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1 Introduction

Vortex lines are the only allowed vorticose configurations in zero-temperature superfluids.

This is because superfluidity requires the fluid flow to be irrotational, and so vorticity can

only be localized on one-dimensional defects. These are curves that from the viewpoint of

the long-distance hydrodynamical description have zero thickness. In practice, their thick-

ness is microscopic, e.g. of order of atomic size for liquid helium, and the hydrodynamical

description breaks down within their core.

For ordinary finite-temperature fluids, such as water, one can have much more general

vorticose configurations. Still, one can set up fairly easily vortex line-like solutions. Their

thickness in this case is not microscopic and the hydrodynamical description still holds at

those distance scales, but as long as the thickness is much smaller than the other length
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scales in the system — say the radius of curvature of the vortex line, or the typical wave-

length of sound waves in the surrounding fluid — one can take in first approximation the

zero-thickness limit, and parametrize finite-thickness corrections according to the standard

philosophy of effective field theories.

In the incompressible limit, the fact that vortex lines are consistent solutions of the

hydrodynamical equations for ordinary fluids is guaranteed by Kelvin’s theorem. To see

this, consider an initial configuration with vorticity localized on a one-dimensional defect

and apply Kelvin’s theorem to a very small loop that wraps around the defect and follows

the fluid flow. Its circulation Γ ≡
∮
~v ·d~̀ stays constant, while ~∇·~v = 0 implies that the loop

does not grow, thus conserving vorticity in the same infinitesimal spatial (comoving) region.

Therefore, one finds that the defect stays one-dimensional — i.e., it does not dissolve and

spread out vorticity — and that it moves along with the surrounding fluid flow. This of

course ignores the dissipative effects associated with viscosity, which are not contemplated

in Kelvin’s theorem and in fact make all fluid flows die eventually. However, compared

to perfect-fluid hydrodynamics, viscosity is associated with higher derivative corrections,

which are suppressed for long-distance and low-frequency phenomena, and thus negligible

in first approximation. Notice also that there is a relativistic generalization of Kelvin’s

theorem (see e.g. [1]), and so the same conclusions apply to vortex lines in relativistic

fluids as well.

The above argument involving Kelvin’s theorem in principle can fail for compressible

fluids. Indeed, a non-zero divergence ~∇ · ~v 6= 0 could a priori make the loop around the

defect grow, thus allowing the thickness of the defect to spread out and become large over

time.1 In appendix A we prove that a zero-thickness vortex line evolves in an ordinary

(perfect) fluid exactly like it does in a superfluid: it keeps its circulation and its one-

dimensional nature, it does not generate other forms of vorticity, and it moves along with

the surrounding fluid. This is consistent with the fact that, in the absence of more general

forms of vorticity, superfluids and ordinary fluids obey the same equations of motion.

Indeed, there exists a duality between vorticity-free ordinary fluids and superfluids that

holds directly at the level of the action, in the relativistic case as well [1]. It then follows

that, for the more realistic case where vorticity is localized on a tube of small (yet finite)

thickness a, the rate at which a can grow is suppressed by some positive power of a itself,

and can thus be neglected in first approximation. In the following we will therefore restrict

ourselves to the superfluid case. The discussion above tells us that, to lowest order in the

vortex line thickness, our results will be valid for ordinary fluids as well.

For a review of the general properties of vortex lines and vortex rings, we refer the

reader to refs. [2, 3]. Recently, considerable progress has been made in studying their

dynamics via effective field theory techniques [4–8]: one can couple systematically the bulk

degrees of freedom that parametrize generic fluid flows and long-wavelength perturbations

such as sound waves to the embedding coordinates ~X(t, σ) of a zero-thickness string —

the vortex line — with σ being an arbitrary coordinate along the string. This is done at

the level of a derivative expansion for a long-distance/low energy effective action, which is

valid at distance scales much bigger than the vortex line’s thickness.

1We thank an anonymous JHEP referee for this comment.
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With this paper we would like to go one step further in this program, and write down an

effective field theory for small vortex rings2 interacting with the surrounding fluid, valid at

distance scales much bigger than the typical ring size, organized as a multipole expansion.

The advantage of doing so is twofold: on the one hand, if indeed the surrounding

fluid only has perturbations of very long wavelengths, our effective field theory replaces the

infinitely many string degrees of freedom of a vortex line with a few collective coordinates

for the vortex ring (such as its center’s position) and a handful of multipole moments.

The multipole expansion of course involves infinitely many terms; but, as usual, these are

naturally organized in decreasing order of importance, and so for long distance phenomena

only the first few multipoles will be relevant.

On the other hand, the multipole expansion for a vortex ring allows one to avoid a

technical complication that is needed to describe a more general vortex line: because of the

topological defect nature of a vortex line — the superfluid scalar phase is not single valued

in the presence of a line — one cannot use a scalar description for the fluid bulk modes,

but rather one has to resort to a magnetic-type dual description involving a two-form field,

which is technically more tedious [5, 6, 9, 10]. In the case of our multipole expansion for a

small vortex ring, such a complication disappears. Essentially, this is because the non-single

valuedness of the scalar phase can only be probed at short distances, by going through the

ring. Any process that does so is however not contemplated by our multipole expanded

effective theory, which can only describe long-distance phenomena. After performing the

multipole expansion, we are thus able to revert to the scalar description, which is much

easier to use for computations. As a concrete application of our formalism, we will compute

the sound emitted by an oscillating vortex ring.

For technical convenience, we will use a manifestly relativistic notation, with metric

signature (−,+,+,+), and natural units (~ = c = 1). Our results are fully relativistic,

but if one wishes to take the non-relativistic limit, one can do so at any stage in our

computations. Since a vortex line or ring has to move very slowly anyway [5, 6], the

resulting modifications are minor. For instance, for the sound emitted by an oscillating

vortex ring (section 7), the expression for the emission power (7.27) remains the same in

the non-relativistic limit, but with the relativistic enthalpy density w replaced by the mass

density mn.

2 Bulk dynamics

2.1 Scalar description

From a QFT viewpoint, a superfluid at equilibrium can be defined as a system with a

conserved U(1) charge Q in a homogeneous state |ψ〉 such that (i) Q has a nonzero density,

and (ii) Q is spontaneously broken:

〈ψ|Q
V
|ψ〉 6= 0 , Q|ψ〉 ∝� |ψ〉 . (2.1)

2Our formalism is actually applicable to any closed vortex line configuration, although we will focus on

rings for simplicity and in view of experimental applications.
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This is the QFT analog of the statement that the ground state is a Bose-Einstein condensate

(see e.g. [11] for a recent review of superfluids), but, unlike that statement, it has the

advantage of not relying on a weakly coupled microscopic model for superfluidity. At

zero temperature, which is what we will assume here, the conditions above are enough to

determine the low-energy dynamics of the system.3

The condition of having a finite density is usually implemented by introducing a chem-

ical potential µ̄ and demanding that the equilibrium state |ψ〉 be the ground state of the

modified Hamiltonian [13]

H ′ = H − µ̄Q , H ′|ψ〉 = 0 (2.2)

(the eigenvalue can always be set to zero by a c-number offset of H.) Then, if Q is

spontaneously broken, so must be H, i.e., the internal symmetry generated by Q and the

time translations generated by H are broken down to the diagonal symmetry generated by

H ′, which can be thought of as the appropriate time translations in the superfluid phase.

Adopting an EFT point of view, the low-energy/long-distance dynamics must be gov-

erned by the Goldstone mode associated with the above symmetry breaking pattern [12, 14].

In particular, the low-energy effective action must be a functional of a real scalar field φ

on which the U(1) symmetry acts as a shift symmetry

φ→ φ+ c , (2.3)

The effective action can thus depend on φ only through its derivatives so, to lowest order

in a derivative expansion, it must read

S[φ] =

∫
d4x p(µ) , µ ≡

√
−∂µφ∂µφ , (2.4)

for some function p. The energy momentum tensor is then that of a perfect fluid

Tµν = (ρ+ p)UµUν + p ηµν , (2.5)

if we identify p with the rest-frame pressure, its Legendre transform ρ ≡ µp′ − p with the

rest-frame energy density, and

Uµ ≡ −
1

µ
∂µφ . (2.6)

with the four-velocity field.

Notice that the Noether current associated with the U(1) symmetry (2.4) is

Jµ = −p
′

µ
∂µφ = p′Uµ , (2.7)

and so p′ is physically the rest-frame number density n. We thus have that the enthalpy

density is

w ≡ ρ+ p = µn , (2.8)

3In the case of nonzero temperatures, but still below the critical temperature defining the superfluid

phase, one has only a partial Bose condensation and the system behaves as a mixture of a superfluid and

a normal fluid [11, 12], which comes with additional degrees of freedom.
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which shows that our variable µ is in fact the local value of the chemical potential — hence

the symbol chosen for it. Finally, the speed of sound is

c2
s =

dp

dρ
=

p′

µp′′
. (2.9)

In this EFT, the desired symmetry breaking pattern is realized as a nontrivial expec-

tation value for φ at equilibrium. The requirement that 〈φ〉 be invariant under H ′ but not

under H and Q separately, implies

〈φ(x)〉 = µ̄t , (2.10)

which is indeed a solution of the equations of motion following from (2.4), with µ(x) = µ̄.

It corresponds to the fluid being at rest, 〈Uµ〉 = δµ0 , and with a non-zero charge density,

n̄ ≡ p′(µ̄) 6= 0. The Goldstone field π(x), can then be thought of as a perturbation of this

background solution

φ(x) = µ̄
(
t+ π(x)

)
. (2.11)

Expanding the action in powers of π one gets

Sπ = w̄

∫
d4x

[
1

2

( π̇2

c̄2
s

− (~∇π)2
)

+
1

6

(
κ̄ π̇3 − 3

(
1/c̄2

s − 1
)
(~∇π)2π̇

)
+O(∂π)4

]
, (2.12)

where

κ ≡ µ2p′′′

p′
, (2.13)

and all ‘barred’ quantities are evaluated on the background solution (2.10), that is at µ = µ̄.

From the quadratic part of this action we see that π propagates at the speed of sound, and

can thus be identified with the phonon field. The interaction terms involve derivatives of

π and thus become stronger and stronger at higher and higher energies. The momentum

cutoff for our phonon effective field theory is of order (see [15])

k∗ = (w̄c̄s)
1/4 , (2.14)

corresponding to an energy cutoff of order

E∗ = c̄sk∗ . (2.15)

2.2 Two-form description

To introduce the dual two-form description, it is convenient for what follows to use Legendre

transform techniques [16]. Consider thus the following action for two independent fields —

a 1-form Pµ and a 2-form Aµν = −Aνµ:

S[P,A] =

∫
d4x (p(µ)− FµPµ) , µ ≡

√
−PµPµ , Fµ ≡ 1

2
εµνρσ∂νAρσ , (2.16)

where p(µ) is the same function as above, and ε0123 ≡ +1.
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Aµν appears at most linearly in the action, and so it is effectively a Lagrange multiplier.

Varying the action w.r.t. it yields the equation of motion ∂[µPν] = 0, which is solved by4

Pµ = −∂µφ (2.17)

for some scalar field φ (the minus sign is conventional). Plugging this back into (2.16)

reproduces the scalar action (2.4) up to a boundary term, so the two actions are completely

equivalent descriptions of the same bulk dynamics.

On the other hand, we can proceed in the opposite order and, starting again with

eq. (2.16), integrate out Pµ first. Its equation of motion reads

p′(µ)

µ
Pµ = −Fµ , (2.18)

which we can interpret as an algebraic non-linear equation for Pµ, to be solved in terms of

Fµ. In particular, we get Pµ ‖ −Fµ, and their squares are related by

p′(µ) =
√
−FµFµ ≡ n , (2.19)

which we had already identified with the number density, i.e. the thermodynamic variable

conjugate to µ. Replacing Pµ with its solution in the action, we get an equivalent action

which is now a functional of Aµν only [6]:

S[A] =

∫
d4x
[
p(µ)− µp′(µ)

]
≡ −

∫
d4x ρ(n) . (2.20)

This describes exactly the same bulk physics as eq. (2.4), but it does so using a two-

form rather than a scalar field. Notice that above we had already identified the Legendre

transform of p with the energy density ρ, which is naturally a function of n.

The action (2.20) has an abelian gauge symmetry

δAµν = ∂[µθν] , (2.21)

so one also needs to add a gauge fixing term, a convenient choice for our purposes being

Sgf = − 1

2ξ

∫
d4x (∂iAiµ)2 , (2.22)

where ξ > 0 is an arbitrary parameter. Notice that, despite Aµν ’s self-interactions, the

abelian nature of its gauge transformations implies that a gauge-fixing term like the one

above is all we need to make sense of an unconstrained path integral over Aµν . That is,

we don’t need any ghost fields, even if we were to consider quantum/loop computations.

The gauge symmetry implies that there is only a single propagating degree of freedom,

in agreement with the dual scalar formulation. Indeed, A0i appears in the action with

no time-derivatives and therefore does not feature propagating wave solutions (but can

4This step is true of course in the absence of sources, including singular ones. Vortex lines are precisely

of this type, and this fact is what will prevent us from dualizing the theory in such a simple way in the

general case.
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mediate long-range Coulomb-type interactions), while εijkAjk has a pure-gauge transverse

part, leaving the longitudinal part to carry the sound degrees of freedom.

Now the background solution describing the superfluid at equilibrium, i.e. the analog

of the scalar ground state (2.10), is, up to a gauge transformation,

Ā0i = 0 , Āij = −1

3
n̄ εijk x

k . (2.23)

Perturbations about this background are parametrized by two three-vector fields ~A and ~B,

A0i = n̄ Ai , Aij = εijkn̄

(
−1

3
xk +Bk

)
, (2.24)

in terms of which the action becomes [6]

S
[
~A, ~B

]
= w̄

∫
d4x

[
1

2

((
~̇B − ~∇× ~A

)2 − c̄2
s

(
~∇ · ~B

)2
+

1

ξ

((
~∇ · ~A

)2 − (~∇× ~B
)2))

+
1

2
(1− c̄2

s)
(
~̇B − ~∇× ~A

)2~∇ · ~B − 1

6
κ̄ c̄6

s

(
~∇ · ~B

)3
+O(∂A, ∂B)4

]
. (2.25)

In the language of [4, 6], ~A is the “hydrophoton” and ~B is the sound field. In the following

we will work in the Landau gauge ξ → 0 exclusively, which for perturbative computations

is equivalent to imposing ~∇ · ~A = ~∇× ~B = 0 in interaction terms and using the transverse

and longitudinal propagators for ~A and ~B, respectively:

〈AiAj〉 =
1

w̄

i

~k2
(δij − k̂ik̂j) , 〈BiBj〉 =

1

w̄

i

ω2 − c̄2
s
~k2 + iε

k̂ik̂j . (2.26)

3 Vortex lines

Although the scalar and two-form descriptions are physically equivalent as far the bulk

dynamics are concerned, in the presence of vortex lines one should really choose the two-

form one. The reason is that the scalar φ is not single-valued in the presence of a vortex

line, while the two-form is. For instance, for an infinitely long, straight vortex line in an

otherwise unperturbed superfluid one has

φ(x) = µ̄

(
t− Γ

2π
ϕ

)
, (3.1)

where ϕ is the angle around the string, and Γ is the string’s circulation, Γ =
∮
~v · d~x.

Whenever ϕ winds once around the string, ∆ϕ = 2π, φ(x) undergoes a nonzero change,

∆φ = −µ̄Γ. On the other hand, the corresponding solution for the two-form reads (up to

gauge transformations)

A(x) ' n̄
(

1

2
r2 dϕ ∧ dz − Γ

2π
log(r/r0) dt ∧ dz

)
, (3.2)

where we are using the standard form notation, r is the distance from the string, z a

cartesian coordinate along it, and for simplicity we neglected the r-dependence of µ and
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n, which is appropriate at large distances from the string, or in fact at all distances in the

non-relativistic limit.5 Finally, r0 is an arbitrary scale needed to compensate dimensions

in the log; changing r0 just amounts to performing a gauge transformation on A. The

solution above does not depend explicitly on ϕ, and is thus perfectly single-valued around

the string.

Related to this, if one tries to describe the dynamics of the vortex line by coupling

the embedding coordinates Xµ(σ, τ) (σ and τ being world-sheet coordinates) to the bulk

degrees of freedom, one discovers that in the scalar language all interactions with φ must

involve at least one derivative acting on each φ (because of shift invariance). On the other

hand, the two-form language enables one to write down a non-derivative coupling between

the line and Aµν , which is thus more relevant at low energies than all the couplings that

are allowed in the scalar field case.

This is completely analogous to having a magnetic monopole in E&M: the electric

gauge field Aµ is not single valued, and cannot couple locally to the monopole without

derivatives, that is, only higher-multipole couplings are allowed; conversely the magnetic

dual field Ãµ is single valued and, compatibly with all the symmetries, admits a local

world-line coupling of the form ∫
Ãµdx

µ . (3.3)

In our case, the symmetries are:

• Poincaré invariance, under which Aµν(x) and Xµ(τ, σ) transform in the obvious way;

• Gauge invariance, Aµν → Aµν + ∂[µθν];

• World-sheet reparametrization invariance.

The leading string-bulk interaction compatible with all these symmetries is given by a

Kalb-Ramond term

SKR = λ

∫
dσdτ Aµν(X) ∂τX

µ∂σX
ν (3.4)

(λ is a generic coupling constant), which is a direct generalization of (3.3). Notice that,

like (3.3), this is gauge-invariant only up to total derivatives. One can easily check that

the equations of motion deriving from the action

S = Sbulk + SKR , (3.5)

where Sbulk is the bulk action (2.20) discussed above, admit a straight-string solution with

Aµν given by (3.1).

At the next order in a derivative expansion for Aµν , one can write down a Nambu-

Goto-like term (“ NG′ ”) in which the tension is an arbitrary function of the two invariants

5The µ one computes from (3.1) is µ(r) = µ̄ · γ(r), where γ(r) is the Lorentz factor associated with the

velocity field at distance r. In the non-relativistic limit one thus has that µ and n take their unperturbed

value everywhere.

– 8 –



J
H
E
P
0
2
(
2
0
1
8
)
0
2
2

that can be built out of the superfluid’s and string’s degrees of freedom:6

SNG′ = −
∫
dσdτ

√
−det gαβ T (n(X), u) , u ≡

√
−gαβUµ(X)Uν(X)∂αXµ∂βXν ,

(3.6)

where gαβ ≡ ηµν∂αXµ∂βX
ν is the induced metric on the world-sheet.

Although (3.6) is formally a higher-derivative correction to (3.4), the two action terms

are comparable as far as their contributions to the string’s dynamics are concerned. The

reason is that if in (3.4) one sets Aµν to its background value (2.23) and ignores its fluctu-

ations, the string has degenerate dynamics. Indeed, in τ = X0 ≡ t gauge, its equation of

motion is

∂t ~X × ∂σ ~X = 0 . (3.7)

This says that the velocity of the string projected perpendicularly to the string itself is

zero. Since the parallel component of the velocity is unphysical to begin with — because

of σ-reparametrization invariance — we reach the conclusion that the only source of string

dynamics in (3.4) comes from the interaction of the string’s degrees of freedom with Aµν ’s

fluctuations, through diagrams like

(3.8)

where the plane represents the string world-sheet, the dotted line represents ~A and the wavy

line represents ~B. Such diagrams are log-divergent in the UV,7 and — in agreement with

standard renormalization theory in QFT — the structure of the UV divergences is identical

to what one would get from the local couplings in (3.6). As a result, these diagrams induce

a running of the coefficients appearing in the function T . For instance, for the tension

T ≡ T (n̄, ū) one gets the RG equation

d

d log k
T (k) = − n̄

2λ2

w̄

1

4π
, (3.9)

where k is a renormalization (momentum) scale, with solution

T (k) = − n̄
2λ2

w̄

1

4π
log(k/k0) , (3.10)

where k0 is a UV momentum scale, possibly of order of the inverse string thickness, but

logically separate from it. In conclusion, (3.6) is subleading as a source for Aµν , but it is

6In [6] T is defined as a function of n2(X) and u2. Here we use n and u for later convenience.
7These are the standard divergences of classical field theory with low-dimensional sources in a high

dimensional bulk (e.g. a point-like electron in classical electrodynamics). They are due to the fact that the

bulk field generated by the source diverges at the source’s location.
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as important as (3.4) as far as the string dynamics are concerned, and we should thus keep

it whenever we are interested in those.

Things simplify substantially in the non-relativistic limit. In fact, for the string’s

motion to be within the regime of validity of our effective theory, the string has to move

much slower than the speed of sound, and thus than that of light. So, we can expand our

full action for slow string speeds (while allowing for a relativistic equation of state for the

surrounding superfluid, i.e., for a relativistic sound speed). The leading-order terms are

S ≡ Sbulk + SKR + SNG′ → −
∫
d4x ρ(n)+

∫
dσdt

[
λAµν(X) ∂tX

µ∂σX
ν−| ~X ′| T (n(X))

]
,

(3.11)

where we chose the gauge τ = X0 ≡ t for the world-sheet time coordinate, and the function

T implicitly depends on the renormalization scale k, which — to minimize contributions

coming from virtual Aµν fluctuations — can be conveniently identified with the typical mo-

mentum scale of the process under consideration. In fact, we can use (3.10) to reconstruct

T (n) and its scale dependence: eq. (3.10) depends on the background value of n explicitly

through n̄, and implicitly through w̄ = ρ̄+ p̄ and possibly the UV scale k0.8 This tells us

that the generalized tension T (n) at scale k is

T (n) = −λ
2

4π

n

µ(n)
log(k/k0(n)) , (3.12)

where we used the zero-temperature thermodynamic identity ρ + p = µn. As a check,

notice that this matches precisely the results of [6] for the running of T ′(n), which were

derived directly via Feynman diagrams.

4 Back to the scalar?

As clear from (2.17) and (2.18) and as customary for Hodge dualities, our scalar/two-form

duality is local at the level of shift/gauge invariant field strengths (∂µφ and Fµ) but non-

local at the level of field potentials (φ and Aµν). This suggests that all action terms that are

written directly in terms of field strengths and derivatives thereof can be processed through

the duality and written in a local fashion in either language, while terms that are invariant

only up to total derivatives — like our Kalb-Ramond coupling above — will look non-local

if written in the wrong language (the scalar one, in this case.) However, it is instructive to

try anyway and rewrite the action above in the scalar language: this will show us explicitly

where the obstacle is, and how it will be overcome by the multipole expansion of the next

section. Roughly speaking, when we consider a vortex ring and we Taylor expand the Aµν in

the Kalb-Ramond coupling about a suitably-defined center of the ring, the monopole term

— that involving Aµν without derivatives — vanishes. All higher multipoles involve gauge-

invariant combinations of derivatives of Aµν , that is, the field strength Fµ and derivatives

thereof, and can thus be rewritten in the dual scalar language as local couplings. However,

the situation is complicated by the fact that our duality involves a Legendre transform,

8The KR coupling λ cannot depend on any field, or else the KR term would not be gauge invariant,

since one has to integrate by parts to cancel its gauge variation.
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which relates the form of the duality relation between the fields to the action: every time

we write down a new term in the action, the duality transformation changes.

As a warm-up, consider our non-relativistic action above without the Kalb-

Ramon term,

Sno KR[A, ~X] = −
∫
d4x ρ(n)−

∫
dσdt | ~X ′| T (n(X)) (4.1)

= −
∫
d4x
[
ρ(n) + T (n)

∫
dσ| ~X ′|δ3

(
~x− ~X(σ, t)

)]
(4.2)

≡ −
∫
d4x f(n) , (4.3)

where we have left the ~x- and ~X-dependence of f implicit, since they will not matter in

the duality transformation. This action depends on Aµν only through the gauge invariant

combination n =
√
−FµFµ. We can thus follow the simple example of section 2, re-

introduce the one-form Pµ, and write an equivalent action that depends on Aµν at most

linearly:

Sno KR[P,A, ~X] =

∫
d4x [g(µ)− FµPµ] , (4.4)

where µ ≡
√
−PµPµ, and g(µ) is related to f(n) by a Legendre transform:

µ = f ′(n) , g(µ) = µn(µ)− f(n(µ)) , (4.5)

n = g′(µ) , f(n) = nµ(n)− g(µ(n)) . (4.6)

The logic is exactly the same as before: on the one hand, integrating out Pµ from (4.4),

g′(µ)

µ
Pµ = −Fµ , (4.7)

gives us back exactly the action (4.1). On the other hand, solving first the equation of

motion coming from varying Aµν ,

∂[µPν] = 0 ⇒ Pµ = −∂µφ , (4.8)

and plugging back into the action gives us the scalar action

Sno KR[φ, ~X] =

∫
d4x g(µ) , (4.9)

where µ now is

µ =
√
−∂µφ∂µφ . (4.10)

This result is formally correct, but it does not make immediately obvious what the

string-localized term looks like in the scalar formulation. The reason is that the delta-

function term in f(n) (see eqs. (4.2)–(4.3)) contributes to g(µ) both directly, via g = µn−f ,

and indirectly, because it affects the relationship between µ and n. To understand its overall
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effect, it is useful to treat the delta-function term as a small perturbation to the action and

work perturbatively in it. We formally write

f(n) = fB(n) + δf(n) fB ≡ ρ(n) (4.11)

µ(n) = µB(n) + δµ(n) µB = dρ/dn (4.12)

n(µ) = nB(µ) + δn(µ) nB = dp/dµ , (4.13)

where the subscript ‘B’ refers to bulk relationships, and so in particular the functions µB(n)

and nB(µ) are those associated with the superfluid’s equation of state, while δf, δµ, δn are

their string-localized perturbations. The Legendre transform of f , g(µ), thus is

g(µ) = µnB(µ) + µδn(µ)− fB(nB(µ) + δn(µ))− δf(nB(µ) + δn(µ)) (4.14)

'
[
µnB(µ)− fB(nB(µ))

]
+
[
µ− f ′B(nB(µ))]δn(µ)− δf(nB(µ)) , (4.15)

where we kept up to first order in the perturbations, since as we will see in section 6.1

higher order terms can be set to zero using a suitable regularization scheme.

The zeroth order term is just the Legendre transform of the bulk action, using bulk

relationships: it is the pressure p(µ). The combination multiplying δn(µ) vanishes, because

f ′B(nB(µ)) = µB(nB(µ)) = µ . (4.16)

We are left with −δf(nB(µ)). We thus see that, to this order, the scalar action is just

the original bulk one, p(µ), supplemented by the same NG′ term appearing in the two-

form formulation, where now the tension should be expressed as a function of the chemical

potential µ — in particular, using the bulk equation of state to relate n, ρ, and p to µ:

Sno KR[φ, ~X] =

∫
d4x p(µ)−

∫
dσdt | ~X ′| T (µ(X)) , µ =

√
−∂µφ∂µφ . (4.17)

Note that such a simple result cannot hold if we keep the u dependence in T as well; as a

consequence, away from the non-relativistic limit our duality will have to be modified.

Consider now adding the KR term (3.4). We can work directly at the P -A level, since

the KR term is already linear in Aµν :

S[P,A, ~X] =

∫
d4x [g(µ)− FµPµ] + λ

∫
dσdtAµν(X) ∂tX

µ∂σX
ν . (4.18)

Again, this action is equivalent to (3.11) upon integrating out Pµ. Now however switching

to the scalar formulation is more complicated. Varying with respect to Aµν one gets the

eom
1

2
εµνρλ∂ρPλ = λ

∫
dσdt δ4 (x−X) ∂tX

[µ∂σX
ν] , (4.19)

which has 0i and ij components

~∇× ~P = λ

∫
dσ δ3(~x− ~X) ~X ′ , (4.20)

~̇P − ~∇P0 = λ

∫
dσ δ3(~x− ~X) ~̇X × ~X ′ , (4.21)
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where we denote ∂σ by a prime from now on. Equation (4.20) can be solved by taking a

second curl and inverting a Laplacian for the transverse part of ~P , yielding the standard

Biot-Savart law

~P = −~∇Φ− ~J , ~J ≡ λ

4π

∫
(~x− ~X)× ~X ′

|~x− ~X|3
dσ . (4.22)

The undetermined total gradient ~∇Φ is, as we already know, the scalar field of the scalar

formulation. Now plugging (4.22) into the divergence of (4.21) and using the fact that the

Biot-Savart term is divergence-free, we can again invert the Laplacian to get

P0 = −Φ̇− J0 , J0 ≡
λ

4π

∫
(~x− ~X) · ~̇X × ~X ′

|~x− ~X|3
dσ . (4.23)

We thus have that (2.17) is modified as

Pµ = −∂µΦ− Jµ , (4.24)

and plugging this expression back into the action we get (up to a boundary term)

S[Φ, ~X] =

∫
d4x g(µJ )

=

∫
d4x p(µJ )−

∫
dσdt | ~X ′| T (µJ (X)) , µJ ≡

√
−(∂µΦ + Jµ)2 . (4.25)

Now, since ~∇ · ~J = 0, equation (4.22) is the Helmholtz decomposition of ~P , meaning that
~J carries the rotational information of the fluid flow, while Φ carries the compressional

part. It is thus clear that the physical interpretation of the Φ fluctuations is sound. Indeed,

comparing with
~P ∝ ~F ∝ ~∇× ~A− ~̇B , (4.26)

in the two-form formulation, we see that we have reorganized the degrees of freedom as

follows:
~A→ ~J , ~B → Φ . (4.27)

Unfortunately, due to the non-local, integral structure of Jµ(x) the action (4.25) is

not very useful — this was precisely the reason to introduce the two-form language in the

first place. From this viewpoint, it’s not clear how in the case of vortex rings the multipole

expansion is going to help: it looks like one will simply get a multipole expansion of Jµ,

with long-range multipole tails ∼ 1/|~x− ~X|`+2, which are still non-local. One has to keep

in mind, however, that the Φ-J split of Pµ is not unique, since one can transfer a four-

gradient from one part to the other. This is precisely what allows one to recover a local

(i.e., non-integral) expression for Pµ in the multipole-expanded case. This is easier to see

if one imagines performing the multipole expansion before solving eqs. (4.20), (4.21). For

example, the first nontrivial term for the first equation is a dipole term,

~∇× ~Pdip = ~q × ~∇δ3(~x− ~xc) , (4.28)

– 13 –



J
H
E
P
0
2
(
2
0
1
8
)
0
2
2

where ~q is a constant vector — the dipole moment — and ~xc is an arbitrary point in a

neighborhood of the vortex ring. This equation tells us that the curl of ~P is localized at ~xc.

Correspondingly, there is a solution for ~P such that the non-gradient part of ~P is localized

at ~xc:
~Pdip = −~∇φ− ~q δ3(~x− ~xc) . (4.29)

The difference between this and the lowest-order multipole of (4.22) is that the non-gradient

term now is not divergence free,

~∇ ·
(
~q δ3(~x− ~xc)

)
= ~q · ~∇δ3(~x− ~xc) , (4.30)

that is, it’s not a pure curl. So, some gradient part has been moved from Φ to ~J , with the

end result of making ~P local. The same magic works for all higher multipoles, and for P0

as well, as is clear from the results of the next section.

5 The multipole expansion

Consider now a vortex ring of typical size R, interacting with much longer bulk modes.

One can perform a multipole expansion of the interaction terms, which, as usual, just

amounts to a Taylor expansion of the bulk modes about an arbitrarily defined “center” ~xc
of the ring:

Aµν( ~X) = Aµν(~xc) + ∂iAµν(~xc)Y
i +

1

2
∂i∂jAµν(~xc)Y

iY j + . . . , ~Y = ~X − ~xc . (5.1)

To keep the notation light, we are suppressing the (σ, t)-dependence of our variables. Since

~xc is a collective coordinate for the ring, it only depends on t. On the other hand, ~Y

depends both on t and on σ. Notice that, as usual, the multipole expansion is done at

fixed time, that is, it corresponds to a Taylor expansion in space only.

Let’s focus first on the Kalb-Ramond term in the action. Before proceeding with the

multipole expansion, it is useful to separate Aµν ’s background from its fluctuations ~A and
~B, as in (2.24). The Kalb-Ramond term thus splits as

SKR = S̄KR + δSKR , (5.2)

S̄KR = −1

3
λn̄

∫
dt dσ ~X · ~̇X × ~X ′ , (5.3)

δSKR = λn̄

∫
dt dσ

[
~B( ~X) · ~̇X × ~X ′ + ~A( ~X) · ~X ′

]
, (5.4)

When we decompose ~X as ~X = ~xc + ~Y , we can formally perform the σ integral in S̄KR

exactly and end up with a simple point-particle action. To lowest nontrivial order (O(Y 2)),

we get

S̄KR → λn̄

∫
dt ~̇xc · ~q , (5.5)

where ~q — in general a function of t — is defined as

~q ≡ 1

2

∮
dσ ~Y × ~Y ′ . (5.6)
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This result and the following ones are straightforward consequences of some simple identi-

ties, which follow from integration by parts:∮
dσ Y ′ = 0 ,

∮
dσ YiY

′
j = εijkq

k ,

∮
dtdσ f(t) εijkẎiY

′
j = −

∫
dt ḟ qk . (5.7)

On the other hand, to perform the σ integral in δSKR we first have to Taylor-expand
~A and ~B as in (5.1), and this is what yields the multipole expansion. Working again up to

O(Y 2) only and using the identities above, we get

δSKR → λn̄

∫
dt
[(
~∇× ~A− ~̇B

)
· ~q −

(
~∇ ·B

)
~̇xc · ~q

]
, (5.8)

with the understanding that ~A’s and ~B’s derivatives are to be evaluated at ~xc. As antic-

ipated, at least at this order, the interactions of the ring with the bulk modes organize

themselves into gauge-invariant combinations. Indeed, the two-form’s field strength Fµ is

F 0 = n̄
(
1− ~∇ · ~B

)
, ~F = n̄

(
~∇× ~A− ~̇B

)
, (5.9)

so that, at this order, the effective point-particle action for the vortex ring coupled to bulk

modes can be written as

SKR = λ

∫
dt
[
F 0 ~̇xc · ~q + ~F · ~q +O(Y 3)

]
. (5.10)

In appendix B we generalize this result to all orders in the multipole expansion. We get

SKR = λ

∫
dt

∞∑
m=0

1

m!
qi1...imµ [∂i1 . . . ∂imF

µ]~xc , (5.11)

where

~q i1...im ≡ 1

m+ 2

∮
dσ Y i1 . . . Y im ~Y × ~Y ′ , (5.12)

qi1...im0 ≡ 1

m+ 3

∮
dσ Y i1 . . . Y im ~Y · ~̇Y × ~Y ′ − ~̇xc · ~q i1...im , (5.13)

are the ring’s multipole moments, characterizing its size, shape, and orientation. Eq. (5.10)

just corresponds to the m = 0, O(Y 2) terms in the sum.

Notice that so far we have been deliberately evasive about how to actually define the

ring’s center position ~xc: none of the above results depends on the precise definition of ~xc.

As usual for a multipole expansion, a redefinition of the origin about which one expands

keeps the multipole expansion intact, yielding only a reshuffling of the multipole moments,

with lower order ones contaminating the higher order ones. For us, a possible definition of

~xc is that of a center of mass-type coordinate,

~xc ≡
∮
dσ | ~X ′| ~X∮
dσ | ~X ′|

, (5.14)
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which has the advantage of being purely geometrical, that is, reparametrization invariant.

However, this is totally arbitrary, and in certain cases one might find it convenient to use

other choices.

The multipole expansion of the non-relativistic generalized Nambu-Goto term is at

the same time more straightforward and more tedious, since in that term Aµν couples to

the string directly through the gauge invariant combination n =
√
−FµFµ, but it does so

in a non-linear fashion. The Taylor expansion of the generalized tension T (n(X)) about

~xc reads

T (n(X)) = T (n)
∣∣
~xc
− T ′(n)

Fµ

n
∂iFµ

∣∣∣
~xc
Y i + . . . , (5.15)

where the complexity of the higher order terms quickly escalates, due to the aforementioned

non-linear structure of the coupling. In fact, for what follows it is probably better to keep

the derivatives in an unexpanded form,

T (n(X)) = T (n(~xc)) + ∂iT (n(~xc))Y
i +

1

2
∂i∂jT (n(~xc))Y

iY j + · · · , (5.16)

and expand them only when needed for perturbative computations. We can thus define

new multipole moments,

q′ i1...im ≡ −
∮
dσ|~Y ′|Y i1 . . . Y im , (5.17)

so that the full multipole expansion of (3.11) reads

Sbulk + SKR+SNG′ → −
∫
d4x ρ(n) (5.18)

+

∞∑
m=0

1

m!

∫
dt
[
λqi1...imµ · ∂i1 . . . ∂imFµ

∣∣
~xc

+ q′ i1...im · ∂i1 . . . ∂imT (n)
∣∣
~xc

]
,

Notice that with the choice (5.14) for ~xc, the q′-dipole,

~q ′ = −
∮
dσ|~Y ′| ~Y , (5.19)

vanishes.

The expression above includes all multipoles. In the limit of very small rings, or,

equivalently, very long bulk modes, the dynamics will be dominated by the lowest multipole

terms:

Sbulk + SKR + SNG′ ' −
∫
d4x ρ(n) +

∫
dt
[
λqµ · Fµ − 2πR · T (n)

]
, (5.20)

where Fµ and n are evaluated at ~xc, and we have defined the ring’s typical size R by

2πR ≡ −q′ =
∮
dσ|~Y ′| . (5.21)
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6 Back to the scalar!

Now that everything is expressed in terms of Fµ, n =
√
−FµFµ, and derivatives thereof,

we can pass to the scalar formulation straightforwardly. We first rewrite the string’s cou-

plings as

SKR + SNG′ =

∫
d4x

[
Fµ jµ + T (n) j′

]
, (6.1)

where

jµ ≡ λ
∞∑
m=0

(−1)m

m!
qi1...imµ ∂i1 . . . ∂imδ

3(~x− ~xc) , (6.2)

j′ ≡
∞∑
m=0

(−1)m

m!
q′ i1...im ∂i1 . . . ∂imδ

3(~x− ~xc) . (6.3)

The action (4.18) now reads

S[P,A, j, j′] =

∫
d4x
[
p(µ) + j′T (µ)− Fµ (Pµ + jµ)

]
, (6.4)

with µ =
√
−P 2. The equation of motion associated with A is, in exterior calculus notation,

d (P + j) = 0, whose solution is

Pµ = −∂µφ− jµ , (6.5)

for some new arbitrary scalar field φ. Plugging this back into the action we get

S[φ, j, j′] =

∫
d4x

[
p(µj) + j′T (µj)

]
, µj ≡

√
−(∂µφ+ jµ)2 . (6.6)

Let us now compare this result to (4.25): as anticipated, jµ is not the same as Jµ. For

instance, ~J is divergence-free but ~j is not. As a consequence, φ is not the same as Φ. The

advantage of the φ-j decomposition of P over the Φ-J one, is that jµ is local, since it is a

series of terms each supported at ~xc only. The same holds for j′ of course. In fact, even

when the full j and j′ infinite sums are taken into account, one gets mild non-localities that

extend only to distances of order R, being associated with having an extended source, i.e.,

with the fact that the exact location of the string is somewhere around ~xc, not precisely at

it. Put another way, the magic at work here does not really have to do with the multipole

expansion, but rather with having a closed string: only in that case can one rewrite its

couplings purely in terms of the gauge-invariant field strength Fµ.

6.1 UV divergences, new and old

An apparently problematic feature of (6.6) is that it is singular: the sources j and j′ are

series of Dirac-deltas and derivatives thereof. Since the action depends non-linearly on j,

any perturbative expansion in j will yield products of deltas and derivatives thereof, all

localized at the same point, which are notoriously singular, even as distributions.

For definiteness, consider truncating the jµ and j′ sums to the lowest order (m = 0)

terms, which corresponds to the approximation (5.20) for the effective point-particle action:

jµ ' λqµ δ3(~x− ~xc) , j′ ' q′ δ3(~x− ~xc) . (6.7)
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In this limit, the scalar action (6.6) reduces to

S[φ, j, j′] '
∫
d4x

[
p

(√
−(∂µφ+ λqµ δ)2

)
+ q′ T

(√
−(∂µφ+ λqµ δ)2

)
δ

]
(
δ ≡ δ3(~x− ~xc)

)
'
∫
d4x p(µ) +

∫
dt

[
− p′(µ)

µ
λqµ ∂µφ+ q′ T (µ)

(
µ ≡

√
−(∂φ)2

)
+

(
1

2

(
p′′(µ)

µ2
− p′(µ)

µ3

)
(λqµ∂µφ)2 − 1

2

p′(µ)

µ
λ2qµq

µ

− T
′(µ)

µ
λq′qµ ∂µφ

)
δ3(0) + . . .

]
.

The first line of the final expression encodes the familiar bulk dynamics of φ (zeroth order

in j, j′) as well the world-line lowest-order multipole interactions between the vortex ring

and φ (first order in j, j′). The second line contains the divergences we alluded to: at

second order in j, j′ one has a δ3(0); at higher and higher orders one gets higher and

higher powers of δ3(0). Had one included higher multipoles (higher m) in j and j′, one

would have found derivatives of δ3(0) as well.

What are we to do with these divergences? From a field theory viewpoint, UV diver-

gences are nothing new. For instance, in the case of a long string, self-energy diagrams in

which the string exchanges bulk modes with itself are logarithmically divergent [6]. Such

UV divergences are harmless — they can be renormalized away — but physical: being

logarithmic, they signal that certain local couplings such as the string tension will “run”

logarithmically with scale. When we take the limit of a small vortex ring and we treat it as a

point-like source, we are effectively going from an effective theory with the string thickness

a as UV cutoff, to an effective theory with the ring size R as UV cutoff. As a consequence,

those logs get saturated at logR/a, and now the same self-energy diagrams have power-law

UV divergences, cut off at distances of order R (more on this below). Power-law divergences

are both harmless and un-physical: after renormalization, there is no low-energy remnant

of power-law divergences. In fact, if one uses dimensional regularization they don’t even

show up.

Since δ3(0) and its derivatives are pure power-law divergences,

∂i1 . . . ∂imδ
3(0) = (i)m

∫
d3p

(2π)3
pi1 . . . pim , (6.8)

we can decide once and for all to use dimensional regularization, so that we can just set

all these divergent terms to zero. In that case, the scalar Lagrangian — now including all

higher multipoles — stops at first order in j and j′, and reduces to

S[φ, j, j′] =
dim reg

∫
d4x p(µ)+

∞∑
m=0

1

m!

∫
dt
[
λqi1...imµ ·∂i1 . . . ∂imJµ+q′ i1...im ·∂i1 . . . ∂imT (µ)

]
,

(6.9)

where Jµ is the conserved U(1) current,

Jµ = −p
′(µ)

µ
∂µφ = nUµ . (6.10)
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This is certainly the most economic approach, and in fact in the two-form case dim-

reg has the additional advantage of respecting gauge-invariance, unlike for instance a hard

momentum cutoff. However, it is also interesting to wonder whether in going from the

two-form language to the scalar one, the UV divergences just get shuffled around: some

of the UV divergences that one would get from the self-energy diagrams in the two-form

language, appear directly as divergent terms in the scalar Lagrangian. We checked that,

to lowest order in the multipole expansion and to order qq′ and q2, this is indeed the case.

As alluded to above, another aspect associated with UV divergences is the RG running

of certain localized couplings between the ring and bulk modes. For a long string, one gets

log divergences in self-energy diagrams that induce a running of the generalized tension as

in (3.12). Now, when we consider a closed string of typical size R interacting with much

longer bulk modes, in going to lower and lower momenta the running stops at k ∼ 1/R.

Related to this, in the point-particle limit for the ring the self-energy diagrams that used to

be log-divergent for a long string are now power-law divergent, and thus have no running

associated with them. (There are certainly higher-order diagrams that are log-divergent,

and thus induce RG running for higher-order coefficients — see e.g. [17, 18].) In the point-

particle limit we can thus take expression (3.12) for T and set k ∼ 1/R in the log. As for

the UV scale k0, strictly speaking one should determine that and its µ dependence from

experiment. However, up to order-one factors one can generically expect k0 ∼ 1/a — the

inverse string thickness. In the limit R� a one is dominated by the large logR/a, and any

corrections due to the mismatch between k0 and 1/a can be ignored in first approximation,

and so can their dependence on µ. One thus gets

T (µ) →
R�a

λ2

4π

n(µ)

µ
logR/a , (6.11)

Finally, it is worth pointing out that if the vortex ring has perturbations (Kelvin waves)

of typical wavelength ` much shorter than R, then ` is the scale that should enter the

log, not R.

To summarize: eq. (6.9) is the effective action one should use to describe the inter-

actions between a small vortex ring and much longer bulk modes. The ring’s multipole

moments are defined in (5.12), (5.13), and (5.17). For perturbative computations, one

should expand φ = µ̄t + π and µ =
√
−(∂φ)2 in powers of π. If the vortex ring’s typical

size R is much bigger that the string’s core size a, one can safely replace T (µ) by eq. (6.11),

in which case its µ- (and thus π-) dependence only comes from the prefactor n(µ)/µ. For

smaller vortex rings the full expression (3.12) should be used.

7 Sound emission by an oscillating vortex ring

As a simple application of our formalism, let us now compute the rate at which an oscillating

vortex ring emits sound. To lowest order in λ (and thus v/c̄s, with v the typical speed of the

ring — more on this below) and to zeroth order in bulk self-interactions, the corresponding
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diagram is simply

(7.1)

where the wavy line is sound (π(x)), and the double bold line is the world-line of the vortex

ring, to be treated as an external source in first approximation. The relevant part of the

action thus comes from expanding (6.9) in powers of π, to second order in the bulk and to

first order on the vortex ring’s world-line:

S ⊃ 1

2
w̄

∫
d4x

[
π̇2

c̄2
s

− (~∇π)2

]
(7.2)

+

∫
dt
[
λqiJ i(1) + λq0J

0
(1) + q′T(1) + λqi,j∂jJ

i
(1) + λqi0∂iJ

0
(1) + q′i∂iT(1) + · · ·

]
~x=~xc(t)

,

where the subscript (1) means that we take the part that is linear in the phonon field π. We

have kept the first multipoles only, which, as usual, dominate emission at low frequencies.

Recall that

Jµ = −p
′(µ)

µ
∂µφ , T =

λ2

4π

n(µ)

µ
log

(
`

a

)
, (7.3)

where µ =
√
−(∂φ)2, φ = µ̄(t+π), ` is the typical wavelength of the ring’s oscillations, and

we used the approximate expression (6.11) for the tension. From these we can compute

the relevant terms appearing in (7.2):

λJ0
(1) =

w̄Γ

c̄2
s

π̇ ,

λJ i(1) = −w̄Γ ∂iπ ,

T(1) =
w̄Γ2

c̄2
s

log(`/a)

4π

(
1− c̄2

s

)
π̇ ,

(7.4)

where we used that λ is related to the vortex line’s circulation Γ by λ = (w̄/n̄)Γ [6].

7.1 Power counting

Our multipole expanded action contains several scales controlling the dynamics of the bulk

modes and of the string and their mutual interactions. To understand which term in the

action dominates phonon emission, we have to estimate the orders of magnitude of the

various multipoles. First, notice that for the string to be captured by the EFT we clearly

need its typical size to obey L� 1/k∗, where k∗ is the strong coupling momentum scale of

the bulk interactions (2.14). Another relevant scale is the core radius of the vortex a� L

and, for the string approximation to be valid, we need the momenta to be kX , kπ � 1/a.

However, because of the multipole expansion

∼
∞∑
n=0

(kπL)n , (7.5)

we actually have a stronger bound on the bulk momentum, namely kπ � L−1. Next, the

parameter λ, which controls the bulk-string interactions, has dimensions of action and is
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typically of the order of ~ in the superfluid case, so O(1) in natural units. This means than

rather then doing perturbation theory in λ, we should expand in some other quantity —

in our case this will be related to the multipole expansion. Let’s then go back to (6.9), and

consider the linear order in π, but all orders in the multipole expansion. For our estimates

we will write ∇π ∼ kππ, π̇ ∼ ωππ = c̄skππ, and so on. The parameters related to the

string dynamics are (up to logs)

v ∼ Γ

L
, ωX ∼ Γk2

X , (7.6)

where v is the string’s typical speed, and ωX and kX are the frequency and wavenumber

of the string’s oscillations, i.e. the Kelvin waves (see appendix C). For definiteness let’s

specialize to the lowest Kelvin wave modes, with kX ∼ 1/L.

Notice that, as usual for waves emitted by an oscillating source, the frequency of the

wave is the same as the frequency of the source, ωπ = ωX ≡ ω. This gives a relationship

between v and kπ:

v ∼ c̄s(kπL) , (7.7)

which means that, as usual for a multipole expansion, v/c̄s and kπL are not independent

expansion parameters — they are in fact of the same order. We will choose to parametrize

the multipoles in powers of v/c̄s, which is more readily measurable.

We next estimate the multipole moments as follows:

~q i1···im ∼
∫
dσ Y m+1Y ′ ∼ Lm+1A ,

qi1···im0 ∼ v~q i1···im +

∫
dσ Y m+1Y ′Ẏ ∼ Lm+1Av + Lm+2AωX ,

q′i1···im ∼
∫
dσ Y mY ′ ∼ LmA ,

where A is the Kelvin waves’ amplitude (in units of length). Note that we only keep terms

that are linear in A, which is enough, since the terms independent of A don’t depend on

time and thus cannot emit, while higher powers of A are necessarily suppressed because of

the bound A < L. Collecting everything we obtain9

λqi,i1···im∂i1 · · · ∂imJ i(1) ∼ (v/c̄s)
m+2 × (A/L)

(
wcsL

2π
)
, (7.8)

λqi1···im0 ∂i1 · · · ∂imJ0
(1) ∼ (v/c̄s)

m+3 × (A/L)
(
wcsL

2π
)
, (7.9)

q′i1···im∂i1 · · · ∂imT(1) ∼ (v/c̄s)
m+3 × (A/L)

(
wcsL

2π
)
. (7.10)

The explicit factors of v/c̄s � 1 upfront tell us the relative importance of the various

multipoles: the m-th q0 and q′ multipoles are equally important, and as important as the

(m+ 1)-st ~q multipole.

9We assume that (1 − c̄2s) ∼ 1 so that the relativistic correction in the third equation in (7.4) does not

affect our estimates. We are also neglecting logarithmic factors as above.
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7.2 Emitted power

Now that we have understood the hierarchy between the various multipoles, we can compute

the emitted power at low frequencies.

According to our estimates above, the most important multipole is ~q, of order v/c̄s.

However, to zeroth order in external perturbations (and in the emitted sound), ~q must be

constant in time. The reason is that ~q is, up to constants, the conserved momentum for a

free ring,

λn̄~q =
∂Lring

∂~̇xc
, (7.11)

that is, the Noether charge associated with translations of ~xc. This is clear from the results

of section 5, where in the absence of external fields the only term in the action for a ring

that depends on ~̇xc is (5.5). This is true to all orders in the perturbations of the ring

(Kelvin waves), but to lowest order in gradients of the bulk modes (phonons). Thus, to

the order we are working qi does not oscillate and cannot emit sound.

We thus have to look at the q0, q′, qi,j terms, which are all of order (v/c̄s)
2. Notice

however that, to first order in the amplitude A of oscillations, q0 and q′ cannot depend on

time either. This is clear if we expand ~Y as ~Y (σ, t) = ~Y0(σ) + ~ξ(σ, t), where ~Y0 describes

an unperturbed circular ring, and ~ξ its perturbations; we have

q0 ⊃ −1

3

∮
dσ (~Y0 × ~Y ′0) · ~̇ξ = −1

3
R2

∮
dϕ
(
n̂ · ~̇ξ

)
, (7.12)

q′ ⊃ −
∮
dσ

~Y ′0

|~Y ′0 |
· ~ξ′ = −

∮
dϕ
(
ϕ̂ · ~ξ ′

)
, (7.13)

where ϕ is the angle around the ring and n̂ the normal to the ring’s plane. The integrals

over ϕ vanish for Kelvin waves on a ring, simply because they are integrals of sines and

cosines (see appendix C). Furthermore, the ~̇xc · ~q piece in q0 is constant, because ~q is

constant to all orders, while ~xc(t) is not affected by Kelvin waves to linear order in their

amplitude (appendix C).

Thus, if we restrict to oscillations with small amplitudes for our ring, we are left with

one interaction term that dominates emission at low frequencies:

S ⊃ −w̄Γ

∫
dt qi,j ∂i∂jπ

∣∣∣
~x=~xc(t)

, (7.14)

where we used eq. (7.4) for J i(1). We can now apply standard QFT techniques to compute

classical observables, as discussed for instance in the appendices of [4, 6]. The amplitude

for diagram (7.1) reads (recall that π is not canonically normalized — see eq. (7.2))

iM = i
√
w̄ c̄s Γ pipj Q

i,j(ωp, ~p ) , (7.15)

where ~p is the phonon’s momentum, ωp = c̄s|~p | its energy, and Qi,j ’s is the “world-line

Fourier transform” of qi,j :

Qi,j(ω, ~p ) ≡
∫
dt ei(ωt−~p·~xc(t)) qi,j(t) , (7.16)
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However, notice that the ~p · ~xc(t) piece in the exponent is generically of order pvt, and so

to lowest order in v/c̄s we may just use the usual Fourier transform:

Qi,j(ωp, ~p ) ' q̃ i,j(ωp) . (7.17)

For instance, for a vortex ring moving at constant velocity ~v, we would have Qi,j(ωp, ~p) =

q̃ i,j(ωp − ~p · ~v) = q̃ i,j(ωp) +O(v/c̄s).

Following standard QFT techniques, we relate the amplitude above to the emission

probability:

dP = |M|2 d3p

(2π)32ωp
. (7.18)

This counts the number of phonons emitted in a given infinitesimal d3p. To get something

with a smooth classical limit, we multiply by the energy ωp of each phonon, thus getting

the total energy emitted per unit d3p:

dE = |M|2 d3p

2(2π)3
. (7.19)

Integrating over the radial component p ∝ ωp first and using standard properties of Fourier

transforms, we get the energy per unit solid angle as an integral over time

dE

dΩ
=

∫
dt
dP

dΩ
, (7.20)

with instantaneous emission power per unit solid angle

dP (n̂)

dΩ
=

w̄Γ2

16π2c̄5
s

(n̂in̂j
...
q i,j)2 . (7.21)

To integrate over the solid angle we use∫
dΩ n̂in̂jn̂kn̂l =

4π

15
(δijδkl + δikδjl + δilδkj) . (7.22)

The total emitted power thus is

P =
w̄Γ2

60πc̄5
s

(...
q i,j

...
q i,j +

...
q i,j

...
q j,i
)
, (7.23)

where we used that, by construction, qi,j is traceless.

We can now consider specifically the case of small-amplitude Kelvin waves on our

ring, whose general properties are worked out in appendix C. Using those results and the

definition (5.12) we can compute qi,j to first order in the waves’ amplitudes. A somewhat

tedious computation yields10

qi,j = −πR
2

√
2

(
4

3

)1/4 [(
ψ2(t) + ψ∗−2(t)

)
ε̂iε̂j + c.c.

]
, (7.24)

10The fact that only the m = ±2 modes contribute can be understood from angular momentum con-

siderations: a circular ring preserves rotations about its axis, and its deformations can be classified as

eigenfunctions of the corresponding angular momentum; the label m measures precisely their eigenvalues.

A two-index tensor like qi,j can contain up to spin 2; on the other hand, Kelvin waves start at |m| = 2. So,

at linear order, qi,j can only depend on the m = ±2 modes.
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where ε̂i is the helicity-one polarization vector, which for a ring orthogonal to the z-direction

reduces to

ε̂ =
1√
2

(1, i, 0) , (7.25)

and the ψ’s are oscillating functions defined in (C.10), both with frequency

ω2 =

√
3 Γ

2πR2
log(Rk0) . (7.26)

Plugging all this in (7.23), and neglecting terms that average to zero over a period, we

finally arrive at

P =
π

15
√

3

w̄Γ2R4

c̄5
s

ω6
2

(
|ψ2|2 + |ψ−2|2

)
. (7.27)

This is the power emitted in sound waves. We can compare it to the oscillation energy of

the ring times the frequency. Their ratio will provide a measure of the decay rate of the

m = ±2 modes, in units of their frequency. The oscillation energy is given by (C.18), so

that we have

P

ω2 × Eosc
=

1

30
√

3

ΓR3

c̄5
s

ω4
2 (7.28)

=

√
3

10(2π)4

Γ5

c̄5
sR

5
log4(Rk0) . (7.29)

Apart from logs and numerical factors, in the absence of other sources of dissipation the

typical lifetime of the m = ±2 modes is thus of order (cs/v)5 � 1 periods.

8 Discussion and outlook

We have developed an effective field theory for small vortex rings interacting with long

wavelength fluid flows and sound waves, which we organized as a multipole expansion.

Compared to more general configurations involving vortex lines, one of the advantages

that arise in this case is that the fluid bulk dynamics can be described in terms of a single

scalar field rather than a two-form, with obvious simplifications for concrete computations.

As an application of the formalism, we computed the sound emitted by an oscillating vortex

ring via standard QFT techniques (i.e., Feynman diagrams). The same effective theory can

be used to study other phenomena as well, such as the long-distance interactions between

vortex rings mediated by hydrodynamical modes, or the dragging of vortex rings by the

surrounding fluid flow beyond the point-particle limit.

We must also stress that the dynamical variables describing all degrees of freedom of

the vortex ring in the final action (6.9) are still the world-sheet fields ~X(t, σ), and these

enter in a somewhat cumbersome way through each multipole moment qi1...imµ and q′ i1...im .

Thus, our effective action is mostly useful in cases of given vorticose sources, where the

time-dependence of the multipoles is known from the start, as we have illustrated with

the oscillating vortex ring for instance. To turn the action (6.9) into an EFT for both

sound and the vortex ring’s internal degrees of freedom, which can be used to conveniently
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compute back-reaction effects for instance, one must therefore replace the ~X(t, σ) descrip-

tion with infinitely many degrees of freedom ψn(t) that “live” on our point-particle and

parametrize its internal configuration. This is precisely what we did in appendix C, where

we expressed ~X(t, σ) in terms of the vortex ring’s position (xc(t)), radius (R(t)), and ori-

entation (n̂(t)), and infinitely many oscillators (ψm(t)) associated to the Kelvin waves (see

eqs. (C.2) and (C.19)). We have worked out the free part of this action, finding in partic-

ular that the Kelvin wave spectrum on a ring exhibits some peculiarities compared to the

straight vortex line case. This therefore amounts to a self-contained effective field theory

that determines the dynamics of both the bulk modes and the effective degrees of free-

dom of the vortex. We plan to explore this theory more systematically in a forthcoming

publication. In particular, in the language of the coset construction, our oscillators ψm(t)

correspond to “matter fields”, whose interactions, among themselves and with the “Gold-

stones” ~xc(t) and n̂(t), are determined by symmetry considerations. A first step in this

direction has been taken in [19]. In fact, along the lines of that paper, we can also include

the gravitational field to study how vortex rings and their excitations respond to gravity.

Finally, with suitable modifications, the same formalism that we have been using here

can also be applied to relativistic closed strings in empty space. It would be interesting to

understand whether our effective-theory parametrization of string dynamics offers a useful

formalism for perturbative (closed) string theory.
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A Vortex lines in perfect fluids

Consider a non-relativistic perfect fluid. Its field velocity obeys the Euler equation,

~̇v = −(~v · ~∇)~v − 1

ρ
~∇p . (A.1)

Taking the curl of this equation we get the standard evolution equation for the vorticity

~ω ≡ ~∇× ~v,

~̇ω = −(~v · ~∇) ~ω + (~ω · ~∇)~v − ~ω(~∇ · ~v) , (A.2)

where we have assumed a barotropic equation of state p = p(ρ), so that the pressure-

dependent term drops. We now consider an ansatz for the vorticity field localized on some
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vortex line ~X(σ, t) with constant circulation Γ,

~ω(~x, t) = Γ

∫
dσ ~X ′(σ, t) δ(3)(~x− ~X(σ, t)) , (. . . )′ ≡ ∂σ(. . . ) . (A.3)

It is straightforward to check that, at fixed t, such a vorticity field is divergence-free — as

befits the curl of the velocity field — and that the associated velocity field has circulation

Γ around the vortex line. We now want to prove that such an ansatz is consistent with the

evolution equation (A.2).

Plugging our ansatz into the various terms of (A.2), and dropping an overall common

factor of Γ from now on, we get

~̇ω →
∫
dσ
[
~̇X ′ δ(3)(~x− ~X)− ~X ′

(
~̇X · ~∇

)
δ(3)(~x− ~X)

]
(A.4)

(~v · ~∇) ~ω →
∫
dσ ~X ′

(
~v(~x, t) · ~∇

)
δ(3)(~x− ~X) (A.5)

(~ω · ~∇)~v →
∫
dσ
(
~X ′ · ~∇

)
~v(~x, t) δ(3)(~x− ~X) (A.6)

~ω(~∇ · ~v)→
∫
dσ ~X ′

(
~∇ · ~v(~x, t)

)
δ(3)(~x− ~X) , (A.7)

where all ~X’s and their derivatives are evaluated at (σ, t).

Our claim now is that the vortex line is comoving with the fluid flow. If true, this

means that there is a parameterization of the string (i.e., a gauge choice for the variable

σ), such that for all σ and t

~̇X = ~v( ~X, t) . (A.8)

From this, we have

~̇X ′ =
(
~X ′ · ~∇

)
~v(~x, t)

∣∣
~x= ~X

. (A.9)

Plugging both of these expressions into (A.4), and using the distributional identity(
~v(~x, t) · ~∇

)
δ(3)(~x− ~X) =

(
~v( ~X, t) · ~∇

)
δ(3)(~x− ~X)−

(
~∇ · ~v(~x, t)

)
δ(3)(~x− ~X) (A.10)

(a straightforward vector generalization of f(x)δ′(x) = f(0)δ′(x)− f ′(x)δ(x)), we see that

eqs. (A.4)—(A.7) are indeed consistent with the time-evolution equation (A.2).

We thus reach the conclusion that a zero-thickness, constant circulation vortex line,

comoving with the fluid, is a solution of the perfect fluid equations of motion.

B All-orders multipole expansion

In this appendix we provide the detailed derivation of the multipole expansion of the KR

action (5.11). So let us consider a localized string and work in the physical gauge X0 = τ .

Defining

Ai ≡ A0i , Bi ≡
1

2
εijkAjk , (B.1)
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we find that the Kalb-Ramond term (3.4) reads

SKR = λ

∫
dt dσ

[
~A( ~X) · ~X ′ + ~B( ~X) · ~̇X × ~X ′

]
, (B.2)

and it will be convenient to also define

~A ≡ ~A+ ~B × ~̇xc . (B.3)

We begin by Fourier transforming the space-dependence of the bulk fields, expressing ev-

erything in terms of ~Y and expanding around ~Y = ~0:

SKR = λ

∫
dt

d3k

(2π)3

[
~A ·
∮
dσ ei

~k· ~X ~X ′ + ~B ·
∮
dσ ei

~k· ~X ~̇X × ~X ′
]

(B.4)

= λ

∫
dt

d3k

(2π)3
ei
~k·~xc

[
~A ·
∮
dσ ei

~k·~Y ~Y ′ + ~B ·
∮
dσ ei

~k·~Y ~̇Y × ~Y ′
]

= λ
∞∑
n=0

∫
dt

d3k

(2π)3
ei
~k·~xc 1

n!

[
~A ·
∮
dσ (i~k · ~Y )n~Y ′ + ~B ·

∮
dσ (i~k · ~Y )n ~̇Y × ~Y ′

]

= λ

∞∑
n=0

1

n!

∫
dt

d3k

(2π)3
ei
~k·~xc

[
1

n+1
~A ·
∮
dσ (i~k · ~Y )n+1~Y ′+ ~B ·

∮
dσ (i~k · ~Y )n ~̇Y × ~Y ′

]
,

where in the last step we have simply redefined the indexation of the sum for the ~A terms

since the n = 0 term is zero. Using∮
dσ Y (i1 . . . Y in+1∂σY

in+2) =
1

n+ 2

∮
dσ ∂σ

(
Y i1 . . . Y in+2

)
= 0 , (B.5)

we have that in the contraction

~A ·
∮
dσ (i~k · ~Y )n+1∂σ~Y = iki1 . . . ikin+1Ain+2

∮
dσ Y i1 . . . Y in+1∂σY

in+2 , (B.6)

one can subtract from iki1 . . . ikin+1Ain+2 the totally symmetric part and be left with

iki1 . . . ikin+1Ain+2 − ik(i1 . . . ikin+1Ain+2)

= iki1 . . . ikin+1Ain+2 −
1

n+ 2

n+2∑
m=1

n+2∏
l=1
l 6=m

ikil

Aim
=
n+ 1

n+ 2
iki1 . . . ikin+1Ain+2 −

1

n+ 2

n+1∑
m=1

n+2∏
l=1
l 6=m

ikil

Aim
=

1

n+ 2

n+1∑
m=1

iki1 . . . ikin+1Ain+2 −

n+2∏
l=1
l 6=m

ikil

Aim


=
2

n+ 2

n+1∑
m=1

n+1∏
l=1
l 6=m

ikil

 ik[imAin+2] , (B.7)
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so that this only depends on the curl ~∇ × ~A. Then, thanks to the total symmetry of

Y i1 . . . Y in+1 , the contraction simplifies considerably

~A(k) ·
∮
dσ (i~k · ~Y )n+1∂σ~Y (B.8)

= iki1 . . . ikin+1Ain+2

∮
dσ Y i1 . . . Y in+1∂σY

in+2

=
2

n+ 2

n+1∑
m=1

n+1∏
l=1
l 6=m

ikil

 ik[imAin+2]

∮
dσ Y i1 . . . Y in+1∂σY

in+2

=
1

n+ 2
(i~k × ~A)i

n+1∑
m=1

n+1∏
l=1
l 6=m

ikil

 εiimin+2

∮
dσ Y i1 . . . Y in+1∂σY

in+2

=
1

n+ 2
(i~k × ~A)i

n+1∑
m=1

(
n∏
l=1

ikil

)
εiin+1in+2

∮
dσ Y i1 . . . Y in+1∂σY

in+2

≡ (n+ 1) iki1 . . . ikin i
~k × ~A · ~qi1...in .

For the ~B term we first need

εijk

∮
dσ Y i1 . . . Y in Ẏ j∂σY

k (B.9)

=
1

2
εijk

∮
dσ Y i1 . . . Y in

[
∂t

(
Y j∂σY

k
)
− ∂σ

(
Y j∂tY

k
)]

=
1

2
εijk ∂t

∮
dσ Y i1 . . . Y inY j∂σY

k

−1

2
εijk

∮
dσ
[
Y j∂σY

k∂t
(
Y i1 . . . Y in

)
− Y j∂tY

k∂σ
(
Y i1 . . . Y in

)]
=

1

2
εijk ∂t

∮
dσ Y i1 . . . Y inY j∂σY

k

−1

2
εijk

n∑
m=1

∮
dσ

 n∏
l=1
l 6=m

Y il

[Y j∂σY
k∂tY

im − Y j∂tY
k∂σY

im
]

=
1

2
εijk ∂t

∮
dσ Y i1 . . . Y inY j∂σY

k

−1

2
εijk

n∑
m=1

∮
dσ

 n∏
l=1
l 6=m

Y il

[Y j∂tY
[im∂σY

k] − Y k∂tY
[im∂σY

j]
]

=
1

2
εijk ∂t

∮
dσ Y i1 . . . Y inY j∂σY

k

−1

2
εijk

n∑
m=1

∮
dσ

 n∏
l=1
l 6=m

Y il

Y jεimknεnpqẎ
p∂σY

q
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=
1

2
εijk ∂t

∮
dσ Y i1 . . . Y inY j∂σY

k

+
1

2

n∑
m=1

∮
dσ

 n∏
l=1
l 6=m

Y il

[δimi Y jεjpq − Y imεipq

]
Ẏ p∂σY

q

=
1

2
εijk ∂t

∮
dσ Y i1 . . . Y inY j∂σY

k (B.10)

+
1

2

n∑
m=1

δimi

∮
dσ

 n∏
l=1
l 6=m

Y il

 εpqrY
pẎ q∂σY

r

−n
2
εijk

∮
dσ Y i1 . . . Y in Ẏ j∂σY

k ,

where in the last term we recognize the expression we started with. We therefore isolate it

to get

εijk

∮
dσ Y i1 . . . Y in Ẏ j∂σY

k =
1

n+ 2

[
εijk ∂t

∮
dσ Y i1 . . . Y inY j∂σY

k (B.11)

+

n∑
m=1

δimi

∮
dσ

 n∏
l=1
l 6=m

Y il

 εpqrY
pẎ q∂σY

r

 .
Again, this simplifies a lot once contracted by virtue of the symmetry of ki1 . . . kin

~B ·
∮
dσ (i~k · ~Y )n ~̇Y × ∂σ~Y = iki1 . . . ikinBi εiin+1in+2

∮
dσ Y i1 . . . Y in Ẏ in+1∂σY

in+2

= iki2 . . . ikin

[
iki1

~B · ~̇qi1...in + n (i~k · ~B) qi2...in
]
, (B.12)

where qi1...in is the first term of (5.13). Going now back to the action (B.5), we integrate by

parts the time-derivative acting on ~q and redefine the summation of the ∼ q term to obtain

SKR = λ
∞∑
n=0

1

n!

∫
dt

d3k

(2π)3
ei
~k·~xc iki1 . . . ikin

×
[(
i~k × ~A− ∂t ~B − (i~k · ~̇xc) ~B

)
· ~qi1...in + (i~k · ~B) qi1...in

]
= λ

∞∑
n=0

1

n!

∫
dt
[
~qi1...in · ∂i1 . . . ∂in

(
~∇× ~A− ∂t ~B − (~̇xc · ~∇) ~B

)
+qi1...in ∂i1 . . . ∂in

~∇ · ~B
]
~x=~xc

. (B.13)

In these combinations we recognize the components of the field strength Fµ (2.16), i.e.
~∇ · ~B ≡ F t and

~∇× ~A− ∂t ~B − (~̇xc · ~∇) ~B = ~∇× ~A− ∂t ~B − (~∇ · ~B) ~̇xc ≡ ~F − F t~̇xc , (B.14)
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so that

SKR = λ
∞∑
n=0

1

n!

∫
dt
[
~qi1...in · ∂i1 . . . ∂in

(
~F − F t~̇xc

)
+ qi1...in ∂i1 . . . ∂inF

t
]
~x=~xc

. (B.15)

Finally, expressing qi1...in in terms of qi1...in0 we obtain (5.11).

C Kelvin waves on a ring

Consider an approximately circular vortex ring of radius R, moving in an unperturbed

fluid. Its action is

S =

∫
dσdt

[
− 1

3
n̄λ ~X · ( ~̇X × ~X ′)− T (k)| ~X ′|

]
, (C.1)

where k is the inverse of a typical length scale. For simplicity, we consider a situation in

which the ring has deformations of some typical wavelength `, rather than a spectrum of

deformations that spans many orders of magnitude in wavelengths. In the former case, we

can just identify k with 1/` . In the latter, we wouldn’t be able to use directly the running

tension as a shortcut to take into account the effect of virtual ~A fields; we should instead

compute anew the self-energy diagrams where the ring exchanges ~A with itself. With these

qualifications in mind, from now on we will remove the argument of T , and denote T (1/`)

simply by T .

For any given time t, we can decompose the degrees of freedom ~X(σ, t) as

~X(σ, t) = ~x0 + v0t n̂+Rρ̂(σ) + ~ξ(t, σ) . (C.2)

The first term is an initial condition for the center of the ring. The second term describes

the uniform motion of the center of a perfectly circular vortex ring, moving along some n̂

with velocity

v0 =
T

λn̄R
. (C.3)

The third term describes the circular ring itself, with ρ̂(σ) being the radial unit vector

associated with any given value of σ. Finally, the fourth term describes deviations from

circularity: these will evolve in time in a fashion similar to Kelvin waves on a straight vortex

line, but with corrections due to the curvature of the ring. Plugging this decomposition

into the action, and focusing on the part of the action that depends on ~ξ, to quadratic

order we get

S →
∫
dσdt

1

2

[
n̄λR ϕ̂ ·

(
~̇ξ × ~ξ

)
− T

R

(
n̂ · (~ξ ′ × ~ξ ) + ~ξ ′2 − (~ξ ′ · ϕ̂)2

)]
, (C.4)

where ϕ̂(σ) is the unit angular vector (n̂, ρ̂, and ϕ̂ thus form the standard cylindrical-

coordinate basis of unit vectors.) Looking at eq. (C.2), we see that σ-reparametrization

invariance— ~X → ~X + f(σ, t)∂σ ~X — acts on ~ξ as

~ξ → ~ξ +Rϕ̂ f(σ, t) , (C.5)
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with arbitrary f . (It is straightforward to check that the action above is invariant under

this.) We can thus choose a gauge in which the ϕ̂ projection of ~ξ vanishes for all σ and all

t, so that the most general ~ξ we should consider is

~ξ(σ, t) = n̂α(t, σ) + ρ̂(σ)β(t, σ) . (C.6)

The action becomes

S →
∫
dσdt

1

2

[
n̄λR (βα̇− β̇α)− T

R

(
β2 + α′2 + β′2

)]
, (C.7)

Were it not for the β2 term, this action would be diagonalizable by going to circular

polarization, i.e. by defining a new complex field ψ ∝ α+ iβ. However, the β2 term clearly

breaks the symmetry between α and β. This means that we have to look for elliptically

polarized eigenmodes. Notice that at short wavelengths, i.e. for β′ � β, this effect becomes

negligible and we go back to the case of circularly polarized Kelvin waves on a straight

string. To diagonalize the action, we first have to expand α and β in Fourier modes11

α(σ, t) =

+∞∑
m=−∞

αm(t)eimσ , β(σ, t) =

+∞∑
m=−∞

βm(t)eimσ , (C.8)

with the usual reality condition, (α∗m, β
∗
m) = (α−m, β−m). Plugging these into the action

and performing the integral over σ we get

S → 2πR
∑
m

∫
dt

1

2

[
n̄λ (β∗mα̇m − α∗mβ̇m)− T

R2

(
m2 |αm|2 + (m2 − 1) |βm|2

)]
. (C.9)

The m-th mode Lagrangian is diagonalized by going to the linear combination

ψm ≡
1√
2

[(
m2

m2 − 1

)1/4

αm + i

(
m2 − 1

m2

)1/4

βm

]
. (C.10)

We get simply

S = 2πR n̄λ
∑
m

∫
dt
[
ψ∗m i∂tψm − ωm|ψm|2

]
, (C.11)

with eigenfrequencies

ωm =
T

n̄λ

√
m2(m2 − 1)

R2
. (C.12)

Notice that now we have no reality condition on the ψm’s, that is in general ψ∗m 6= ψ−m.

As a nontrivial check, notice that in the high momentum limit, m� 1, we recover the

straight-string Kelvin-wave spectrum with circularly polarized eigenmodes:

ωm →
m�1

T

n̄λ

m2

R2
, ψm →

m�1

1√
2

(αm + iβm) . (C.13)

11Since the relative importance of the β2 term depends on wavelength, how elliptic an eigenmode will be

depends on the mode, with higher and higher modes becoming more and more circular.
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Notice also the peculiarities of the dynamics of the low-lying modes, m = 0 and

m = ±1: their eigenfreqencies vanish. To understand what these modes correspond to, it

is better to go back to the α, β variables, since the ψm linear combinations are singular for

m = 0,±1. For m = 0, α0 and β0 are real and their action reduces to

S0 = (2π)

∫
dt

1

2

[
n̄λR (β0α̇0 − α0β̇0) +

T

R
β2

0

]
, (C.14)

with equations of motion

β̇0 = 0 , n̄λR α̇0 +
T

R
β0 = 0 . (C.15)

The most general solution is β0 = const and α0 = const − T
n̄λR2β0 · t. Looking at the

geometric interpretation of α and β in (C.6), it’s clear that this zero-frequency solution

corresponds to keeping the ring circular while changing its radius, its normal position, and

its speed in a way consistent with the change in radius.

For the m = ±1 modes, the action is

S1 = (2π)

∫
dt

1

2

[
n̄λR (β∗1 α̇1 − α∗1β̇1)− T

R
|α1|2

]
, (C.16)

with equations of motion

α̇1 = 0 , n̄λR β̇1 +
T

R
α1 = 0 . (C.17)

The most general solution now is α1 = const and β1 = const − T
n̄λR2α1 · t. Going back

to (C.6) again, we see that this corresponds to keeping the ring circular while shifting it

parallel to itself and tilting it by an infinitesimal angle δθ = α1/R.

To summarize: for an approximately circular ring the m = 0,±1 modes should be

thought of as small changes in the collective degrees of freedom in (C.2), that is ~x0, R,

and n̂. The oscillating degrees of freedom (Kelvin waves) are instead associated with the

|m| ≥ 2 modes, and are described by the action (C.11). Their oscillation energy is just

given by the corresponding Hamiltonian,

Eosc = 2πR n̄λ
∑
|m|≥2

ωm|ψm|2 . (C.18)

For any combination of eigenmodes ψm(t), the corresponding displacement vector (C.6) is

~ξ(t, σ) =
∑
m

[
eimσψm(t)~ζm + c.c.

]
, (C.19)

where ~ζm is the elliptical polarization vector

~ζm =
1√
2

[(
m2

m2 − 1

)1/4

n̂− i
(
m2 − 1

m2

)1/4

ρ̂

]
. (C.20)

Notice that only in the m → ∞ limit do we have ~ζ · ~ζ = ~ζ∗ · ~ζ∗ → 0 and ~ζ · ~ζ∗ → 1,

as appropriate for circularly polarized waves. For the low-lying modes instead we have
~ζ · ~ζ = ~ζ∗ · ~ζ∗ ∼ ~ζ · ~ζ∗ ∼ 1.
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