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ABSTRACT

We have integrated an image processing system built aro
PADDI-2, a custom 48 node MIMD parallel DSP. The syste
includes image processing algorithms, a graphical SFG tool, a s
ulator, routing tools, compilers, hardware configuration and deb
ging tools, application development libraries, and softwa
implementations for hardware verification. The system board, c
nected to a SPARCstation via a custom Sbus controller, cont
384 processors in 8 VLSI chips. The software environment s
ports a multiprocessor system under development (VGI-1). T
software tools and libraries are modular, with implementati
dependencies isolated in layered encapsulations.

CR Descriptors: B.7.1 [Integrated Circuits]:Types and Desi
Styles - VLSI; C.1.2 [Processor Architectures]:Multiple Dat
Stream Architectures - Parallel processors; D.1.3 [Programm
Techniques]:Parallel Programming; I.3.1 [Computer Grap
ics]:Hardware Architecture; I.4.3 [Image Processing]:Enhanc
ment.

1 INTRODUCTION

We have constructed a system built around a custom para
DSP chip, PADDI-2[1] (Programmable Arithmetic Devices fo
high speed DIgital signal processing[2]). The system consists o
multiprocessor DSP board, a host interface controller, and a c
plete software infrastructure for mapping, configuring, and acce
ing the board. The host interface controller is in-circu
reconfigurable and is synthesized from VHDL.

An algorithm is mapped to the multiprocessor hardware and
also coded completely in software for verification. The hardwa
and software implementations operate on a single data set and
result is compared.

Numerous software tools have been developed to assis
mapping DSP algorithms to the hardware and for verifying t
result. The process of mapping an algorithm to the hardware be
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with manual partitioning using a graphical SFG entry tool. Th
partitioned algorithm is then simulated and routed using anot
graphical tool. The result is then compiled to a configuration b
stream, downloaded to the multiprocessor board, and run us
configuration and I/O tools. The board software is built upon 
application programming interface and driver library. The softwa
has been designed in a modular manner to facilitate compila
under other computer operating systems and to reduce the de
dence on PADDI-2. Implementation details have been encap
lated in replaceable software libraries.

There are three custom hardware component types: a par
DSP processor (PADDI-2), the multiprocessor system board, an
computer interface controller. 

2 HARDWARE

PADDI-2

A goal of PADDI-2 is to achieve high performance (billion
of operations per second) by interconnecting numerous simple 
cessors in an MIMD fashion. It is intended for signal process
applications that contain abundant parallelism[3][4][5]. It’s arch
tecture draws on ideas from earlier architectures[4][6][7][8][9].

As shown above, it is a 48 node multiprocessor chip, co
posed of 12 clusters, each with 4 simple “nanoprocessors.” T
levels of interconnect are present. There are six level-1 data b
and four one-bit control buses within each cluster. These buses
used for local communication within a cluster and for communic
tion from within a cluster to outside a cluster. They extend into
second level crossbar. The level-2 interconnect has 16 data b
and eight one-bit control buses and are used to provide conne
ity between clusters. Each nanoprocessors has 17 programm
switches available to make connections to level-1 buses. Clus
have 50 switches within each level-1 to level-2 crossbar. The e
outer most clusters have dual purpose nanoprocessors which
vide off-chip I/O.

Six general purpose registers, three scratch pad registers

level-2

cl
us

te
r-

0

cl
us

te
r-

11
chip 
i/o

level-1
in clusters

A

e
al

bo-

tion Conference ®
1998 ACM
tion Conference ®
1998 ACM
DAC98 - 06/98 San Francisco, CA USADAC98 - 06/98 San Francisco, CA USA



 and
ate

s is
ble
 line
 a
he
ces-

effi-
n
re

 pro-

ing
eld
ave
vel

ce
le
se
us

he
he
d.

ion
ing
s)

into
 and

le-
ard
k
d a
hese
ay-
ose
For
t-
ary
eight element instruction memory, and a simple control unit is
present within each nanoprocessor. All instructions have a single
cycle latency with branches delayed by one cycle. A two stage
pipeline is used. The processor implements 12 instructions includ-
ing: add, add with carry-in, subtract, subtract with carry-in, logi-
cal or, logical and, logical xor, logical invert, arithmetic up shift,
arithmetic down shift, booth multiply, and select. Multiplication
can be done in eight cycles on a single processor or eight proces-
sors can be pipelined to deliver a result every cycle. The add and
subtract with carry-in instructions allows data precision in multi-
ples of 16. Each processor fetches instructions from its eight-word
instruction memory. Data may come from internal registers or
external sources via two-word input queues (the registers of the
processor can be configured as upto three queues). The execution
of all the processors can be halted via global control.

Data communication between all processors, irrespective of
position, takes one cycle and uses a hardware synchronization
handshake protocol. With each clock cycle, handshake lines are
precharged. If a sender or receiver is not ready, it is pulled low
(wired or). This will stall all participants. The line will remain
charged if, and only if, all participants are ready to pass a data
token. This mechanism eliminates the need for global synchroniza-
tion and retiming during the mapping process.

PADDI-2 has a 7464-bit scan chain that traverses the die, pro-
viding static configuration for each programmable resource,
including the processors and interconnect. In addition to configura-
tion loading, the scan chain is also used for debugging. After a glo-
bal halt, the status of each processor can be retrieved and examined
under global control. PADDI-2 has been fabricated using a 0.8
micron CMOS process with two levels of metal. The die size is
11.5 mm X 11.5 mm and is housed in a 208 pin ceramic package.
Additional details can be found in Yeung’s Ph. D. thesis [1].

Multi-processor DSP board

Multiple PADDI-2 chips have been integrated within a test-
board. This board has eight independent chips, each with a 128KB
static RAM. The interconnection of the I/O between chips is hard-
ware configurable via jumpers. Each chip can be configured to
connect one or more ports to its four logical neighbors in a 4x2
torus fashion. Multiple boards can be daisy chained into a single
logical device and connected to one host adapter. Since synchroni-
zation is done locally in hardware, this method of scaling works
well. Alternatively, additional interface controllers, with one or
more multiprocessor boards can be added to increase available
computation. System software has been implemented to address
any number or configuration of boards. Port connectors are pro-
vided to facilitate “plug-in” daughter-card and peripherals such as
sensors, displays, and other devices.

Due to the wide variation in communication requirements for
the algorithms of interest, no single optimal interconnect topology
exists. Our approach is to provide board-level options for intercon-
nect configuration over a common range. In the configuration
shown above, the chips are connected in serial fashion with each

connected to an external memory. Two ports are used to send
receive data to and from the host interface controller via a priv
16-bit data bus.

Address generation and read write control for the memorie
performed under nanoprocessor control. This provides flexi
memory access. One common access method is the delay
mode. Another example, which demonstrates this flexibility, is
multiple delay line implemented using one physical memory. T
address generator requires 6 instruction lines using the nanopro
sor instruction set.

A board design goal was to demonstrate and evaluate the 
ciency and flexibility of PADDI-2. At 50 MHz, each board ca
provide 20 GOPS of computation. It is being used to explo
PADDI-2’s architecture, its strengths and weaknesses, so as to
vide guidance in our next generation architecture.

Host Computer Interface Controller

The multiprocessor board is connected to a workstation us
a custom interface controller. It has two main components: a fi
programmable gate array and a host bus-interface chip. We h
designed an adapter for the Sun Microsystem SBus. The low le
SBus protocol is implemented using an LSI L64853A interfa
chip. Global control is implemented using a field programmab
gate array (Xilinx 4010) and is in-host reconfigurable. Its purpo
is three fold. It realizes the protocol translation between the SB
interface chip and the private bus. It performs arbitration for t
private bus. And, it provides global control for the processors. T
FPGA controller logic is specified using VHLD and is synthesize
This enables us to explore alternative protocols, arbitrat
schemes, and global control techniques without re-fabricat
hardware. Mature controller realizations (configuration bitstream
are cataloged for  reuse.

3 SOFTWARE

The software components of the system can be classified 
eight general types. These type are identified in the table below
each is discussed in the following sections.

Development Libraries

A set of application development libraries has been imp
mented. Six libraries have been developed to provide stand
interfaces upon which other tools are built. A low level I/O, a lin
level I/O, a scan chain bit manipulation, a controller access, an
general purpose parsing package have been developed. T
packages provide non-overlapping function and interact in a l
ered fashion. If any hardware component changes, only th
libraries directly affected by the change need to be modified. 
example, if we were to replace PADDI-2 with VGI-1 in the exis
ing multiprocessor board, only the scan chain manipulation libr
would need modification.

Software Libraries in Java (High-level Validation)

SFG Graphical Interface (Visual Entry and Manipulation)

Routing Tools (Interactive/Automatic PR)

Simulation Tools (Functional Verification)

Compilation Tools (Instruction Stream Configuration)

Board Access Tools (Communication with Hardware)

Board Debugging Tools (Interrogation of Hardware Status)

Development Libraries (Tools Development Libraries)
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Board Debugging Tools

Several utilities have been written to provide parameterized
stimulation of all hardware components. For example, to verify
that the chip scan chains are operational, a utility has been written
that generates test vectors. It can provide numerous, in type and
quantity, test patterns for a variable number of boards and chips. As
a second example; one of the interface controller configurations
supports parameterizeable timing. When this version is used to
configure the interface controller, a test tool is available to dynami-
cally modify various controller timing parameters. This was used
to optimize controller efficiency and function. Numerous other
debugging tools exist, but will not be described.

Board Access Tools

Four major board access tools have been developed. One is
used to download the configuration bitstreams to the FPGA in the
interface controller. A second is used for configuration of the
PADDI-2 processor array. The third is used to provide I/O streams
to algorithms running on the array. A fourth exists which helps
debug algorithms that use external data memory.

The tools all have a “self documenting” command line which
provides a usage synopsis. It provides command description, revi-
sion, argument keywords, argument keyword data types, argument
descriptions, and argument defaults, when run with no options. All
tools can be readily invoked within scripts and other programs to
perform complex sequences.

Compilation Tools

To compile an algorithm, one writes assembly code for each
function in the signal flow graph. These instruction streams are
assigned to specific nanoprocessors within a chip using an index
file. This is also where the level-1 and level-2 interconnect is con-
figured. All switches are, by definition, off and are explicitly turned
on as needed. A separate index is created for each chip used in an
algorithm. The compilation tools generate configuration bitstreams
for a chip. Each assembly file is compiled by the assembler (asm)
to an intermediate object file. A netlist is generated from the index
(gen_vsm). This netlist and intermediate object files are combined
(pgen) to generate the chip configuration bitstream. This process is
ordered by a makefile which itself can be automatically generated
(mkmf_set). This is required for each chip on a board. Chip config-
uration bitstreams are assigned to physical chips using a meta-
index file. This file simply is an index which relates chip configu-
rations to chip numbers. A makefile is also used hierarchically to
ensure that each chip configuration is current. This makefile can
also be automatically generated (mkmf_mset). The entire source for
an algorithm can be built using a single call to make on the meta-
index makefile. 

Simulation Tools

A functional simulator has been developed to assist in appli-
cation development. The simulator is written in Java for portabil-
ity. It processes compiled assembly code to initialize the simulated
chip state. A nanoprocessor simulator is instantiated for each
assembled object used in the index file. The index file is also used
to establish the communication interconnections between
instances. The simulator, like the hardware, can be run, halted, and
stepped. At any time the processor state can be viewed. All regis-
ter, queue, output port, condition code, flag register, current pc,
previous pc, and next pc, and processor stall information is avail-
able. The state of each nanoprocessors is summarized in separate
state windows and nanoprocessor communication can be observed
and recorded. Chip I/O is also simulated. With this, the same data
sets processed by the hardware can also be processed by the simu-
lator.

VGI-1 has on-chip data memory and independent I/O proc
sors. Extensions to support these and the other additional func
are under development. The implementation organization is g
eral enough to support similar designs which use hardware s
chronization to communicate between processors. The netw
primitives support arbitrary hierarchical networks topologies w
programmable routing.

Routing Tools

One of the more difficult tasks in programming multiproce
sor systems (of this class) is establishing the required inter-pro
sor communication. To assist, a graphical routing assistant tool
been developed which performs the allocation as a user requ
and assigns routing resources. The interconnect network is c
structed from a specification data set which describes the reso
available on the chip.

The algorithm index file is read to identify nanoprocess
instruction sequences. Nanoprocessor assignment and intercon
resources are interactively allocated graphically. The assis
keeps track of all available and allocated resources. Routes
allocated from a displayed list of available routes computed ba
on a user selected processor pair. Previously allocated resou
can be released and reallocated in any order. We have a slow
for automated PR which is guaranteed to find a mapping, if o
exists, by using exhaustive methods.

SFG Graphical Interface

A graphical signal flow graph manipulation tool has bee
developed to help in algorithm mapping and visualization. SFG
are represented using nodes, edges, and graph objects.  All ob
accept arbitrary property tagging (selectably visible or invisib
and support hierarchical composition.  For example, a node 
contain other objects, such as another graph, or collection
graphs.  Nodes may be moved around at will, grouped into clus
(subgraphs) and collapsed into a single node.  This tool aids
interactive SFG partitioning, manual placement, and routing.  It
works in conjunction with the other mapping tools by sharing
common I/O data representation.

A SFG can be interactively partitioned, placed, and rout
with this tool.  One selects groupings which can be mapped to c
ters, assigning properties to the nodes and edges to allocate le
resources.  Next groupings are assigned to clusters by adding p
erties to the higher-level node which contains the grouped s
graphs.  Finally, properties are added to the edges wh
interconnect groupings to allocate the required level-2 rout
resources.

Alternatively, a partial mapping can be obtained from oth
tools, such as the slow autorouter, and completed manually
visually identifying the objects which have not been assign
(those missing an assignment property).

Software Libraries in Java for Image Processing

Our algorithm mapping flow has two paths which branc
from the algorithm and re-converge with an algorithm input da
stream. One which targets hardware realizations and another w
targets software realizations. This algorithm-in-software path p
vides system level verification of algorithm-in-hardware ma
pings. The output of both implementations is compared a
differences are readily observed. A subtraction of one image fr
the other is one such useful comparison.

Several image processing algorithms have been implemen
Enhancement algorithms include median filters, local averagi
max/min sharpening, and blurring filters. For edge detection, 
have the discrete differencing, the Robert’s edge detector, the 
witt edge detector, and the Sobel edge detector. Others include
fast fourier transform and the inverse transform. Others, such
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the discrete cosine transform and wavelet transform, are under
development.

4 SYSTEM USAGE

Currently the task of going from algorithm function to nano-
processor assembly code is manual, and uses macro libraries, how-
ever, techniques are being investigated to support more automated
mapping flows. Given the simplicity of a nanoprocessor, code gen-
eration is not difficult. The processor assembly code, node-to-pro-
cessor assignment, and the interconnect routing assignment are
processed to produce a configuration bitstream which is down-
loaded to configure the array. A separate assembly source file is
required for each unique node of the SFG. An index is used to map
assembly code to nanoprocessors.

A Mapping Technique

There are numerous techniques for mapping. The efficiency
of the technique chosen is highly dependent on the algorithm
description. We assume the algorithm to be described by an SFG
and that each node does not exceed the context or port capacity of a
nanoprocessors. PADDI-2’s two level interconnect architecture
encourages a two phase mapping process; intra-cluster routing, fol-
lowed by inter-cluster routing. The discussion below is an example
of one mapping scheme.

The task of intra-cluster routing involves first partitioning
then placing and routing subgraphs of the algorithms SFG. Node
count, port count, and interconnect topology limits the selection of
subgraphs. Once all nodes of the algorithms’ signal flow graph
have been assigned to a subgraph, this phase is complete. 

The routing resource within a cluster is shared to provide
internal and external I/O. For example, a level-1 bus can be used to
connect two nodes within the cluster or it can be used to connect a
node within a cluster to one outside the cluster. Because of this,
there is a dependency between intra- and inter-cluster routing. In
some cases, intra-cluster routing obstructs inter-cluster routing and
in these cases, one might identify alternative intra-cluster routing
to avoid such obstructions. An obstruction is not revealed until the
second routing phase.

In the second phase, groupings are assigned to clusters and
interconnected as required by the partitioned SFG. This involves
assigning subgraphs to clusters and allocating level-2 interconnect
resources for the inter-cluster communication. Once all subgraphs
have been assigned and interconnected, then mapping is complete.

5 SUMMARY

We have integrated a complete DSP system built around
PADDI-2. This hardware/software design consists of a DSP, sys-
tem boards, driver libraries, access tools, configuration tools, algo-
rithm development tools, and verification software. We have
produced a flexible functional simulator which works for both
PADDI-2 and VGI-1 and provides routing and placement assis-
tance in a Java based graphical tool. Our software development
libraries have been designed for portability. New board configura-
tions and hosts environments can be supported with minimal port-
ing effort. Our multiprocessor DSP array has been designed to be
modular and scalable and can directly incorporate sensor daughter
cards. Several innovations exist in the PADDI-2 chip architecture.
A flexible interconnect switch has been designed which requires
approximately 17% the die area. Additionally, a robust hardware
local synchronization technique has been implemented which
reduces programming difficulties present in many other multipro-
cessor systems. Consistency was used in the software development

methodology and command utility interfaces.
The PADDI-2 chip was designed and verified using the Lag

tool set and other VLSI design tools developed at the University
California, Berkeley.  The custom boards were designed us
Lager in conjunction Racal-Redac’s to describe, place, and ro
board components.  VHDL synthesis is performed using Vie
Logic and mapped using XACT.  Java programs were develo
using JDK.  Web formatted code documentation[10] were autom
ically generated using EXT.
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