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S Y N O P S I S

We consider a mildly nonlinear elliptic boundary value problem depending on a parameter. Given
appropriate hypotheses concerning the asymptotic behaviour of the nonlinearity, we derive lower
bounds on the number of solutions. The results complement an earlier theorem due to Kazdan and
Warner [6].

I. STATEMENT OF THE RESULT

We consider the semilinear elliptic boundary value problem (BVP)

Au = f(x, u;t) in ft,
(P.)

Bu = 0 on 3ft,

where t is a real parameter. Here ft is a bounded domain in R
N (N"sl) with

smooth boundary aft, and

Au:=- X aikDjDku + £ a^u + aQu
j,k=i j=i

a second order linear elliptic differential operator with smooth real coefficients
and a uniformly positive definite coefficient matrix (ajfc). Further B denotes either
the Dirichlet or the Neumann boundary operator. Let At be the principal
eigenvalue of the linear BVP

Au = X.u in ft,

Bu = 0 on aft.

The following hypotheses are imposed on the nonlinearity /:
(fl) the function /: ftxRxIR-^-lR is smooth;
(f2) for every meIR, there exists a function heC(ft) such that D3f(x, £; () =

t This research was carried out while the second author was visiting the University of Wisconsin at
Madison, U.S.A.
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146 Herbert Amann and Peter Hess

h(x)>0 for all xefl, £Sm, and (eR;
(f3) for every xeft, teU,

(f3 ) lim sup < Ax

and

(f3 ) liminf

uniformly for xeft and f in bounded intervals;

(f4)

uniformly for x e ft and t in bounded intervals.
We are now in position to state our main result.

THEOREM. Under the above hypotheses, there exists a number toeU such that (Pt)

has no (classical) solution if t> t0, at least one solution if t-10, and at least two

distinct solutions if t < t0.

Some remarks concerning the comparison of this result with related former
research are in order.

1. It has been shown by Kazdan and Warner [6, Corollary 3.11] that hypoth-
eses (fl)-(f3) (without the uniformity assumption with respect to t) imply the
existence of a number toeU such that (Pt) has no solution if t> t0 and at least one
solution if t < t0. No multiplicity result is obtained there, and no assertion is made
for t = t0.

2. Suppose / is of the special form

Z), (1)

with r(x)>0 for xeft. Then / satisfies hypotheses (f2)-(f4) provided

g(x, g) ^ t< Ahm sup

and

j <lim inf g lim sup < +00,

uniformly for xeft. In this case, besides the assertion of the Theorem, its proof
further yields the closedness in C(ft) of the set of functions p for which the
nonlinear BVP

(Au =(Au = p(x) + g(x, M) in ft,

on aft.

has a solution. We generalize the result of Ambrosetti and Prodi [3] and Berger
and Podolak [4]. Recall that in [4], for formally selfadjoint A, with B the
Dirichlet boundary operator, g(x, £) = g(|) and r = <p (the positive eigenfunction
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A multiplicity result for boundary value problems 147

to the eigenvalue At), it is shown that there exists toeR such that (P() has no
solution for t > t0, precisely one solution for t = t0, and exactly two solutions for
t < t0, provided

0<g '(-oo)<A1<g'(+°°)<A2

and g is strictly convex.
3. Our theorem also sharpens a recent result of Hess and Ruf [5]. In that

paper, for formally self adjoint A and / of the form (1) with r = <p, it is assumed
that

lim

(uniformly in x e £1), and the existence of two constants Tx S T2 is asserted such
that problem (Pt) admits no solution for t> T2 and at least two solutions for t < T\
(perform the change of variable u-*-u in order to bring the problem considered
in [5] to the present setting).

Since we rely on [6, Corollary 3.11], we suppose (as in [6]) that B is either the
Dirichlet or the Neumann boundary operator. However, it is not difficult to verify
that everything remains true if B is the boundary operator associated with the
third BVP, i.e.

du
Bu= — + bou,

where b0 =£ 0 and /3 is an outward pointing (nowhere tangent) smooth vectorfield
on dd.

I I . PROOF OF THE THEOREM

(a) It follows from [6, Corollary 3.11] that there exists a real number t0 such
that (Pt) has no solution for t> t0 and at least one solution for t< f0- Let t* < t0 be
fixed, and choose T £ (I*, l0). Then there exists a smoooth function u such that

{Ait = f{x, u; T) in fl,

Bu = 0 on d£l.

Since, by hypothesis (f2), / is strictly increasing in the variable (, it follows that u
is a strict supersolution for (P,*). By means of hypothesis (f3) and the arguments
in [6, Lemma 2.7], we can find a strict subsolution u of (Pt») with Bu = 0, such
that u<u.

(b)Let

: = max{|D2/(x, |: xeil, min u S £ ^ u},

and set

Moreover, let

F(u,t)(x): = f(x, u(x); t) + au(x),
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148 Herbert Amann and Peter Hess

for all (x, Oei^xlR and all functions u.il—*U, and denote by Kv the unique
solution of the linear BVP

Bu = 0

Finally, let

E : = : = {u e

in H,

on dCl.

): Bu = 0 on

equipped with the norm ||-|| of C1(fl), and endow all function spaces with their
natural order. Then it is well-known [e.g. 2, Section 4] that K: C(Cl)-*E is
compact and strongly positive, and that problem (Pt) is equivalent to the fixed
point equation

u = KF(u, t)

in E. The mapping

is continuous, and maps bounded sets into relatively compact sets. We note that

u<KF(u, t*) and KF(u,t*)<u, (2)

and that K^{-, t*) is strongly increasing on the order interval

X: = [u, U]: = {

Since X is bounded in C(fi), it follows that KF(X, t*) is compact in E [cf. 2,
Section 9].

(c) Set G: = KF(-, t*). We want to show that G has at least two distinct fixed
points. Since G is increasing, (2) implies that G(X)<= X. Then, by Schauder's fixed
point theorem, G has a fixed point u0 in X. Since G is strongly increasing, (2)
further implies that X has nonempty interior X, and that u0 e X. Of course we can
assume that u0 is the only fixed point of G in X (otherwise we are done). Then
there exists e > 0 such that uo + eB <= X (where B is the open unit ball in E), and
such that the Leray-Schauder degree

deg(id-G, uo + eB, 0)

is defined. By making use of the uniqueness of the Leray-Schauder degree and the
permanence and excision properties of the fixed point index [cf. 2, Theorem
(11.1) and the first formula in its proof], we find that

deg(id-G, uo+eU, 0) = i(G, E)

+ eB, X) = i(G, X, X) = l. (3)

Here the last equality is a trivial consequence of the convexity of X and the
homotopy invariance property (cf. the proof of the Schauder fixed point theorem
in [2, p. 660]).

(d) Suppose

{there exists p > 0 such that uo + eBcpB and
KF(u, t) # u for all t e I: = [t*, t0 +1]
and all ueE with ||u|| = p.

(4)
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A multiplicity result for boundary value problems 149

Then, by the homotopy invariance of the Leray-Schauder degree,

deg (id- G, PU, 0) = deg (id-KF(-,to+l), pB, 0) = 0,

since, according to the definition of t0, KF(-, to+l) has no fixed point at all in E.
Thus, by (3),

deg (id - G, pB\(uo + eB), 0) = deg (id - G, pB, 0)-deg (id - G, uo + eE, 0) = - 1 ,

which implies that there is a fixed point of G in pB\(uo +
 e ^) - Hence the existence

of at least two distinct solutions of problem (Pt*) is proved provided we verify the
a priori estimate (4).

(e) Observe that K can be looked upon as a strongly positive compact
endomorphism of E. Thus the spectral radius r(K) is positive and the only
eigenvalue of K having a positive eigenvector [e.g. 2, Theorem (3.2)]. It follows
that r(K) = (\1 + a))-\

Hypothesis (f3) implies that there exist numbers fj, < Ai + w and fc ̂  0 such that

)^w-k (5)

for all u: A—*U and all tel. Let w be the unique solution of the linear equation

w - ixKw = -kKt.

Then (5) implies that

for every fixed point ut of KF(-,t), tel. Consequently, since l/n,>r(K), [2,
Theorem 3.2 (iv)] implies

u, =£ w for every tel. (6)

Suppose now (4) is not true. Then we find sequences ((,) in I and (u, := u(.) in E
with \\Uj\\—*°°, such that

uj=KF(u,,ti) (7)

for all jeN. Let u,-:= U,/||M,-|| and observe that hypothesis (f4) and (6) imply that
{F(u,-, tj)/||u,-||: j'eM} is bounded in C(fl). Dividing (7) by ||u,|| and using the
compactness of K as a map from C(&) to E, it follows that the sequence (u,) is
relatively compact in E. Hence, by passing to an appropriate subsequence, we
may assume that

Vj -* v in E

where, due to (6),

v^O. (8)

Hypothesis (f 3) implies also the existence of numbers a > 0, (3^0 such that

F(u,t)M>

for all u: n-»R and all tel. Thus, by (7),
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150 Herbert Amann and Peter Hess

and in the limit we get

Since (A1 + w + a)"1<r(K), [2, Theorem 3.2 (iv)] and (8) imply v = 0. But this
contradicts the obvious fact that ||i>|| = 1.

(f) In order to prove that problem (Pt) admits a solution also for t = (0, we take
a sequence ((,) f 'o- It then follows from part (e) of the present proof that
corresponding solutions u,:

uf = KF(Uj, 0 (jeN)

remain bounded in E. Next we observe that the sequence (u,) is relatively
compact in E; for a suitable subsequence we have u^u in E and u = KF(u, t0).
Thus u is a solution of (P t). •

I I I . AN EXTENSION

An inspection of the above proof and the fact that there is no uniformity
assumption with respect to t in the hypothesis of [6, Corollary 3.11] shows that
the following more precise result is true.

PROPOSITION. Suppose there exists a number T such that hypotheses (f3") and (f4)
hold only for t =S T, and that the generalized limits in (f3) and (f4) are uniform only

for t in bounded intervals of [T, +oo). Then there exists toeR such that problem (P,)
has no solution for t > t0 and at least one solution for t < t0. If to> T, then (Pt) has

at least two distinct solutions for T S= f < f0 and at least one solution for t = t0.

The following example shows that this result is in some sense optimal, i.e. that
in general we cannot expect two solutions for t < T.

EXAMPLE. Suppose /:1R—>R+ is a smooth, increasing, strictly convex function
satisfying

f(-oo) = o and A1<f(+oo)<+oo

(where Aj>0 is the first eigenvalue of -A, subject to Dirichlet boundary condi-
tions). Moreover, assume that

for sufficiently large | > 0 . Consider the BVP

f-Au = tf(u) in
(A,

0 on dil.

Then it follows from [6, Corollary 3.11] that there exists a toeU such that (At) has
no solution for t > t0 and at least one solution for t< t0. Moreover, [2, Theorems
(20.12) and (26.3)] imply that to>0, and that there exists a number k,e(0, to)
such that (At) has at least two solutions for too< t< t0 and exactly one solution for
t = t0 and (e[0, („]. The monotonicity of / implies further that (A,) has exactly
one solution for t<0 . Finally, !„ is the principal eigenvalue of the linear
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A multiplicity result for boundary value problems 151

eigenvalue problem

r-Au = Af(+oo)u in a,

I- M = 0 on dft,

i.e. foo = kjf(+0°). Observe that, for every T>f», problem (A,) satisfies the
assumptions of the above Proposition, but not for T § *„.

Lastly we remark that the Proposition generalizes [1, Theorem (7.6)], [cf. also
2, Section 21].
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