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A firm has inventories of a set of components that are used to produce a set of products. There is a finite horizon over which the firm 
can sell its products. Demand for each product is a stochastic point process with an intensity that is a function of the vector of prices 
for the products and the time at which these prices are offered. The problem is to price the finished products so as to maximize total 
expected revenue over the finite sales horizon. An upper bound on the optimal expected revenue is established by analyzing a 
deterministic version of the problem. The solution to the deterministic problem suggests two heuristics for the stochastic problem 
that are shown to be asymptotically optimal as the expected sales volume tends to infinity. Several applications of the model to 
network yield management are given. Numerical examples illustrate both the range of problems that can be modeled under this 
framework and the effectiveness of the proposed heuristics. The results provide several fundamental insights into the performance of 
yield management systems. 

yield management is the practice of using booking 
policies together with information systems data to 

increase revenues by intelligently matching capacity with 
demand. It is now widely practiced in capacity-constrained 
service industries such as the airlines, hotels, car rentals, 
and cruise-lines. Historically, yield management started as 
an operations function, focusing only on capacity alloca- 
tion given exogenous demand estimates. However, there is 
a growing consensus among researchers and practitioners 
alike that the pricing decisions that induce demand cannot 
be separated from traditional, capacity-oriented yield man- 
agement decisions; these two decision are inextricably 
linked. Pricing decisions influence the demand statistics 
that form the basic inputs to any yield management sys- 
tem, and pricing decisions in turn must ultimately be based 
on knowledge of the underlying capacity constraints and 
yield management policies. Therefore, to realize the full 
benefits of yield management, joint pricing/allocation 
schemes are necessary. 

While what must be done, namely coordinating pricing 
and allocation, is clear, exactly how it should be accom- 
plished remains somewhat a mystery. The problem is com- 
plicated by the fact that in many applications, most notably 
the airlines, many markets (origin-destination pairs) com- 
pete for the same resources (leg capacities); therefore, 
the pricing/allocation problem must be solved jointly for 
a large number of markets and resources. Uncertainty in 
the demand process and the dynamic nature of the allo- 
cation decisions further compound the difficulty of the 
problem. 

1. MODEL DESCRIPTION AND APPLICATIONS 

We propose a dynamic, stochastic model of yield manage- 
ment problems that addresses the joint pricing/allocation 

decision in a multiple-market, multiple-resource setting. 
Specifically, we define the problem in terms of products 
and resources. To provide a unit of product j, j = 1, . .. , n 
requires aij units of resource i, i = 1,..., m. We define 
the bill of materials matrix A = [aij]. We assume A is an 
integer valued matrix. Demand for each product j is mod- 
eled as a stochastic point process with intensity AJ. (All 
vectors are column vectors unless otherwise stated.) The 
vector of demand intensities A = (A1, . . ., An) at time s, is 
a function of s and the vector of current prices p = 
(pt, ... , pn). This demand function need only satisfy some 
general regularity conditions. Demand for a given product 
j is allowed to depend on time, the price of product j, and 
the price of products other than j; however, we do not 
allow the current demand to be a function of past or future 
prices. Thus, we assume that customers respond only to 
current prices and do not act strategically by adjusting 
their buying behavior in response to the firm's pricing pol- 
icy. This is certainly a limitation of the model. To consider 
strategic customer behavior would require a game- 
theoretic formulation, which, though quite interesting, is 
beyond the scope of our present analysis. 

Given initial quantities of resources at time zero and a 
time horizon t, the problem is to control prices, perhaps 
subject to price constraints, in order to maximize expected 
revenue over the interval [0, t]. 

It is perhaps not immediately clear that this formulation 
is a reasonable model of a yield management problem. In 
particular, there appear to be no "allocation" decisions. 
However, one can view allocation, at least conceptually, as 
a pricing decision. 

This is true for two reasons. First, if each product has 
only one fare class associated with it or each fare class is 
well differentiated in terms of payment requirements, 
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travel restrictions, etc., then closing a fare class is mathe- 
matically equivalent to setting the price for the corre- 
sponding product at a sufficiently high price, so that the 
expected demand rate is zero, and the fare class is effec- 
tively closed. In practice, of course, one would simply tell 
customers that the fare is no longer available. By modeling 
the closing of fares as we do, with no additional demands 
occurring after the last sale, we intentionally blur the dis- 
tinction between demand and sales, and view pricing and 
allocation as one decision. In Section 7.2.1, we discuss 
situations in which limitations on pricing flexibility require 
a separate allocation policy. 

Second, if one offers multiple fare classes for a given 
product which is not well differentiated, closing a low fare 
is mathematically equivalent to setting it to the next high- 
est fare. Notice that this may cause an increase in demand 
at the next highest fare because some customers who are 
willing to buy at the low fare are also willing to buy at the 
next highest fare when the former is not available. This 
phenomenon is known in the airline industry as demand 
recapture. 

In both instances, closing fare classes is equivalent to 
changing the "menu" of prices offered to customers at any 
point in time. In these two ways, one can map a wide range 
of joint pricing/allocation schemes into equivalent pure- 
pricing schemes. The advantage of the pricing framework 
is that it allows for a unified analysis of a rich class of yield 
management problems, and it directly reveals the relation- 
ship between pricing and allocation decisions. 

Multidimensional problems of the type suggested by our 
formulation arise in a wide variety of applications. For 
example, in the case of airlines, a "product" is an itinerary 
(path) from an origin (0) to a destination (D) in an airline 
network and a "resource" is a seat on a particular flight leg 
(edge) in the network. A customer traveling from 0 to D 
requires one unit of resource on each leg in a particular 
itinerary from 0 to D. In some cases, one might have two 
products that use precisely the same set of resources. 
Again, this occurs in airline applications when well differ- 
entiated coach and super-saver products exist for each itin- 
erary. In this case a product is an O-D itinerary at a 
certain fare level/restriction combination. 

Another example of such multidimensional problems is 
found in the hotel industry. Yield management problems 
for hotels are often viewed as quite different from airline 
problems since customers may occupy a room for several 
nights. Because of this overlapping effect, each day cannot 
be viewed as an independent instance. To model this prob- 
lem under the above framework, one defines a product for 
each possible combination of days that a customer might 
request over a specific period of time, e.g., one month. 
Resources correspond to room capacities on each day of 
the planning period (perhaps net of any group reserva- 
tions), and products correspond to particular subsets of 
days. Fior example, one product could be a Monday-to- 
Thursday stay during Week 1. If sold, this product would 
then consume one unit each of the resources correspond- 

ing to the days Monday, Tuesday, Wednesday, and Thursday 
of Week 1. Our multiproduct, multiresource formulation nat- 
urally captures the inter-day dependencies found in hotel 
booking. 

Our model also applies to situations quite distinct from 
those of traditional yield management. One example is the 
style or fashion goods industry. In the fashion industry, 
contracts for garment production typically are fixed well in 
advance of a given selling season. During a sales season, 
retailers face the problem of adjusting prices, usually 
through periodic sales and/or mark-downs, so as to maxi- 
mize the total revenue from their initial stock. These prob- 
lems are often multi-dimensional in nature for two 
reasons. First, demand for products may be dependent due 
to the fact that one product may substitute for or comple- 
ment another. Second, both products and resources may 
correspond to specific garment types at particular locations 
(either retail outlets or warehouses). Thus, if transship- 
ments are allowed, the same "product" (garment j at loca- 
tion x) may be provided using one of several "resources" 
(garment j at another location y). 

Other possible applications of the model include pro- 
duction/inventory problems where resources are compo- 
nents that can be assembled into a certain number of 
available products in a product line. The problem then is 
to price the product line to maximize the revenue from a 
given initial stock of components. For example, assembling 
a line of personal computers which share common compo- 
nents but are subject to rapid obsolescence is one possible 
application in this category. 

In the interest of brevity and to maintain focus, we shall 
concentrate on airline yield management applications of 
our model. However, both our model and analysis are in- 
deed quite general and can be used in a wide variety of 
other applications. 

2. LITERATURE REVIEW 

The study of yield management problems in the airlines 
dates back to the work of Rothstein (1971) for an over- 
booking model and to Littlewood (1972) for a model of 
space allocation of a stochastic two-fare, single-leg prob- 
lem. Belobaba (1987b and 1989) proposed and tested a 
multiple-fare-class extension of Littlewood's rule, which he 
termed the expected marginal seat revenue (EMSR) heuris- 
tic. Extensions and refinements of the multiple-fare-class 
problem include recent papers by Brumelle and McGill 
(1993), Curry (1989), Robinson (1995), and Wollmer 
(1992). The above papers develop optimal rules or heuris- 
tics under the assumption that the demand for different 
fare classes are random variables instead of stochastic pro- 
cesses. Some of the rules developed for random variables 
have been applied dynamically. See Weatherford et al. 
(1993) for extensive simulations on the performance of 
some of these rules under various models of the customer 
arrival processes. Lee and Hersh (1993) use discrete time 
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dynamic programming to develop optimal rules when de- 
mands are modeled as stochastic processes. They also al- 
low for group bookings. Feng and Gallego (1995) develop 
optimal threshold rules when demands are modeled as 
continuous time stochastic process. Kimes (1989) gives a 
general overview of yield management practice in the ho- 
tel industry. Bitran and Gilbert (1992), Liberman and 
Yechiali (1978) and Rothstein (1974) investigate analytical 
models of hotel problems. Ladany and Arbel (1991) inves- 
tigate pricing policies for cabins in a cruise-line. Chatwin 
(1992) characterizes the form of the optimal, dynamic 
overbooking policy for a single market. 

A recent review of research on yield management as 
well as a comprehensive taxonomy of perishable asset rev- 
enue management (PARM) problems is given by Weather- 
ford and Bodily (1992). They identify 14 descriptors that 
can be used to categorize a range of PARM problems. Our 
general formulation can model a broad subset of these 
descriptors, including dynamic pricing and allocation deci- 
sions, group demand, diversion, displacement, a time- 
varying willingness to pay, and no-shows (see Weatherford 
and Bodily 1992 for a detailed discussion of this taxono- 
my). In Section 4.3, a variety of examples that illustrate 
these features are presented. 

Glover et al. (1982) were, to our knowledge, the first to 
address a deterministic network flow model for the alloca- 
tion of seats between passenger itineraries and fare classes. 
Their formulation, however, does have a restriction to net- 
works with no undirected cycles. In addition to their for- 
mulation, Glover et al. give an interesting account of the 
effects of deregulation. They recognize two components to 
the airline problem, one tactical and one strategic, with the 
tactical dealing with monitoring reservations and the stra- 
tegic consisting of the selection of prices and routes. 

Wang (1983) provides an algorithm for the sequential 
allocations of seats on a plane to different uplift-discharge 
city pairs and fare classes within a flight segment when 
demands are random. Wang reports a 4% increase in reve- 
nue for high load factor flights. In addition, Wang provides a 
good explanation of the price/market differentiation 
scheme used by most airlines. 

Dror et al. (1988) present a rolling horizon network flow 
formulation for the seat inventory control problem assum- 
ing deterministic demands. Their formulation is extremely 
complex to account for passengers switching planes at in- 
termediate stops, but allows for arc losses to account for 
cancellations and no shows. No specification of how to 
obtain the parameters of the formulation or how to solve 
the network flow problem is given. 

In two internal McDonell Douglas reports, Wollmer 
(1986a and b) proposes a mathematical programming for- 
mulation incorporating random demands, where the objec- 
tive is to maximize the total expected network revenue. 
The formulation is very large since there is a variable for 
each origin/destination, fare class, and seat on each flight 
leg. On the positive side, the formulation is very accurate. 

In her Ph.D. thesis, Williamson (1992) proposes 
schemes that use well-known leg-based results for solving 
the network problem. In addition, she uses dual price 
information to develop a bid-price approach to the net- 
work problem. These schemes are extensively tested via 
simulation. 

A traffic flow model of airline networks is proposed by 
Soumis and Nagurney (1993). They formulate and analyze 
a stochastic, multiclass airline network model for deter- 
mining the equilibrium between the realized demand for 
different travel routes and the supply of seats. The traffic 
flows predicted by the model are tested against data from 
Air Canada. 

The most recent reference known to us is due to Talluri 
(1993), who formulates a deterministic network model 
based on origin-destination pairs. His key idea is that pas- 
sengers may be indifferent between different routes for an 
origin-destination pair provided they have similar depar- 
ture and arrival times. Airlines can take advantage of this 
indifference by intelligently routing passengers through 
origin-destination pairs. The decision variables of Talluri's 
model correspond to the allocation of demand for origin- 
destination pairs to routes for which customers are indif- 
ferent. When demand is assumed to be stochastic, Talluri 
provides a deterministic integer-programming formulation 
based on the idea of maximizing expected marginal reve- 
nue. In addition to his formulation, Talluri offers an inter- 
esting account of the state of the art of computer 
reservation systems used to support network models. 

Our heuristics are based on deterministic network flow 
models that are similar in spirit to those of Dror et al., 
Glover et al., and Talluri. However, the exact relationship 
of these models to the underlying adaptive stochastic con- 
trol problem has not been previously addressed. Our re- 
sults allow us to rigorously analyze this relationship. 

3. OUTLINE AND OVERVIEW OF MAIN RESULTS 

We begin by formally stating the formulation and assump- 
tions of our general model in Section 4. We then prove 
that a deterministic version of the problem provides an 
upper bound on the revenue of the original stochastic 
problem. The deterministic solution suggests two possible 
heuristics, which we call the make-to-stock (MTS) and 
make-to-order (MTO) heuristic. We show in Section 5 that 
both heuristics are asymptotically optimal as the volume of 
expected sales tends to infinity. We extend these results to 
the case where overbooking and cancellations are allowed 
in Section 6. 

Next, in Section 7 we examine several applications of 
our results to specific airline yield management problems. 
These include network, product differentiation, and over- 
booking problems and problems with time varying de- 
mand. We also examine how the lack of price flexibility 
and misspricing affect revenues and the performance of 
the various heuristics. Our conclusions and thoughts for 
further research are presented in Section 8. 



GALLEGO AND VAN RYZIN / 27 

4. ASSUMPTIONS AND FORMULATIONS 

4.1. Modeling Assumptions 

We assume a market with imperfect competition in which 
demand for each product j = 1, ... , n varies with its price 
pi. Demand for products at time s is a multivariate, sto- 
chastic point process with Markovian intensities. At any 
time s, the vector of intensities A = (A1, ...., Akn) is deter- 
mined by s and the current price vector p = (pl, . .. , pn) 

through a demand function A(p, s), A: Rnll -> Rn. Thus, 
demand is a controlled Poisson process. 

We assume the demand function A(p, s) is known, and 
further, that it satisfies the following regularity conditions. 

1. For every s, the demand function A(p, s) has an in- 
verse, denoted p(A, s), p( *, s): Rn+ -> Rn. Thus, we can and 
shall view the vector of intensities A = (A1,..., Ae) as the 
firm's decision variables. In this case, one can imagine 
the firm setting the output intensities A and the market 
determining the prices p based on these output intensities. 

2. The revenue rate at time s, defined by 

r(A, s) A'p(A, s), (1) 

is continuous, bounded and concave. (For a vector A, we 
let A' denote its transpose.) Further, we assume it satisfies 
the conditions lim xjx,o A'p'(A, s) = 0 for all finite A and 
all j = 1,..., n, and its maximizer As0(s) is uniformly 
bounded, i.e., AJ (s) - A < +oo for all j and s. Informally, 
the first condition says that no revenue is earned at a sales 
rate of zero, while the second says that sales rates are 
always bounded. 

3. For each product j and all times s there exists an null 
price p (s) (possibly +oo) such that if {Pk} is any sequence 
of price vectors satisfying pj > pJ (s), then limk,. A'(pk, 
s) = 0. Essentially, this condition says that there always 
exists some price that we can use to effectively "turn off" 
the demand for product j. This allows us to model the 
out-of-stock condition, i.e., not being able to provide a 
final product j due to the lack of one or more resources, as 
an implicit constraint that forces the firm to price at pi = 

pI{(s) for all times s during which the inventory of any 
resource i is less than aii. (Cohen 1977 and Karlin and Carr 
1962 make a similar null price assumption for single- 
resource problems.) 

A function A(p, s) that satisfies all these assumptions is 
called a regular demand function. 

4.2. Formulation of the Stochastic Problem 

The n final products are produced from m types of re- 
sources. There is an initial stock of each resource i, de- 
noted xl, and we define the vector x = (x1, ..., xm)' E 

2m. (Here 2, denotes the set of positive integers.) The 
firm has a deadline t > 0 after which selling must stop, and 
no additional resources can be obtained over [0, t]. Prod- 
uct]j requires a0j units of resource type i and A = Faqj]. We 
assume A is integer valued and has no zero columns; that 
is, each product uses at least one of the m resource types. 
Let the counting process M\P denote the number of type]j 

products sold up to time s and Ns = (Ns,..., Ns). Let 
= (p', . .., p') be the vector of prices at time s. The 

intensity of the process N, is controlled by ps through a 
regular demand function as described above. We assume 
this demand function is known. A demand for product j is 
realized at time s if dNJ = 1, in which case the firm takes 
ai1 units of each resource i, i = 1, .. ., m, out of its inven- 
tory, produces the product, and provides it to the customer 
in return for a revenue of p S. 

Prices are chosen using a nonanticipating pricing policy 
p5 = p(A,s s). The vector of prices p5 must be chosen from 
a set 95(s) of allowable prices. Equivalently prices may be 
chosen via nonanticipating intensities As = A(ps, s). The 
set of allowable intensities is denoted by A(s) = {A(p, s): 
p E 05(s)}, and we assume initially that A(s) is convex for 
all s, although the convexity restriction can be relaxed in 
certain cases as explained below. 

We denote by qL the class of all nonanticipating pricing 
policies which satisfy 

rt 
{ AdNs -x (a.s.), and (2) 

Ps E 9?(s) < As E A(s), O s-, t. (3) 

Constraint (2) acts to "turn off" the demand process for a 
product j when the firm lacks sufficient resources to pro- 
vide it. Thus as soon as a resource, say i, is exhausted, at 
time s, the prices of all products j consuming resource i(aj 
> 0) are increased to pi (s). The existence of a null price 
pJ (s) for all j at all times s guarantees that (2) can always 
be satisfied (with probability 1). Finally, we assume that 
the salvage value of unused resources is zero. We show 
below that this is assumption is made without loss of 
generality. 

Note that pricing policies are nonanticipating in the 
sense that the price at time s can depend only on s and on 
the realization of sales up to but not including time s. Also, 
since we allow policies where the price depends on the 
actual realization of demand, the price p5 and the corre- 
sponding demand intensity As are themselves random vec- 
tors. Finally, note that the price vector does not need to be 
a continuous function of time; it merely needs to be con- 
tained in the set 05(s). 

Given an initial vector of resource inventories x, a dead- 
line t > 0, and a regular demand process as described 
above, we want to find a pricing policy in 91 that maximizes 
total expected revenue. More formally, we denote the ex- 
pected revenue of policy u by 

JU(x, t) --Eu [p' dNsl, (4) 

and the firm's problem is to find a pricing policy u*, if such 
a policy exits, that maximizes the total expected revenue 
generated over [0, t], denoted J*(x, t). Equivalently, 

J*(x, t)-sup JU(x, t). (5) 
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4.3. Special Cases 

We briefly mention some special cases of this formulation 
to illustrate its range of application. Further examples are 
given in Section 4. 

Nonstationary Demand. Demand may change over time 
due to seasonalities, day-of-the-week effects, or the in- 
creased or decreased desirability of products as the dead- 
line approaches. Such nonstationarity is modeled using a 
time varying demand function. 

Discounted Revenue. One can have discounted revenue 
functions of the form r(A, s) = e-'Ap(A, s), provided r(A, 
s) satisfies the regularity assumptions. 

Resource Salvage Values. It is clear that with salvage 
values qt ' 0 for resources i = 1, ..., m, we would never 
set pi < 7F E1= aijqq for any j; therefore, we can define 
a new price vector pJ = pJ - 7r' and demand function 
A(pJ) = A(pi + iTJ) that reduce the problem to the zero- 
salvage-value case. (In this case, "revenue" in the problem 
in interpreted as revenue in excess of the total salvage 
value of the initial stock of resources, q'x.) 

Group Pricing. It is often possible to market multiples 
of a single product as a new product. For example, this 
occurs frequently in the airlines when blocks of space are 
sold to tour groups. This sort of group pricing can be 
modeled by introducing columns of the form Ajk = kA', 
k E 2?, and then specifying a separate price and separate 
demand function for each such column. 

Compound Poisson Demand. Suppose demand for 
product j is compound Poisson. That is, each customer 
request k items with probability qk, k = 1, ..., K < +oo, 

)k qk = 1. Let Ai be the column corresponding to product 
j and let pi(A, s) be the inverse demand function of prod- 
uct j. In this case, one can replace this single product by K 
products with columns AJk = kA', k = 1, . .. , K and inverse 
demand functions pi (A, s) = kpj(A, s), and add the set of 
convex constraints AJk = qklk, k = 1, ... , K. This yields an 
equivalent problem in the standard form of our 
formulation. 

Stochastic Customer Selection of Products. In many 
cases, firms cannot control the price of each product sepa- 
rately. For example, airlines typically offer a fare for O-D 
pairs only and cannot force passengers to use a particular 
itinerary (path) connecting the O-D pairs, since typically 
all "legal" connections of legs are allowed. If demand func- 
tions are linear, this situation can be modeled as follows: 
Let p denote the price for a given O-D pair connected by 
K distinct paths. Let qk, k = 1, . .. , K be the probabilities 
representing preferences of customers for these paths; that 
is, a given customer requests path k with probability qk. By 
pricing the O-D pair at p, intensities Ak = qkk(p), are 
generated for each path k = 1, . .. , K. If A(p) is linear and 
Q?(s) is convex, then the set of achievable intensities A(s) is 
convex, and the problem reduces to our standard form. 

Discrete Fare Classes. It many cases, firms do not have 
complete flexibility in setting prices. For example, airlines 
are often forced to match the fares of competitors or are 
committed to offering a certain number of advertised pro- 
motional fares. As a result, a firm may be restricted to a 
small number of price points for each product. This means 
that, on a tactical level, the firm may be able to control 
only the availability of its various fares, and may not have 
the freedom to change the fares themselves. 

To model this situation, one can consider the set of 
allowable prices P(s) to be a finite set, reflecting the possi- 
ble fares that can be offered for each product together with 
the null prices pi that block demand for product j = 
1,..., n. The set A(s) is then a finite set as well. In this 
case, the decision is which of the discrete set of prices to 
make available at any point in time for each product. If the 
null price is offered, then the product is closed, and no 
sales are made. This type of decision is more in the spirit 
of traditional yield management problems, in which one 
controls the availability of various fare classes for a given 
product. The discrete price formulation creates a technical 
problem since A(s) is not convex in this case; however, we 
discuss in Section 4.5 how this restriction can be relaxed if 
the revenue rate is constant or piecewise constant in time. 
If the revenue rate is continuously varying in time, it is 
possible to use randomized rules to overcome the convex- 
ity problem. 

4.4. Optimality Conditions 

The formulation (5) is an example of an intensity control 
problem. An optimal solution can be found in principle 
through the Hamilton-Jacobi sufficient conditions (Bre- 
maud 1980, Theorem VII.1): 

a J (x, t) 

= sup r(A,s) -E Aj[J*(x,t) - J*(x-Ai,t) (6) 
AEA(x, s) j=1 

where 

A (x, s) = A (s) n l{A: A = 0 if a ij < x lfor some i 

denotes the set of allowable intensities in state x at time s 
and Ai denotes the jth column of A. J* satisfies the bound- 
ary conditions 

J*(x, t) = 0 V t x: xi < aij for some i 
J*(x,0)=0 Vx. andallj=1,...,n 

This implicitly defines a system of first-order, typically non- 
linear, differential equations. 

In general it is very difficult to find closed form solutions 
to systems of differential equations such as the one pre- 
sented above. (See Gallego and van Ryzin 1994 for a 
closed-form solution for a single-product problem with an 
exponential demand function.) Although some of these 
systems can be solved numerically, the solutions tend to 
call for continuous price decreases between sales and for 
price jumps immediately after each sale. Therefore, we 
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next examine an approach for finding provably good sub- 
optimal pricing policies based on analyzing a deterministic 
version of this problem. 

4.5. Formulation of Deterministic Problem 

The deterministic problem is defined as follows. At time 
zero, the firm has a vector of material supplies x, which 
are continuous quantities, and a line of products j = 1, . . ., 
n which are sold in continuous amounts. To produce a unit 
quantity of product j requires quantities aij of each mate- 
rial i = 1, ... , m. As before A = [aij], and the firm has a 
finite time t > 0 to sell its products. Demand at time s is 
modeled as a vector of deterninistic rates A(s) - 

(A1(s), . . ., An(s)) that are functions A(p, s) of the current 
product price vectorp(s) = (p1(S), . ,pn(S)). We assume 
the demand function and the revenue function r(A(s), s) = 
A'p(A, s) satisfy our regularity assumptions as before and 
that salvage values are zero. The price vectorp(s) must again 
be chosen from a set 9@(s) of allowable prices. As before, we 
can equivalently view the firm as setting the vector of sales 
rates A(s) E A(s), which implies charging a vector of 
prices p(s) = p(A(s)) E 9?(s). 

The firm's problem is to maximize the total revenue 
generated over [0, t] given x, denoted Jd(x, t). 

t 
Jd(x, t) = max r(A(s), s) ds (7) 

subject to 
t 

A A (s) ds - x, 

A (s) fE A (s), O -, s St 

This problem is a deterministic optimization problem 
whose solution, if one exists, is a function from [0, t] to Rn, 
denoted Ad(s). Such problems can be analyzed either 
through the calculus of variations or the more general 
theory of optimization in vector spaces (Luenberger 1969). 

Notice that in the time invariant case where r(A, s) = 
r(A) and A(s) = A, the above problem reduces to a convex 
programming problem in Rn, and solutions are always con- 
stant intensities (prices) over [0, t]. It is not hard to show 
that one can allow A to be nonconvex in this case. This is 
accomplished by replacing A by its convex hull and inter- 
preting the resulting constant intensity solution of the new 
problem as a mixture of intensities from the original prob- 
lem, the mixture being achieved by varying the amount of 
time each fare is offered over the sales horizon. Indeed, in 
this case where A is discrete the deterministic problem 
reduces to a linear program, with decision variables being 
the amount of time each discrete price (intensity) is of- 
fered over [0, t]. The resulting solution is a set of piecewise 
constant intensities. An especially important application of 
this case is when prices, and hence intensities, are re- 
stricted to a finite set of fare classes as was discussed in 
Section 4.3. (See Gallego and van Ryzin for a detailed 
explanation of this case for a single-item problem.) This 

same approach can be easily extended to the case where 
the revenue function and constraint sets are piecewise con- 
stant over time. 

We use the fact that the optimal revenue in the deter- 
ministic problem can be expressed as 

n 

Jd(X, t) = _Zp aj, (8) 

where 

rt 
a = XA(s) ds, (9) 

is the total quantity of product j sold under the optimal 
policy and 

f p pd(s)XA](s) ds 
f A&(s) ds 

is the weighted average price obtained for product j. 

4.6. Relationship Between Stochastic and 
Deterministic Problems 

Our first theorem proves the rather intuitive result that 
the deterministic problem provides an upper bound on the 
stochastic problem. The proof requires a preliminary 
lemma. Let ,u = (pdl, . . . , pt) be a real m-vector. For ,t 
0 and any u E qL, define the augmented value function 

Ju(x, t, p,) = Eu [ (r(As, s) - pt'AAs) dsl 

+ t'x U JU(x, t), (11) 

and its deterministic equivalent 

Jd(X, t, Pt) = max I (r(A(s), s) - pt'AA(s)) ds 
{A(s)E=A(s)}Jo 

+ ,'x. (12) 

We claim the following. 

Lemma 1. 

j u(X, t, /) < j d(X, t, Pt) bf u E it, ji3-0 

-Proof. The claim follows by viewing the integrand inside 
the expectation in (11) as purely a function of A and max- 
imizing pointwise: 

rt J 
u(X, t, ~)~ max { r(X, s) - pt'AX}I ds + lx'x ' ) Jo 

~AEA(s){( 
) } 

t 

{mas)Es)} (r(A(s), s) - pt'AkA(s)) ds + 1','x 

Jd(X, t, A). D1 

We are now ready to prove our first theorem. 

Theorem 1. If A(p, s) is a regular demand function, then for 
all nonnegative integer x and all 0 S t < +oo 
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Proof. By our regularity assumption, we have AJ V A < co, 
which implies fJ Ak, ds is finite almost surely for all t : 0. 
Because u E eU satisfies ft AdNs S x (a.s.), we have by 
Bremaud, Theorem 11.8, 

Eu[ AdNsI =Eu[{ Axs dsl sx. (13) 

Since the demand intensity in the control problem (5) is 
Markovian, it is sufficient to consider only Markovian pol- 
icies u (Bremaud, Corollary VII.2). That is, policies for 
which the price at time s is a function ps = pu(x - Ns, s) 
only. (Equivalently, the intensity at time s is a function 
As = Xu(x - Ns, s).) By Bremaud, Theorem 11.8, we have, 

Ju(x, t) = Eu [ Pu (x - Ns, s)'dNs1 

=EuL r(Au(x -Ns, s), s) ds1 (14) 

and by definition 

J*(x, t) = sup Ju(x, t). 
uE9J 

Thus, by (11) and Lemma I we have 

J *(x, t) -:: inf Jd(X? t, Ft). ( 1S) 

Theorem 1 then follows by noting that the quantity on the 
right, above, is the optimal value of the dual of the deter- 
ministic optimization problem 

rt 

Jd(X, t) = max r(A(s), s) ds 

subject to 
t 

f Ax(s) ds -x 

A(s) E A(s), 0 - s s t, 

where the constraints we are relaxing are linear and thus 
convex, A(s) is convex by assumption, and the objective 
functional is concave. If x > 0, the solution A(s) = 0, 0 < 
s - t gives ft AA(s) ds < x and thus is an interior point of 
the relaxed constraint set. Under these conditions, there 
exists a multiplier ,* - 0 for which 

inf Jd(X, t, pu) = Jd(X, t, l*) 
- 

Jd(x, t), 

so the duality gap is zero (Luenberger, Section 8.6, The- 
orem 1). This together with (15) establishes the result 
for x > 0. If xl = 0 for some resource i, it is not hard to 
see that any product j that uses resource i can be elim- 
inated and the problem can be reduced to one in which 
x>0. Ol 

5. TWO ASYMPTOTICALLY OPTIMAL HEURISTICS 

We next examine heuristics suggested by the solution to 
the deterministic problem. Two implementations of the 
deterministic solution are considered, a make-to-stock and 

a make-to-order heuristic. We show both are asymptoti- 
cally optimal as the expected volume of sales tends to 
infinity. 

5.1. The Make-to-Stock Policy 

In the deterministic problem, we know with certainty the 
quantity of each product that will be sold under any given 
policy. Therefore it is possible to produce products in ad- 
vance and hold inventories of finished products rather than 
hold inventories of resources. This suggests the following 
heuristic: 

Make-to-Stock (MTS) Policy. Let Pd(s) be the optimal de- 
terministic price path and Ad(s) be the corresponding optimal 
deterministic intensity. Define 

rt 
Z= j AJ(s)ds = La]. (16) 

Preassemble zJ units of product j = 1, ..., n and place the 
products in separate inventories. Price products at Pd(s), 0 S 

s S t and sell them until the product inventories are ex- 
hausted or the deadline t is reached, whichever comes first. 

Here LxI denotes the largest integer less than or equal to 
x. 

Of course, there is no need to physically preassemble 
products in this heuristic; we need only logically reserve 
resources for specific products. Effectively, however, the 
MTS heuristic takes away both price flexibility and product 
mix flexibility. Despite this lack of flexibility, the policy 
performs quite well when the expected number of sales of 
each product is large. (Computational examples are given 
in Section 7.) 

Before proving this claim, we need a preliminary result. 
Consider just a single product being sold over [0, t] using a 
deterministic (scalar) price path Pd(s) and deterministic 
(scalar) intensity Ad(s). Suppose there is an infinite supply 
of the product and let R, a random variable, denote the 
total revenue received by following this optimal determin- 
istic price path. The distribution of R is characterized as 
follows. 

Lemma 2. Let N be a Poisson random variable with mean 
Jf A(s) ds and f{Tk: k - 1} be an i.i.d. sequence of random 
variables with density function 

X A(s) 0 -<s -<t 
f(s) = t A(s) ds' 

0, otherwise. 

Then 

DN 
R - Pd( TTk), 

k=1 

where 
D 

denotes equality in distribution. 
Proof. Since arrivals form a Poisson process, conditional 
on N = m, the arrival times of the m sales, T1, ..., Tm 

can be represented as the order statistics of the i.i.d. 
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random variables T1, .l. , Tm. Therefore, the prices 

pd(Tl),S Pd(Tm) are i.i.d. and R = Im Pd(Tk) - 

Ek-l Pd(Tk). Since Pd(Tj) is independent of N, the result 
follows after unconditioning on N. D1 

The following theorem establishes the asymptotic opti- 
mality of the MTS heuristic. 

Theorem 2. Let u = Supfpjd(S): Ad(S) > 0, 0 S s S t}. 
Then 

J MTS(x, t) 1j u(! 
& + 1) 

J*(x, t) , p 

Some explanation of this theorem is in order before 
we present a proof. Here, ui is an upper bound on the 
price obtained for item j and ai is the quantity of sales 
under the deterministic policy defined by (9). In the con- 
text of the stochastic problem, one can think of this last 
quantity as the mean number of requests for product j 
over the interval [0, t] when using the deterministic prices 
Pd(S). Note that the maximum prices ui must be finite, 
otherwise this bound is trivial. Theoretically, this is a 
somewhat a restriction, but it poses no real practical limi- 
tation. Provided ui is finite for all products j, the error 
term tends to zero as the quantities &i increase. Thus, if 
the expected sales volumes are large, the error term above 
is small. We give a more precise interpretation of this 
bound after presenting the proof. 

Proof. Define ai = f' Ai(s) ds as in the deterministic 
problem, and let N(j) denote a Poisson random variable 
with mean ai. Let { Tj: k - 1} denote the sequence of 
arrival times for a Poisson process with intensity Ad(s), 0 S 

s < t, and let R' denote the revenue from product j under 
the MTS heuristic. Then we have 

- N(j) N(j) 

E[RJ] E E pd(Tj)- EP,dp kI) 
- k=1 k=zj 

- N(j)- 
EE p J(Tjk) -ujE[(N(j) -z )+], (17) 

k=1 

where x- max(x, 0) and uj is the upper bound onp d(s) 

as defined above. From Lemma 2 and Wald's equation we 
have that the first term above is 

-N( j) 
E[E p'JdP(VTk) = E[N(j)]E[pJ(TO)] = a'p'. 

-k=1 

For a random variable D with mean y and standard 
deviation a-, and for any real number d, we have the fol- 
lowing inequality due to Gallego (1992): 

cr2+ (d - ~2(d - p) 
E[(D - d)+] S (d )2 - (d (18) 

Applying this inequality to the line of (17) and noting that 
= 0 2 = &i for the Poisson distribution we obtain 

Va1 + (zi - aj)2 - (z1 - a1) 
E[(N(j) - z )] 

+ 
2 

a' Izi- ail - (zi- a&) 

2 2 

Ca 
S +1 

2 

where the last inequality follows from the fact that z1 = 

Laij. Thus 

E[Ril], ai op-UJ( 2 +1) 

Summing these revenues over all products j and recalling 
that Theorem 1 gives us J*(x, t) - Jd(x, t) = Ej pjaj 
establishes the desired result. 

Remark. One can strengthen the theorem somewhat by 
noting that it remains true for ui defined as the smallest u 
satisfying 

U >{ 0P]i(S) f( ) ds, V 0 y t, 

where f(* ) is the density defined in Lemma 2 for product 
j. Note that an upper bound on ps(s) as defined in Theo- 
rem 2 certainly satisfies this inequality, though in general 
smaller values may work. To see this definition of ui is 
valid, condition on the time Y at which the allocation zJ 
is exhausted. Then by an argument identical to that in 
Lemma 2 we have 

N( j)- 

EE P(Tk)lY =y 
k=zi 

(Y f'(s) 1 

- j p]d(s) - ds E[N(j) - zjlY y], 
LfoY.ff'(~) d~ 

where the first term is defined to be zero when Y > t 
(equivalently, when N(j) - zi). Applying ui as an upper 
bound on the first term for Y < t and unconditioning we 
obtain a bound of ujE[(N(j) - zj)+] as before. 

To understand the significance of Theorem 2 more eas- 
ily, consider a sequence of problems indexed by integers 
k = 1, 2, . . . defined by an initial vector of resources xk = 

kx and a demand function Ak(P, s) = kA(p, s) for some 
fixed x, A(p, s) and t. This generates a sequence of prob- 
lems with proportionately larger sales volumes and initial 
stocks. It is not hard to see that this sequence of problems 
has the same optimal deterministic price path Pd(S) for all 
k; hence 

JkM S(Xk, t) >>1 u'( k 
+1 

Jk(Xk, t) k E77p=1xa 
=1 - ok12 
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where ai is defined as before for the case k = 1. This 
clearly shows the MTS heuristic is asymptotically optimal 
as the scale of the problem increases (k -* oo). 

5.2. The Make-to-Order Policy 

An alternative to the MTS policy is to price products ac- 
cording to the deterministic prices pd(s), 0 - s - t and 
then simply satisfy requests in a first-come-first-serve or- 
der. This idea leads to our next policy. 

Make-to-Order (MTO) Policy. Follow the deterministic op- 
timal price path Pd(S) over [0, t] and assemble and sell prod- 
ucts in the order in which they are requested. Reject requests 
for a product j when the inventory of one or more of its 
resources i drops below aij. 

Before stating our main result on this policy, several 
definitions are needed. Let Si = { j: aij > 0} denote the set 
of products j that use components of type i. As before, let 
ai = ft A1d(s) ds denote the mean number of requests for 
product j over [0, t], and define a(Si) = li, aoj. Note that 
a(Si) is the total expected number of request for products 
that use components of type i. Let vi = max{uJ: j E S1}, 
where uJ, j = 1, . . ., n are the uniform upper bounds on 
the price paths defined in Theorem 2, and define -vi = vi 

max{aij: j e Si}. Finally, let p i = lie pia&/a(Si) and note 
that with this definition, the deterministic revenue can be 
written Jd(x, t) = >i jYa(Si). 

Theorem 3. 

J MTO(x, t) .i=l va(S ) 

J* (x, t) 2 Em1 pt a(Sj) 

Proof. In the MTO heuristic, requests for product j are 
filled up until the first time the inventory for a resource i 
drops below aij. Consider a modified system in which we 
allow inventories of resources to be negative (i.e., backlog- 
ging is allowed) but we charge a penalty vi for every unit of 
resource i that is backlogged at the end of the horizon. We 
claim the net revenue (revenue minus backlog penalties) 
collected in this modified system is, pathwise, a lower 
bound on the revenue of the MTO heuristic. 

To see this, consider a request for product j at time s 
that is rejected under the MTO heuristic because the in- 
ventory of some component, call it i, is strictly less than aij. 
In the MTO heuristic, no revenue is collected and the 
inventories are left intact. In the modified system, the re- 
quest is satisfied and revenue p'(s) is collected; however, 
the backlog of resource i is increased by at least one unit. 
Thus, the net revenue received from the arrival in the 
modified system is no more than p1(s) - vi, which by 
definition of v', satisfies p'(s) - vi S pJ(s) - uJ % 0. 
Hence, revenue net of penalties does not increase. Fur- 
ther, there are fewer resources left for future requests. 
Thus, the net revenue of the modified system is no more 
than the revenue of the MTO heuristic for every sample 
path as claimed. 

As before, let {Tk: k : 1 } denote the sequence of 
arrival times of these requests. Then by comparison to the 
modified system we have 

J 
TOX,t) 

n N(j) 
JMT0(x, t) > Z E[EZP]E(Tj) 

j=1l k=1l _ 

m /n\+ 
-~ 'E~ ( a jjN(j) -x' (1 9) 

The first term above is simply Jd(x, t), as was shown in the 
proof of Theorem 2. To bound the second sum, notice that 
if d t , in (18), then E(D - d)+ o-/2. Consequently, 

E[ (EaaijN(I) x1) xi 

where 

n n 
a] Var E aijN(I) a E aj, 

_j=l j=l 

and, by construction, 

n n 
Ii I-E 7, a ijN(j) -Ea ij aej !Xi. 

j=1 j=1 

Noting that EJ%j a yaj - max{a2: j E Si}a(Si), using the 
definition of ii, and using Theorem 1, we establish the 
desired result. D 

Again, by considering a sequence of problems defined 
by an initial vector of resources Xk = kx and a demand 
function Ak(p, s) = kA(p, s) for some fixed x, A(p, s) and 
t, one can see that as k -* oo the relative error of the MTO 
heuristic is 1 - O(k- 1/2). Notice, however, that in this case 
the error bounds depend on a(Si), the total expected re- 
quests for products that use component i, and not directly 
on a1, the number of requests for product j. Thus, this 
bound is useful even in cases where there are arbitrarily 
small numbers of requests for each product, as long as the 
total volume of components sold is high. 

This behavior provides a distinct advantage over the 
MTS heuristic in cases where the number of products is 
much larger than the number of component types. For 
example, in airline networks there are typically a very large 
number of O-D combinations (products) offered with po- 
tentially few sales of any given combination occurring on a 
specific leg (component). A pure O-D allocation, such as 
in the MTS heuristic, can result in reserving only a handful 
of seats for each O-D market. Indeed, precisely for this 
reason, the airline industry has developed virtual nesting 
(see Smith et al. 1992 for a discussion) and other aggrega- 
tion schemes to compensate for this "small numbers" 
problem. 

While the bounds in Theorems 2 and 3 are theoretically 
satisfying, they are nevertheless quite crude from a practi- 
cal standpoint. However, in Section 7 we examine some 
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results of numerical experiments that indicate the perfor- 
mance of the heuristics is good, even for instances where 
sales volumes are moderate. 

6. A MODEL WITH OVERBOOKING AND 
NO-SHOWS 

Because of the possibility of no-shows (customers who re- 
serve a seat but do not show-up at the departure time), 
most airlines accept reservations in excess of capacity. 
This, however, can result in flights being overbooked and 
the possibility of refusing seats to ticketed passengers. 
When realized demand exceeds capacity, customers typi- 
cally are serviced by an alternative source (e.g., another 
flight or a nearby hotel). In addition, they may be compen- 
sated for the inconvenience (lunch, cocktails, a free taxi 
ride) and to restore goodwill (a free flight coupon). 

We next extend our model to allow for overbooking and 
no-shows. We assume that revenues are collected as reser- 
vations are made, that customers show up independently 
of each other just prior to the delivery of service, and that 
additional capacity can be secured at a given unit cost. 
Customers who do not show are refunded the price paid 
minus a fixed plus variable penalty. The problem is to 
determine the pricing, and overbooking policy that maxi- 
mizes expected revenue. 

We begin by deriving an expression for the expected 
revenue. Let yi denote the probability that a customer 
with a reservation for product j shows up; let ci ' 0 
denote the fixed fee; and i3i E (0, 1) denote the variable 
percentage fee charged to a product j customer who does 
not show up. Thus, if a customer pays p dollars for product 
j, he/she obtains a refund of p(l - i3') - ci. We assume 
that the quantity refunded is nonnegative. If necessary, 
additional components of type i can be secured at a unit 
cost pi. Given a nonanticipating intensity control policy As 
=(X, . . ., As) based on the initial inventories x - 
(xi,..., ) and the current history of reservations, the 
number of reservations for product j, NJ is a stochastic 
Poisson process with random intensity fs AJu du. Let {Tk: 
k 1 } denote the jump points of the counting process Nis, 
0 S s , t. Then the revenue collected from sales is given 
by 

rt 
f E p(xjS. s) dNJs = T E ( i ,< t), 
JO j j k_'1 k 

where 1(A) is the indicator function of the event A. 
To account for no-shows, let {Zlk; k - 1} be a sequence 

of independent Bernoulli random variables taking value 1 
with probability y' and taking value 0 with probability 1 - 
y'. We assume that these random variables are also inde- 
pendent of the counting processes NJ. 

In our model, revenues are collected as reservations are 
made and later refunded to customers who do not show 
up. If we disregard the time value of money, the sales 
revenue net of refunds can be written as 

> E p'(A jT,n Tk)l(Tjk t)1(Zk = 1). 
j k-1 I 

Thus, we can write the expected revenue net of refunds 
as 

?E y p'(A' T, TJ)1(Tk S t) 
] kB 

T 

t 

= E { E iyp'(A,ki s) dNs. 

If variable fees are imposed, the expected revenue net of 
refunds can be obtained from the last expression by replac- 
ing yi by y' + 13'(l - y'). If fixed fees are also imposed, 
revenues are increased by 

C ji E (Tk -- t) 1(Zjk = 0)* 
j klI 

Taking expectations, this results in 

rt 
E {| . 

c(1 - y') dNis. 
Joi 

The number of components of type i necessary to satisfy 
the demands for reservations that show up is 

rt 
a aij E (Tik -::: t)1(Zik = 1) a 2 ij dNJV, 

j kl1 k o 

where NJ is a stochastic Poisson process with random in- 
tensity y JfO Aia du. If Ej aijNJ{ > xi we must purchase 
additional type i components at unit cost pi. Under this 
model, the expected net revenue under a nonanticipating 
Markovian policy u is 

t 

Ju(x, t) = Eu 
{ , (,y + fi(l - yj))pj(Aj, s)Aj ds 

rt 
+ E, | ci(l - yj)Aj ds 

-Eu E Pi(> aijNT -xi) * (20) 
i J 

As before, let 

J*(x, t) = sup JU(X, t). 
uE90 

The deterministic problem can be written as 

jd (X, t) 

r t 

= max { { y (yi + (3i(l - y ))pj(AX(s), s)Aj(s) ds 

t 
+ | c'(1 -iJ)AJ(s) ds 

Jo~~~~~ i 

- pi t ay' XJ(s) ds - xi } 

Theorem 4. For the overbooking and no-show problems de- 
fined above, 
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Proof. Proceed by applying Jensen's inequality to the third 
term of JU(x, t) in (20) and by viewing the integrand inside 
the expectation as purely a function of A and maximizing 
pointwise. The result then follows as before. D 

Again, the solution to the deterministic problem sug- 
gests two heuristics for the stochastic problem. Let Ad(s) 

be the vector of optimal deterministic intensities, and set 
a1 = ft A'd(s) ds, and zJ = Lai . The make-to-stock (MTS) 
heuristic accepts up to zJ requests for product j. The 
make-to-order (MTO) heuristic accepts all requests. Both 
heuristics can be shown to be asymptotically optimal, 
though in the interest of space we shall provide only the 
theorem and proof for the MTO heuristic. The next theo- 
rem shows that the revenue loss of the MTO heuristic is 
O(>2 V/a(S1)). Since Jd(x, t) is O(Ei a(Si)), this result 
together with Theorem 4 implies asymptotic optimality of 
the MTO heuristic. 

Theorem 5. 

1 
JMTO(x, t) Jd(x, t) --E w a(S1), 

2. 

where wi/ = pi max{ajyij: j E Si}. 

Proof. The expected value of the make-to-order heuristic 
is given by 

JMTo(x, t) = i+ 13(l - y ())pj(Ad(s),s)A(s) ds 

rt 
+ c i (l-y j) AJ(s) ds 

-E E Pj( EpaijNj xi) (21) 

where NJ is a Poisson process with deterministic intensity 
JfO yJkJd(u) du. Note that the first two terms of JMTo(x, t) 

are equal to those of Jd(x, t). 
To establish the asymptotic optimality of the MTO heu- 

ristic we need a slight variant of (18). Let D be a random 
variable with mean ,u and variance &, writing (D - d)+ = 

-(ID - di + (D - d)), taking expectations and using the 
Cauchy-Schwartz inequality, we obtain 

2 
1 1 

+ -(1 -dl+ ( - d)) =~-- f+ (,u- d)+* 

Applying this to the last term of JMTO(x, t) in (21) we 
obtain 

+ E Pi( E aijN'i - xi) + Pi a a2ja, 

+~~ ~~~ E2i ijjjX 

which when substituted for the third term of (21) and 
using the definition of Fv/ proves Theorem 5. n 

7. NUMERICAL EXAMPLES 

We next examine several example applications of our 
model and the results of some numerical experiments. Be- 
cause the model presented in the previous sections is quite 
general, there are many problems that one can investigate 
using it. We have selected only a representative sample, 
each one chosen to illustrate a specific problem character- 
istic. In general, one could combine the characteristics of 
these examples to obtain increasingly realistic formula- 
tions. In addition to illustrating model formulations, the 
examples also provide insights into some fundamental 
characteristics of yield management problems. 

Example 1 examines a network problem that is time 
homogeneous, has no product differentiation and has no 
constraints on the O-D prices. Example 2 looks at this 
same network with two well-differentiated fare class prod- 
ucts for each O-D pair. In this example, we assume the 
differentiation is not based on time, so fare class products 
are sold simultaneously. Finally, Example 3 looks at this 
same network when overbooking and no-shows are al- 
lowed. A common finding in all these cases is that using 
correctly chosen fixed prices along with a simple alloca- 
tions scheme like FCFS (the MTO heuristic) is quite close 
to optimal. 

These findings would seem to suggest that current yield 
management, with its multiple fares and booking limit al- 
location schemes, is unlikely to be more effective than sim- 
ple FCFS allocation. However, we next look at several 
scenarios in which these practices are indeed effective. The 
first (Example 4) is when, as a matter of practical neces- 
sity, fares for each problem instance cannot be set freely, 
as was assumed in Examples 1-3. The second case (Exam- 
ple 5) is when the demand function changes over time, 
either due to changes in the perceived value of the prod- 
ucts or through time-of-purchase product differentiation. 
The final case (Example 6) is when products are mis- 
spriced. In all these cases, we show that a multiple-price, 
dynamic-allocation scheme can indeed be quite effective. 
The examples help explain more precisely much of the 
phenomenon that yield management systems are exploit- 
ing. 

7.1. Airline Network Pricing Examples 

Consider the following network model. A carrier network 
is described by a directed graph G = (V, E), where V is 
the set of n cities serviced by the carrier and an edge (i, j) 
E E represents a scheduled flight on a leg from city i to 
city j. We let cij denote the capacity of edge (i, j), i.e., the 
number of seats available on this flight leg. All capacities 
are defined with respect to a given day t. At each time s, 
o < s S t, the carrier can set the n(n - 1) prices, pt?, for 
all possible origin-destination pairs i and j, i + j. These 
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prices induce demand intensities for the various origin- 
destination (O-D) pairs through demand functions A11(p1i). 

There is a fixed path (itinerary) viij, indexing a subset of E 
that forms a directed path from i to j, associated with each 
O-D pair i, j. We shall index O-D pairs by vr. The objective 
is to adjust origin-destination prices and allocate leg capac- 
ity among the O-D pairs over time in order to maximize 
the expected revenue received prior to the departure time 
t. 

We note that several generalizations of this formulation 
are possible. In particular, there is no need to have a 
unique path connecting each pair of nodes. An arbitrary 
(or the complete) set of paths between nodes could be 
offered and priced- either individually or jointly as dis- 
cussed in Section 4.3. Indeed, the paths for all our exam- 
ples were in fact selected by solving a problem that initially 
makes available all possible paths between nodes. For sim- 
plicity, however, we assume a unique path connects each 
pair of nodes. 

In our network examples, we use a revenue function that 
is separable and time homogeneous, 

r(A) = A 
IT 

A log-linear demand function of the form 

A(p) = A0e -eo (p/po - 1), 

was used for each itinerary X where po is interpreted as a 
reference price, A0 is the demand rate at the reference 
price, and E0 is the magnitude of the elasticity of demand 
at the reference price. This log-linear demand function has 
a unique inverse 

p(A) = (Es- 1 ln(A0/A) + l)po. 

There is a column in the bill-of-materials matrixA for each 
itinerary IT and rows of A correspond to flight legs (edges). 
An element a ire of A is one if the itinerary X uses edge e 
and is zero otherwise. With this identification, the problem 
reduces to an instance of the multiproduct problem. The 
deterministic version of this problem is a separable nonlin- 
ear program. We emphasize that the separability and time 
homogeneity assumptions are imposed to simplify the nu- 
merical calculations only; they are not required for the 
theoretical results of the previous sections to hold. 

7.1.1. Example 1: Undifferentiated Network. Our first ex- 
ample illustrates the basic pricing problem with no price 
constraints and no product differentiation. It is based on 
the six-node example of a hypothetical airline network 
shown in Figure 1. Nodes 2 and 3 are "hub" nodes. Leg 
seat capacities are shown and were chosen to approximate 
the number of seats on a single aircraft. 

Parameter values for the demand functions of all O-D 
pairs are shown in Table I along with the path (itinerary) 
used by each pair. The values shown in Table I are essen- 
tially arbitrary and were chosen merely to illustrate the 
performance of the heuristics; however, it is not hard to 
see that the revenue of the heuristics is affected only by the 

deterministic O-D prices and seat allocations, which are 
shown in the last two columns in Table I. These prices and 
seat allocations are reasonable approximations of those 
found in actual airline applications. 

The deterministic problem was formulated and solved 
using a nonlinear programming routine. The resulting 
prices and seat allocations are given in Table I. The solu- 
tion resulted in a total revenue of $661,200 across all O-D 
pairs. 

We next simulated both the MTS and MTO heuristic 
derived from this deterministic solution. To illustrate their 

~~~~~~3 \ 

300 

Figure 100As twohuailientwrk 

Figure 1. A six-node, two-hub airline network. 

Table I 
Demand Function Parameters, Itineraries, and 
Optimal Deterministic Solution for Example 1 

Demand 
Market Function Opt. Det. Sol. 
0 D Ao Eo Po Path # Seats Price 
1 2 300 1.0 220 1-2 135 $396.62 
1 3 300 1.2 220 1-3 67 $495.86 
1 4 300 2.0 400 1-2-4 165 $520.11 
1 5 300 1.0 250 1-3-5 33 $752.04 
1 6 300 0.8 200 1-6 100 $525.58 
2 3 300 1.0 230 2-3 168 $364.28 
2 4 300 0.9 200 2-4 143 $365.74 
2 5 300 2.0 200 2-3-5 32 $423.79 
2 6 300 1.0 200 2-4-6 92 $436.80 
3 2 300 1.0 200 3-2 200 $281.76 
3 4 300 2.0 230 3-4 131 $325.30 
3 5 300 2.0 120 3-5 35 $249.51 
3 6 300 2.0 150 3-4-6 14 $378.60 
4 6 300 1.0 150 4-6 162 $243.30 
5 2 300 1.0 200 5-2 100 $420.39 
5 3 300 2.0 150 5-3 47 $289.90 
5 4 300 1.0 160 5-3-4 21 $585.20 
5 6 300 1.0 230 5-3-4-6 32 $748.50 
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performance over a range of demand volumes, the com- 
mon value of A0 = 300 in Table I as well as the leg capac- 
ities where scaled as shown in Table II. For example, a 
scale factor of 2 corresponds to leg capacities that are 
twice those shown in Figure 1 and a value of A0 = 600 
rather than 300 for all demand functions in Table I. This 
scaling does not change the optimal prices shown in Table 
I. In practice, such an increase in volume may occur when 
aggregating the capacity of several flights. 

Both heuristics were simulated for each instance, and 
the resulting expected revenue was estimated. All point 
estimates for expected revenues have a relative error of 
+1% with 95% confidence. Table II shows both the dollar 
revenue and the revenue as a percentage of the determin- 
istic upper bound. 

The simulation results reveal several interesting insights. 
First, observe that the revenue from the MTO heuristic 
dominates that of the MTS heuristic in all cases. Thus, it 
appears that if prices are set correctly, "protecting" space 
for specific O-D pairs, as is done in the MTS heuristic, is 
not effective; the simple FCFS allocation of the MTO heu- 
ristic is better. Second, even relative to an optimal policy the 
performance of MTO is surprisingly good. Indeed, in 
the original problem (scale factor 1.0), the results show 
that at most 3.68% (in expectation) additional revenue 
could possibly be captured by using a scheme more sophis- 
ticated than a fixed-price policy based on the deterministic 
model together with a FCFS allocation (MTO)-and the 
potential increase could be even less, since this figure is 
only an upper bound on the optimality gap. Nevertheless, 
for most commercial airlines a 3-4% potential increase in 
revenues is a significant amount of money and would likely 
justify more sophisticated pricing and/or allocation 
schemes. 

One way to capture some of the additional potential 
expected revenue is to find the fixed prices that maximize 
the expected revenue subject to a prespecified allocation 
scheme such as FCFS; see Gallego and van Ryzin for a 
discussion on optimal fixed prices for the stochastic prob- 
lem. An alternative way to capture additional second way 
to capture some of the additional potential expected reve- 
nue is to find more sophisticated allocation policies given a 
fixed pricing policy. 

7.1.2. Example 2: Differentiated Network. Suppose a well- 
differentiated super-saver and full-coach product exists for 

each O-D pair of the network from Example 1. For sim- 
plicity, we assume that these products are differentiated by 
travel restrictions, cancellation policies or other mecha- 
nisms not related to the time of purchase. (Time- 
dependent restrictions are discussed in Section 7.1.4.) In 
this way, sales of the two products occur concurrently 
throughout the time horizon. Sequential sales, as is usually 
assumed in airline yield management models, or partial 
overlapping of sales could be modeled by making each 
product's demand function time dependent. 

We model product differentiation using virtual nodes at 
each city i to represent the demand from each market 
segment. These virtual nodes are then connected to the 
physical node i via infinite capacity links. Thus, the virtual 
nodes "compete" for the same physical capacities on the 
legs of the network. Figure 2 shows the network of Figure 
1 modified using virtual nodes to account for two classes of 
demand originating at each node. The revenue function is 
separable and demand functions are the same log-linear 
form as in Example 1. Data function parameters, itinerar- 
ies and the optimal deterministic prices and sales are 
shown in Table III. The magnitude of the super-saver de- 
mand elasticities is either 3.0 or 3.5, and this demand has a 
higher intensity (Ao) for each O-D pair; full-coach demand 
has an elasticity of magnitude 0.5 and a lower intensity for 
each O-D pair. Again, these values were chosen merely to 
illustrate the model; further, they are not related to the 
values from Example 1. In addition, the paths for each 
O-D pairs are also not necessarily related to those in Ex- 
ample 1. 

The simulation results for a series of scaled versions of 
this problem are shown in Table IV. As in Example 1, the 

Table II 
Simulation Results for Example 1 

Problem Instance MTO MTS 
Upper Bound Revenue Revenue 

Scale ($) ($) % UB ($) % UB 
0.1 66,120 58,001 87.72% 54,510 82.44% 
0.5 330,600 311,767 94.30% 306,690 92.77% 
1.0 661,200 636,858 96.32% 629,875 95.26% 
2.0 1,322,400 1,280,404 96.82% 1,272,904 96.26% 
10.0 6,612,000 6,542,195 98.94% 6,517,793 98.58% 

10~~~~~~~0 

300 1 

100 ~ 1 

15 

Figure 2. Example with two fare classes at each origin 
(dashed lines are infinite capacity edges). 
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Table III 
Demand Function Parameters, Itineraries, and 
Optimal Deterministic Solution for Example 2 

Demand 
Market Function Opt. Det. Sol. 

0 D A0 E0 Po Path # Seats Price 

7 2 30 0.5 320 7-1-2 15 $ 749.17 
7 3 30 0.5 320 7-1-3 14 $ 804.34 
7 4 30 0.5 400 7-1-2-4 14 $1001.79 
7 5 30 0.5 300 7-1-6 14 $ 866.25 
7 6 30 0.5 350 7-1-3-5 11 $ 879.32 
8 2 200 3.0 160 8-1-2 197 $ 160.89 
8 3 200 3.0 160 8-1-3 69 $ 216.85 
8 4 200 3.0 200 8-1-2-4 74 $ 266.44 
8 5 200 3.0 150 8-1-6 85 $ 224.58 
8 6 200 3.0 175 8-1-3-5 6 $ 328.55 
9 3 30 0.5 330 9-2-3 15 $ 775.23 
9 4 30 0.5 300 9-2-4 16 $ 692.18 
9 5 30 0.5 300 9-2-3-5 12 $ 830.13 
9 6 30 0.5 300 9-2-4-6 14 $ 740.35 

10 3 150 3.5 165 10-2-3 164 $ 160.92 
10 4 150 3.5 150 10-2-4 213 $ 135.04 
10 5 150 3.5 150 10-2-3-5 9 $ 271.67 
10 6 150 3.5 150 10-2-4-6 69 $ 183.21 
11 2 30 0.5 300 11-3-2 16 $ 674.87 
11 4 30 0.5 300 11-3-4 16 $ 681.95 
11 5 30 0.5 250 11-3-5 14 $ 615.04 
11 6 30 0.5 150 11-3-4-6 12 $ 429.95 
12 2 100 3.0 150 12-3-2 165 $ 124.87 
12 4 100 3.0 150 12-3-4 144 $ 131.64 
12 5 100 3.0 125 12-3-5 47 $ 156.71 
12 6 100 3.0 75 12-3-4-6 4 $ 154.80 
13 6 40 0.5 150 13-4-6 21 $ 348.17 
14 6 90 3.5 90 14-4-6 168 $ 73.88 
15 2 30 0.5 300 15-5-3-2 12 $ 838.75 
15 3 30 0.5 250 15-5-3 13 $ 663.88 
15 4 30 0.5 260 15-5-3-4 11 $ 765.79 
15 6 30 0.5 230 15-5-3-4 10 $ 753.93 
16 2 100 3.0 150 16-5-3-2 6 $ 288.75 
16 3 100 3.0 175 16-5-3 45 $ 222.21 
16 4 100 3.0 130 16-5-3-4 3 $ 288.85 
16 6 100 3.0 115 16-5-3-4-6 0 $ 298.45 

Table IV 
Simulation Results for Example 2 

Problem Instance MTO MTS 

Upper Bound Revenue Revenue 
Scale ($) ($) % UB ($) % UB 
0.1 41,070 32,048 78.03% 27,899 67.93% 
0.5 205,350 191,595 93.30% 180,722 88.01% 
1.0 410,700 392,385 95.54% 375,628 91.46% 
2.0 821,400 793,262 96.57% 771,564 93.93% 
10.0 4,107,000 4,047,899 98.56% 4,006,430 97.55% 

Table V 
Overbooking Charges for Example 3 

Leg (Edge) Charge 

(1, 2) $576.6 
(1, 3) $812.5 
(1, 6) $775.6 
(2, 3) $634.3 
(2, 4) $643.5 
(3, 2) $581.2 
(3, 4) $710.3 
(3, 5) $689.5 
(4, 6) $593.3 
(5, 2) $717.5 
(5, 3) $714.9 

Table VI 
Simulation Results for Example 3 

Problem Instance MTO MTS 

Upper Bound Revenue Revenue 
y ($) ($) % UB ($) % UB 

1.0 661,200 636,858 96.32% 629,875 95.26% 
0.95 661,200 622,347 94.12% 627,898 94.96% 
0.90 661,200 623,717 94.33% 631,570 95.52% 
0.80 661,200 627,274 94.87% 629,106 95.15% 
0.60 661,200 616,295 93.21% 625,321 94.57% 

results show that the both the MTO and MTS heuristics 
are effective with large sales volumes (scale factor 10.0), 
but again MTO dominates MTS in all instances. Note the 
relative performance of the MTS heuristic is somewhat 
worse than in Example 1. This suggests that on problems 
with a higher level of detail (e.g., many itineraries and fare 

classes) the performance of the MTS heuristic may suffer. 
This observation is consistent with our theoretical bounds. 

7.1.3. Example 3: Overbooking and No-Shows. We next 
consider the effect of overbooking and no-shows on the 
network in Figure 1. We assume a uniform probability of a 
customer showing up of y for all O-D pairs. To make 
comparisons to Example 1 easier, we assume the demand 
data are those given in Table I except that the common 
value of A0 = 300 is multiplied by the factor 1/y. In this 
way the expected demand net of refunds has the same 
value as in Example 1 for any given set of prices. We 
further assume that the airline collects no revenue from 
those customers who do not show up and that the over- 
booking charges imposed for each leg are the values shown 
in Table V. These overbooking charges are the penalties/ 
costs paid when the airline is unable to accommodate a 
customer. These values are sufficiently large that there is 
no incentive to have net expected demand exceed leg 
capacities. 

Together, these assumptions imply the following imple- 
mentation of the heuristics. First, the optimal prices in 
Table I remain the same. For the MTS heuristic, the allo- 
cations in Table I are scaled up by a factor 1/,y and reser- 
vations are accepted for each itinerary up to this limit. In 
the MTO heuristic, all reservations are accepted. In either 
case, each reservation shows up with probability 'y, and any 
excess demand for leg capacities must be satisfied at the 
costs shown in Table V. 

This example was run for a variety of values for y and 
the results are shown in Table VI. Again, all figures have a 
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relative error of ? 1% at a 95% confidence level. Note that 
the revenue is only about 2% lower than that in Example 
1, except for y = 0.6 where it is about 3% lower. What is 
rather surprising is that the revenue does not go down 
appreciably as the probability of showing up decreases; not 
until y = 0.6 is there a statistically significant drop in 
revenue.1 

Also note that, unlike Examples 1 and 2, the MTS heu- 
ristic in this case appears to be slightly better than the 
MTO heuristic. 

We note that scaling up allocations by 1/,y is a common 
strategy used by many airlines. The use of scaling factors 
(not necessarily 1/'y) is described in Belobaba (1987a), and 
its accuracy as an approximation to optimal overbooking 
levels is discussed at some length in McGill (1989). 

Though this is only one example, it again suggests that a 
simple deterministic correction, in this case scaling up the 
allocation limits by 1/'y, is surprisingly effective. The sto- 
chastic effects of no-shows appear to produce only a minor 
drop in revenue. Indeed, for this example one can show 
that imposing even a modest fee of $25 for not showing up 
more than compensates for the lost revenue due to over- 
booking charges. This is due to the fact that, roughly 
speaking, no-show fees grow linearly with the number of 
reservations while the overbooking charges grow propor- 
tional to the square root of the number of reservations. 
Thus, for large scale problems, modest no-show fees can 
effectively offset quite large overbooking charges. 

7.1.4. Example 4: Time Varying Demand. In this example 
we examine the effect of a time varying demand function 
on a simple, one-product problem. Unlike the previous 
examples where a single fixed price is used for each prod- 
uct, in this case different prices are offered in response to a 
temporal change in demand. 

Consider a single leg problem with an initial capacity of 
x = 525 seats. Let t = 1 be the sales horizon, and assume 
that demand at time s E (0, 1] is given by the linear 
function 

A(p, s) = a(s) - b(s)p, 

where the time-dependent coefficients a(s), and b(s) are 
piecewise constant as shown in Table VII. 

To solve the deterministic problem, one first computes 
the intensity that maximizes the revenue rate over each 
interval. If the resulting intensities are feasible, then they 
are optimal. Otherwise, the optimal intensities equalize 
the marginal revenue rates of both time intervals and 

exhaust the capacity. For this example, the solution to the 
deterministic problem is given by 

_ 1200, 0 s 0.75, 
Pd (S) =300, 0.75 < s 1, 

and 

Ad(s) = 6 00 0 Ss O 0.75, 
300, 0.75 < s - 1. 

Notice that the optimal deterministic price increases 
from $200 to $300 at time 0.75. Using the pricing policy 
that is optimal for the deterministic problem, we simulated 
the performance of three heuristics. The MTO heuristic 
accepts all demands until the inventory is exhausted. The 
MTS heuristic allocates 450 = f8O75 Ad(s) ds units for sales 
over [0, 0.75] and 75 = fO 75 Ad(s) ds units for sales over 
(0.75, 1]. 

Finally, we consider a refinement of the MTS heuristic 
that allows unsold units allocated for sales during [0, 0.75] 
to be made available for sale during (0.75, 1]. Thus, if under 
the MTS heuristic 448 (out of the 450 reserved under the 
MTS heuristic) units are sold during [0, 0.75], then 77 
instead of 75 units are made available for sale during (0.75, 
1]. As an additional refinement, sales at $300 are allowed 
to start before time 0.75 if the 450 reserved by the MTS 
heuristic to be sold for $200 over [0, 0.75] are sold before 
time 0.75. Thus, if under the MTS heuristic 450 units are 
sold by time 0.65 then sales at $300 start at time 0.65. Of 
course, demand over the time interval [0.65, 0.75] consists 
of people who are willing to pay the higher fare. We call 
this the booking limit (BL) heuristic. The refinement of 
the BL heuristic over the MTS heuristic improves revenue 
by opening the high fare early as a consequence of brisk 
sales at the lower fare, and by allowing sales at the high 
fare of inventory that was not sold at the low fare. The BL 
heuristic is similar in spirit to traditional yield management 
policies, e.g., Brumelle and McGill, that protect inventory 
for sale at higher fares. 

The columns of Table VIII under the headings MTO, 
MTS, and BL present the performance of these allocation 
policies in absolute and relative terms. The first column of 
Table VIII gives the deterministic upper bound. Notice 
that all heuristics performed well, with the BL heuristic 
having a slight advantage. Unlike most of the network 
examples, it appears that protecting space works better 
than a FCFS allocation. However, the effect of the alloca- 
tion scheme is relatively minor (0.6% improvement in BL 
over MTO), again suggesting that if prices are set cor- 
rectly, FCFS allocation is still quite good. 

Table VII 
Coefficients of Linear Demand Function 

for Example 4 

0 < s J 0.75 0.75 < s - 1 

a(s) = 1200 a(s) = 600 
b(s) = 3 b(s) = 1 

Table VIII 
Performance of Heuristics on Example 4 

Upper 
Bound MTO MTS BL 

Rev. ($) 112,500 109,586.25 109,597.50 110,283.75 
% UB 100% 97.4% 97.6% 98.0% 
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7.2. Fixed Allocation and Booking Limit Examples 

The previous examples show that in many cases allocation 
policies and booking limits have only a marginal impact on 
revenue, provided prices are set correctly. In particular, a 
simple FCFS allocation works nearly as well as fixed 
(MTS) or booking limit (BL) allocation schemes. This 
seemingly contradicts the fact that, in practice, booking 
limit policies typically produce significant revenue in- 
creases. Indeed Smith et al. report a 5% increase in reve- 
nue for American Airlines, worth approximately $1.4 
billion dollars over a three-year period, attributable to ef- 
fective yield management. In this section, we propose two 
explanations for this discrepancy: (1) price flexibility may 
be limited, and (2) prices may be set incorrectly (misspric- 
ing occurs). In both cases, we show that using booking 
limits can significantly improve revenues. 

7.2.1. Example 5: Limits on Price Flexibility. A key as- 
sumption in the previous examples is that prices could be 
chosen without constraints. If each instance of a yield man- 
agement problem corresponds to a particular day or even a 
particular set of flights within a day, then effectively we are 
assuming that each day or individual flight can be priced 
separately. In practice, this degree of price flexibility is 
rarely achievable; it would be quite confusing for custom- 
ers, make advertising difficult, and complicate the airlines' 
own planning and reservation systems. Indeed, most air- 
lines offer prices that typically remain in effect for several 
weeks at a time. Underlying demand, however, often 
changes dramatically from day to day or even within a day. 

One mechanism for increasing revenues under such vol- 
atile conditions is precisely to offer several prices for each 
product and then vary the allocation of space to these 
prices in response to changes in demand. In this way, one 
retains the advantage of a stable set of prices while achiev- 
ing some ability to respond to short-term fluctuations in 
demand; in a sense, varying the allocation provides a means 
of synthesizing a continuous range of prices from a rela- 
tively small set of fare classes. 

A simple, deterministic example illustrates this effect. 
Consider a single leg flight with a capacity of 100 seats that 
operates once each day of the week. There is a fixed sales 
horizon t for each day, and without loss of generality, we 
assume t = 1. Total demand for each day varies and has an 
exponential form A(p) = A06EO(P/POl). The reference 
price and elasticity are assumed fixed at po = $300 and e0 
= 3, respectively. For simplicity, we assume that the only 
parameter that varies from one day to the next is AO, the 
demand at the reference pricepo. Demand during the week is 
divided into heavy, medium, and light days. On heavy days 
(Monday and Friday), Ao = 125; on medium days (Tuesday 
to Thursday), Ao = 50; and on light days (Saturday and 
Sunday), Ao = 25. 

If one had complete flexibility in choosing prices, each 
type of day could be priced separately, i.e., one would treat 
each day as an independent instance and apply a different 
pricing policy to it. We shall call this option the FLEX 

pricing policy. Table IX shows the optimal prices to charge 
on each type of day along with the daily and weekly reve- 
nues obtained using the FLEX prices. (All revenues in 
Table IX are based on deterministic models.) 

Since offering a separate price for each day of the week 
may not be feasible in practice, two alternative options are 
considered: (1) offer only a single fixed price for the entire 
week (SP policy); and (2) offer two fares (discount and 
full), again fixed for the entire week, but vary the alloca- 
tion of seats to these fares on a daily basis. We call this 
latter option the booking limit (BL) policy. 

Of course, we would like to use the best possible imple- 
mentation of these two policies. For the SP policy, one can 
show that the best price to offer is $257. For the BL policy, 
we used the FLEX price for light days ($161) as the dis- 
count price, and the FLEX price for heavy days ($322) as 
the full price. Table X shows the demand if each of these 
fare levels was used exclusively over the horizon and gives 
the optimal allocation of seats to these fare classes. (See 
Gallego and van Ryzin for a detailed discussion of the 
optimal policy for this type of discrete price problem.) 

Table IX show the daily and weekly revenues obtained 
from the optimal implementations of the SP and BL poli- 
cies. Note that the weekly revenue of the SP policy is 
substantially less than that obtained from using the FLEX 
policy. The loss in revenue in this case is about 21%. The 
BL policy revenue loss relative to the FLEX policy, at 
about 5%, is significantly less than that for the SP policy. 
Thus, we see that in this example booking policies truly 
provide substantial increases in revenue; they allow one to 
make up approximately half the gap between the revenue 
of a pure fixed price policy and a completely flexible pric- 
ing policy. 

This example illustrates how one can use a limited num- 
ber of price classes together with a dynamic allocation 
scheme to recapture some of the revenue achievable 

Table IX 
Demand Data and Revenues: Example 5 

Wkly 
Light Medium Heavy Total 

#Days/Wk 2 3 2 
Ao 25 50 125 
Opt. Price $ 161 $ 231 $ 322 
Rev. FLEX $16,100 $23,100 $32,200 $165,900 
Rev. SP $ 9,874 $19,768 $25,700 $130,452 
Rev. BL $16,100 $20,125 $32,200 $156,975 

Table X 
Booking Limit Demands and Allocations: Example 5 

Light Medium Heavy 
Demand at Disc. 100 201 502 
Demand at Full 20 40 100 
Disc. Alloc. 100 75 0 
Full Alloc. 0 25 100 



40 / GALLEGO AND VAN RYZIN 

Table XI 
Performance of Heuristics Based on Pricing Policy-a 

UB MTO MTS BL 
Rev. ($) $90,000 $78,848 $73,002 $88,994 
% Det. 100% 87.6% 88.1% 98.8 

through flexible pricing without introducing an extremely 
complicated price structure. 

7.2.2. Example 6: Misspricing. Another case in which an 
allocation policy can have a significant impact is when miss- 
pricing occurs. Consider again the time varying demand 
function of Example 4 with a capacity of 525 seats. Sup- 
pose that the decision maker mistakenly underestimates 
the parameters a(s) over (0, 0.75) to be 900 instead of 
1200. 

The optimal price for the deterministic problem, based 
on the estimated expected demand, is obtained by setting 
the marginal revenue rates equal to zero in each of the two 
time intervals. This results in 

Pa(s{) = { 0 s 0.75, P l300, 0.75 < s 1. 

The estimated expected demand rate atPa is 

Aa (s) 450, ? ss 0 075, 
a)1300, 0.75 < s -,: 1. 

Consequently, the deterministic solution based on the 
estimated expected demand, allocates 337 - 450 x 0.75 
seats for sales at $150 over the interval (0, 0.75] and 75 = 
300 x 0.25 seats for sales at $300 over the interval (0.75, 
1]. Call this pricing/allocation policy, Policy-a. 

The MTO heuristic accepts all requests at $150 over (0, 
0.75], and all requests at $300 over (0.75, 1] on a first- 
come-first-serve basis until the capacity is exhausted. The 
MTS heuristic reserves 337 seats for sales at $150, and 75 
seats for sales at $300. 

The BL heuristic reserves 75 seats for sales at $300, but 
makes all unsold units at time 0.75 available for sales at 
$300 during [0.75, 1]. See Example 4 for a more complete 
description of the BL heuristic. 

Notice the actual expected demand rate at Pa is 

7 750, 0 < s < 0.75, A(s) 1300, 0.75 < s - 1. 

An upper bound on the revenue under Policy-a is obtained 
by finding the best allocation of space assuming that de- 
mand is deterministic. This calculation yields $90,000 = 
450 x $150 + 75 x $300. Table XI reports the perfor- 
mance of the MTO, MTS and BL heuristics under pricing 
Policy-a. 

For Policy-a, the MTO and the MTS heuristics perform 
poorly. Under the MTO heuristic virtually all the capacity 
is sold at the promotional fare of $150 per seat. Under the 
MTS heuristic only 412 seats are made available for sale. 
In contrast, the BL heuristic performs near optimally cap- 
turing 98.8% of the deterministic upper bound. This is be- 
cause, unlike the MTO heuristic, the BL heuristic reserves 75 

seats for the high fare, and unlike the MTS heuristic, it 
makes all the capacity available for sale. The average num- 
ber of unsold seats was zero under the MTO heuristic, 113 
under the MTS heuristic, and 3 under the BL heuristic. 

This example illustrates the sensitivity of both the MTO 
and the MTS heuristics to pricing errors and shows that 
performance can be improved by protecting space from 
excess low fare demand. One can show that if the param- 
eters of a(s) are overestimated in this example, the MTO 
and MTS heuristics are less sensitive to the resulting pric- 
ing errors. In this case, higher than optimal prices are 
charged, and hence low fare sales do not consume space 
needed for the high fare demand. 

8. CONCLUSIONS 

We have shown how a rich class of revenue management 
problems can be modeled using a single, unified frame- 
work. For this large class of problems, our results show 
that the pricing policies derived from deterministic models 
are quite close to optimal. 

We also showed that when prices are chosen based on 
these deterministic models, the effect of allocation 
schemes appears to be relatively minor. These are, in a 
way, negative results and suggest that yield management is 
relatively ineffective when pricing decisions are made cor- 
rectly. In practice, yield management's main benefit may 
be to compensate for prices that are not optimally 
matched to demand, rather than to exploit revenue oppor- 
tunities due to second-order, stochastic effects. In addition, 
the practice may-and probably does-serve as a simple 
mechanism for synthesizing a wide variety of prices using 
only a limited number of relatively stable fare classes. We 
believe such insights will prove to be quite beneficial in 
guiding the development of better yield management sys- 
tems in practice. Further, our bounds provide a means to 
evaluate the relative benefit of a given system. 

There are certainly many possible directions for future 
research in this area. We have focused exclusively on air- 
line applications; no doubt there are other interesting ap- 
plications, such as the multi-day hotel problem, that could 
be investigated using a similar approach. A more challeng- 
ing problem is to try to combine demand function estima- 
tion with pricing/allocation decisions. This would reflect 
the more realistic case where demand functions are not 
directly observable. Also, understanding the role that com- 
petitors play by explicitly modeling their networks and 
pricing decisions is an important future research topic. 

ENDNOTE 

1. The fact that revenue decreases in y over the range 0.95- 
0.80 is not statistically significant. Moreover, the MTO 
heuristic uses integer allocations, which introduces round- 
off errors. As a result, changing 'y does not result in an 
exact proportional change in the allocations, which may 
also account for some of this slightly unusual revenue 
behavior. 
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