be the set defined as in Proposition 4.2 and consider
an x ∈ E such that (5.1) holds. From now on, x will frequently be suppressed in the
notation.

For each i > 0, pick εi so small that

f (δi ) ≤ 2−i ,

where δi := 2εi/(A− εi ) and f is the function appearing in the geometric lemma (3.1).
This is possible, since f (t) → 0 as t → 0.
Proposition 4.2 and Corollary 4.3 give us that there are for any i an integer Ki and

infinitely many n such that

a(n, x) − a(n − k, Lkx) ≥ (A − εi )k (5.2)
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and

(A − εi )k ≤ a(k, x) ≤ (A + εi )k (5.3)

for all k, Ki ≤ k ≤ n.
For each i, pick an integer ni greater than both ni−1 and Ki+1, such that (5.2) and

(5.3) hold. By adding the inequality (5.2) to the right inequality in (5.3), we get that for
all k, Ki ≤ k ≤ ni,

a(ni, x) − a(ni − k, Lkx) + (A + εi )k ≥ (A − εi )k + a(k, x),

which simplified becomes

a(k, x) + a(ni − k, Lkx) ≤ a(ni, x) + 2εik.

From this, recalling the definition of a, the semicontractivity of u(k, x), and the left
inequality in (5.3), we get (note that at this point the order in which the maps w(Lkx)
are composed to form u(n, x) is crucial)

d(y, yk) + d(yk, yni ) ≤ d(y, yni ) + 2εik

≤ d(y, yni ) + 2εi

A − εi
d(y, yk). (5.4)

For each i, let γi be a ray from y passing through yni and let rk = d(y, yk). Applying
the geometric lemma (3.1) to (5.4), we get that

d(γi (rk), yk) ≤ f (δi )rk, (5.5)

for all k, Ki ≤ k ≤ ni .

5.3. We now show that {γi (R)} is a Cauchy sequence for every R > 0. Fix R > 0.
Since Ki+1 < ni < ni+1, the inequality (5.5) implies that

d(γi+1(rni ), γi (rni )) = d(γi+1(rni ), yni )

≤ f (δi+1)rni .

For i large enough so that rni > R, the convexity property (3.2) implies that

d(γi+1(R), γi (R)) ≤ f (δi+1)R,

which means, using the triangle inequality, that

d(γi+m(R), γi (R)) ≤
m

∑

j=1
f (δi+j )R ≤ 2−iR

for all m > 0. Hence {γi (R)} is a Cauchy sequence and by the completeness of Y, γi

converges to some ray γ , as i → ∞.
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5.4. It remains to show that

lim
k→∞

1

k
d(γ (Ak), yk) = 0.

For any k there is an i such that Ki ≤ k ≤ ni and by the triangle inequality

d(γ (Ak), yk) ≤ d(γ (Ak), γi (Ak)) + d(γi (Ak), γi (rk)) + d(γi (rk), yk)

≤ 2−iAk + |Ak − rk| + f (δi )rk

≤ 2−iAk + εik + f (δi )(A + εi )k ≤ (2−i+1A + 2εi )k.

It is then clear that

lim sup
k→∞

1

k
d(γ (Ak), yk) ≤ 0,

which shows (2.4). The uniqueness of γ is immediate from the convexity property (3.2)
and so Theorem 2.1 is proved.

6. An Application to RandomWalks and Boundary Theory

General references for this section are [F] and [Ka3].
Let & be a countable group acting by isometries on a uniformly convex, Busemann

nonpositively curved, complete metric space (Y, d).Any isometry of Y also acts on the
ideal boundary at infinity Y (∞), which consists of asymptote classes of geodesic rays.
Let ν be a probability measure on & and assume throughout this section that ν has

finite first moment, that is
∑

g∈&

d(y, gy)ν(g) < ∞.

Let (X, µ) be the product of Z copies of (&, ν) and let L be the shift transformation.
This is a standard construction of an ergodic measure preserving systemwithµ(X) = 1.
Let w : X → & be the projection onto the 0th copy of &, so

w({g(i)}∞i=−∞) = g(0),

and put as usual u(n, x) = w(x)w(Lx) · · · w(Ln−1x). This is sometimes called the
right random walk determined by ν. Note that, in probabilistic language, the increments
{w ◦ Lk}∞k=1 are independent, identically distributed random variables.
Theorem 2.1 (in the case A > 0) now provides a measurable map

ξ : X → Y (∞),

where ξ(x) = [γ (x, .)]. Since u(n, Lx) = w(x)−1u(n, x), the map ξ clearly has the
following equivariance property:

ξ(Lx) = w(x)−1ξ(x).

It follows that (Y (∞), ξ∗(µ)) is a ν-boundary for &. In the caseA = 0,we set ξ∗(X, µ)
to be the trivial ν-boundary for &.
Recall Kaimanovich’s ray approximation criterion for the maximality of a boundary

[Ka1, Theorem 3].
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Theorem 6.1 (Kaimanovich). Let (B, λ) be a ν-boundary of & and assume that ν has
finite entropy H(ν) = − ∑

ν(g) log ν(g). Suppose that θ : & → Z is a mapping into a

metric space with metric d, and πn : B → Z is a family of measurable mappings, and

that there is a constant C > 0 such that

card{g ∈ & : d(z, θ(g)) ≤ N} ≤ eCN (6.1)

for all z ∈ Z and N ≥ 1. Let b(x) denote the image in B of the sample path {u(n, x)}.
If

lim
n→∞

1

n
d(πn(b(x)), θ(u(n, x))) = 0

for almost every x, then the Poisson boundary of (&, ν) is isomorphic to (B, λ).

The following statement is now an immediate consequence.

Corollary 6.2. Let & be a countable group acting on (Y, d) by isometries and let ν be
a probability measure on & with finite first moment. Fix a point y ∈ Y and assume that

for some C > 0,

card{g ∈ & : d(y, gy) ≤ N} ≤ eCN (6.2)

for all N ≥ 1. Then the Poisson boundary of (&, ν) is isomorphic to ξ∗(X, µ).

Proof. Set θ(g) = gy, Z = Y, B = ξ(X), λ = ξ∗(µ), and πn(b(x)) = γ (An, x) using
the notation of Theorem 2.1.

Since & acts by isometries it follows that

card{g : d(z, gy) ≤ N} ≤ card{g : d(y, gy) ≤ 2N},

which ensures that condition (6.1) is satisfied. From this condition and the finiteness of
the moment of ν, it follows that the entropy of ν is finite, see [Ka3]. +,

Remark 6.3.When the group generated by suppν is nonamenable, the Poisson boundary
is non-trivial, see [F], and so in particular A > 0. It is also known and not hard to show
that the condition (6.2) is satisfied if & is a discrete subgroup of isometries of a locally
compact Cartan-Hadamard manifold with sectional curvatures bounded from below.

Remark 6.4. Results on the determination of the Poisson boundary for various groups
and measures have been obtained by many authors, see [Ka3]. Ballmann and Ledrappier
in [BaLe] identified the Poisson boundary for cocompact lattices in rank 1 manifolds for
nondegenerate measures with finite first moment and finite entropy (Kaimanovich was
later able to replace the finite first moment with finite logarithmic moment, see [Ka3]).
Note that their techniques are quite different from the methods in the present paper.
Some of the ideas in [Ba1,BaLe], and [Ka3] go back to Furstenberg’s work.
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7. An Application to Hilbert-Schmidt Operators

Let H be a real Hilbert space and let A be the algebra of Hilbert-Schmidt operators
H → H, that is a ∈ A if

||a||22 := tr(aa∗) =
∑

i

||aei ||2 < ∞,

for some (hence any) orthonormal basis {ei} ofH. Recall that

< a, b >:= tr(ab∗)

is an inner product on A and if || · || denotes the usual operator norm then

|| · || ≤ || · ||2. (7.1)

It is a standard fact that (A, <, >) is a Hilbert space. Note also that the Cauchy-Schwarz
inequality

(tr(ab∗))2 ≤ tr(aa∗)tr(bb∗),

with a = vw, b = wv, where v = v∗ and w = w∗ yields

tr(vwvw) ≤ tr(v2w2).

Now let Sym = {a ∈ A : a = a∗} and Pos = exp{Sym} ⊂ I + Sym, where exp is
the usual exponential map and I is the identity operator. Pos is an infinite dimensional
Riemannian manifold with the metric

< v, w >p:= tr(p−1vp−1w),

p ∈ Pos, v, w ∈ Sym 2 TpPos. Let d be the associated distance function.
The arguments in [La, Ch. XII] show that (Pos, d) is a complete metric space sat-

isfying the semi-parallelogram law and also that the operators exp{A} act on Pos by
isometries,

p *→ [exp(a)]p := exp(a)p exp(a)∗.

Hence this is a situation in which Theorem 2.1 applies.

Corollary 7.1. Let u(n, x) be an integrable cocycle taking values in exp{A}. Then for
almost every x there is an operator $(x) = exp(v(x)), v(x) ∈ Sym, such that

1

n

∥

∥log([$−n(x)u(n, x)]I )
∥

∥

2
= 1

n

(

∑

i

(logµi(n))2

)1/2

→ 0,

where µi(n) are the eigenvalues of [$−n(x)u(n, x)]I ∈ Pos.
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The following Lyapunov regularity statement is a consequence of this corollary.
Let {fi(x)} be the orthonormal basis of H consisting of eigenvectors of $(x), so

$(x)fi(x) = exp(λi (x))fi(x). For z = ∑

i zi(x)fi(x) ∈ H, let

λz(x) = sup{λi (x) : zi(x) 3= 0}.
Then

lim
n→∞

1

n
log ||u(n, x)−1z|| = −λz(x). (7.2)

In [R], Ruelle obtained this type of multiplicative ergodic theorems for more general
classes of operators. Note, however, that in the case of the Hilbert-Schmidt operators
that we consider here, it is not clear that Corollary 7.1, which in infinite dimensions is
a stronger statement than (7.2), can be proved by the methods in [R].
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