
Scientific Programming 11 (2003) 133–141 133
IOS Press

A Multiprogramming Aware OpenMP

Implementation

Vasileios K. Barekas, Panagiotis E. Hadjidoukas, Eleftherios D. Polychronopoulos and

Theodore S. Papatheodorou
High Performance Information Systems Laboratory, Department of Computer Engineering and Informatics,

University of Patras, Rio 26500, Patras, Greece

Tel.: +30 61 993805; Fax: +30 61 997706; E-mail: {bkb,peh,edp,tsp}@hpclab.ceid.upatras.gr;

http://www.hpclab.ceid.upatras.gr

Abstract. In this work, we present an OpenMP implementation suitable for multiprogrammed environments on Intel-based

SMP systems. This implementation consists of a runtime system and a resource manager, while we use the NanosCompiler to

transform OpenMP-coded applications into code with calls to our runtime system. The resource manager acts as the operating

system scheduler for the applications built with our runtime system. It executes a custom made scheduling policy to distribute

the available physical processors to the active applications. The runtime system cooperates with the resource manager in order

to adapt each application’s generated parallelism to the number of processors allocated to it, according to the resource manager

scheduling policy. We use the OpenMP version of the NAS Parallel Benchmark suite in order to evaluate the performance of

our implementation. In our experiments we compare the performance of our implementation with that of a commercial OpenMP

implementation. The comparison proves that our approach performs better both on a dedicated and on a heavily multiprogrammed

environment.

1. Introduction

The OpenMP Application Programming Interface [9]

provides a simple and portable model for programming

a wide range of parallel applications on parallel plar-

forms. Everyone is able to use this quite simple stan-

dard in order to parallelize applications without paying

attention on the underlying architecture. The OpenMP

API is portable across a wide range of parallel plat-

forms, including small-scale SMP servers, scalable cc-

NUMA multiprocessors and clusters of workstations.

The simplicity of this model derives from the fact that

the programmer does not need to worry about the de-

tails of the underlying platform or the operating system

mechanisms. The programmer simply inserts direc-

tives into the original sequential code in order to anno-

tate loops and sections of code that can be executed in

parallel. The OpenMP support is transparent to the user

through an OpenMP-capable compiler and the neces-

sary runtime support. The compiler interprets the user-

inserted directives into appropriate runtime calls that

enable the application to execute in parallel by multiple

threads using a fork/join execution model. For every

part of the code that has to be executed in parallel, a

group of threads is created and a chunk of the total work

is assigned to each thread according to a pre-defined

scheduling scheme. These threads are scheduled on the

available physical processors by the operating system

scheduler.

On the other hand, multiprocessor systems are also

used as multiprogrammed compute servers, where sev-

eral users submit parallel and sequential CPU-intensive

applications. The threads of all these applications con-

tend for systems’s available resources, especially the

processors and the memory. Since general-purpose op-

erating system schedulers are designed to deal with se-

quential applications, they fail to achieve good perfor-

mance when workloads consisting of multiple paral-

lel applications run on the system. This fact is due to

the scheduler ignorance about the nature of the parallel

applications and their real requirements. It is there-

fore crucial to provide efficient mechanisms that enable

ISSN 1058-9244/03/$8.00 2003 – IOS Press. All rights reserved

134 V.K. Barekas and P.E. Hadjidoukas / A Multiprogramming Aware OpenMP Implementation

parallel applications to achieve robust performance in

multiprogrammed environments.

An efficient way to achieve better performance with

OpenMP applications that are executed in multipro-

grammed environments is the employment of a so-

phisticated runtime system. The runtime system en-

ables parallel applications to adapt themselves to the

resources made available for them by the operating

system. Using this runtime system, parallel applica-

tions exploit the amount of parallelism that matches the

number of processors that the operating system sched-

uler allocates to them. This approach requires close

collaboration between the operating system scheduler

and the runtime system, in order to keep each part in-

formed about the requirements and/or the decisions of

the other part. Although the OpenMP standard already

makes provision for the use of dynamic parallelism,

several OpenMP implementations either do not support

it or they support it in a very limited way. In those

implementations, the runtime system creates and uses

as many threads as each application initially requests,

without taking into account the variations of the system

workload during the execution time. This is due to the

limitations that the operating system scheduler set, and

the lack of collaboration between the scheduler and the

runtime system.

In this paper, we present an OpenMP implementa-

tion consisting of a runtime system and an independent

resource manager, which plays the role of the operat-

ing system scheduler. The resource manager provides

to the runtime system the functionality needed in or-

der to adapt the application parallelism to the available

resources. The collaboration between these two parts

make our implementation capable to support the exe-

cution of OpenMP applications in a multiprogrammed

environment. We utilize the NanosCompiler [2] to

transform the original OpenMP-coded applications into

appropriate code that have calls to our runtime sys-

tem. The runtime system is based on the NTLib mul-

tithreaded runtime library [3]. NTLib is a highly opti-

mized library developed for the Windows NT/2000 op-

erating system, which provides lightweight user-level

threads and the necessary support to run parallel ap-

plications on Intel-based SMP systems. We have ex-

tended the runtime library in order to support the code

that the compiler injects in the original OpenMP-coded

application. The resource manager we use in this work

is based on a portable resource manager [4], which is

implemented as a loadable kernel-mode driver. The

resource manager communicates with the applications

through a shared memory area, lying between the op-

erating system kernel space, where the resource man-

ager runs and the user space, where the applications

run. The implementation of the resource manager as

a loadable kernel module provides, several advantages

such as portability and efficiency. So, we can take ad-

vantages of an in-kernel implementation avoiding the

need to modify and/or recompile the kernel. The orig-

inal resource manager was extended in order to adapt

its behavior to the peculiarities of OpenMP applica-

tions when they are executed in a multiprogrammed

environment.

The runtime system in combination with the re-

source manager provides an environment capable to

efficiently execute OpenMP applications on multipro-

grammed systems. The functionality of our environ-

ment is provided transparently to the programmer of

the OpenMP applications. In order to evaluate our ap-

proach we have used the OpenMP implementation of

the NAS Parallel Benchmarks suite [5]. The experi-

ments on a quad-processor SMP system show that our

implementation has a significantly better performance

than a commercial OpenMP implementation, both on a

dedicated and on a multiprogrammed environment.

On a multiprogrammed environment, we also per-

form better both in the turnaround time of the several

applications in the workload executed and the total ex-

ecution time of the whole workload. Furthermore, in

the case of the execution of an application on a dedi-

cated environment, using only our runtime library, we

show that it achieves comparable or better speedups to

that of a commercial OpenMP compiler environment.

The rest of this paper is organized as follows: Sec-

tion 2 describes the features of the runtime system. In

Section 3, we present the functionality of the resource

manager. Next, in Section 4, we describe how OpenMP

applications utilize our environment. In Section 5, we

present our experiments that validate the efficiency of

our implementation. Finally, in Section 6 we provide

our conclusions together with the related work.

2. Runtime system

NTLib is a multithreaded runtime library that pro-

vides lightweight user-level threads and the necessary

support to exploit, with minimal overhead, the paral-

lelism found in applications. The lightweight threads

enable the library to efficiently exploit fine-grain par-

allelism, while its dependence-driven execution model

makes it capable to exploit multiple levels of paral-

lelism. The cost of the user-level thread primitives is

V.K. Barekas and P.E. Hadjidoukas / A Multiprogramming Aware OpenMP Implementation 135

Operating System Scheduler

CPU

1

CPU

4

CPU

3

CPU

2

Physical

Processors

User-level

threads and

work

descriptors

Operating

System

Kernel

User

space

Kernel

Space

Resource Manager

NTLib

Independent

application

Parallel applications controllable by

the resource manager

NTLib

Virtual

Processors

Kernel-level

threads

Application A Application CApplication B

Not Allocated

Fig. 1. The resource manager cooperation with the applications and the operating system scheduler.

very low compared to other thread packages. The run-

time library exports a set of functions that supports the

nanothreads programming model [7]. These functions

are responsible for the thread management, the han-

dling of the ready thread queues, the control of the de-

pendencies between the threads and the initialization of

the runtime environment. More details about the im-

plementation and the functionality of the NTLib run-

time library can be found in [3]. The set of the exported

functions and the functionality of the library was ex-

tended in order to support the compiler-generated code

that corresponds to the original OpenMP application

code. Additionally, support was added to enable the use

of the runtime functionality with applications written

in the Fortran programming language.

The NanosCompiler utilizes user-level threads to ex-

press multiple levels of parallel loops and parallel sec-

tions of code. However, in order to express the paral-

lelism of single-level loops the compiler uses the work

descriptor structure. We implement in our runtime sys-

tem the work descriptor structure and the necessary sup-

port functions, based on the proposed implementation

in [8] with the appropriate modifications to fit in our un-

derlying architecture. A work descriptor structure con-

sists of a pointer to the function that encapsulates the

work to be executed and its arguments. Work descrip-

tors provide a very efficient mean to distribute work

among the participating processors. For each single-

level parallel loop, the master processor creates a work

descriptor and initializes it for the specific loop. Then,

the master processor distributes the work descriptor to

all slave processors that participate in the execution of

the specific loop, by copying it to a specific memory lo-

cation for each processor. Each slave processor, checks

its memory location in order to find a work descriptor,

and execute it. The part of the work descriptor that

each processor executes, is determined by the function

arguments, the number of processors participating in

the execution and the processor-own identifier.

The runtime library executes the created threads

based on a dependence-driven execution model, in or-

der to ensure the correct execution order of the created

threads and to allow the efficient exploitation of mul-

tiple levels of parallelism. For each thread, we keep

information about its dependencies with other threads.

When a thread finishes its execution, it satisfies one

input dependency on each one of its successors. When

a thread creates a new thread, the dependencies of the

creator thread must be preserved. For this reason, we

must increase by one the creator thread dependencies

and declare it as the successor of the new thread. By

this way, we can create multiple levels of nested threads

making thus easy the representation of multiple levels

of parallelism found in a wide range of applications.

The main responsibility of the runtime library is

to control the generated parallelism, ensuring that it

matches the number of processors allocated by the op-

erating system to each application. In other words, the

runtime library implements dynamic program adapt-

ability to the available resources by adjusting the

136 V.K. Barekas and P.E. Hadjidoukas / A Multiprogramming Aware OpenMP Implementation

amount of the generated parallelism. The scheduling

policy of the operating system is concerned with the al-

location of physical processors to the applications cur-

rently running in the system. The runtime library coop-

erates with the operating system scheduler, running in

order to achieve the desired adaptation. In our imple-

mentation, we use an external resource manager to play

the role of the operating system scheduler. The operat-

ing system provides kernel-level threads to the runtime

system, as the kernel abstraction of physical processors

on which applications can execute. These kernel-level

threads play the role of the virtual processors, which

will execute the application’s user-level threads.

3. Resource manager

In this section, we present the functionality provided

by the resource manager to the runtime system. The

resource manager is implemented as a loadable kernel-

mode device driver; this gives us the ability to start and

stop its execution at our will. The primary responsibil-

ity of the Resource Manager is to keep track of all appli-

cations running on the system and to apply for them a

user-defined scheduling policy. The scheduling policy

mainly determines the number of physical processors

that will be allocated to each application. In order to

achieve this, a shared memory area that is maintained

between the applications and the resource manager,acts

as the communication path between them. At its ini-

tialization phase, the manager creates a shared memory

section, which is mapped in the address space of each

application that utilizes the runtime system. For each

active application in the system, there is some informa-

tion in the shared memory area, where both the appli-

cations and the manager have access. The information

kept in the shared area concerns the actual parallelism

of the application at each time, the virtual processors

identifiers that the application uses and other useful

data. The resource manager based on this information

calculates the number of physical processors that will

be allocated to each application each time, and controls

the execution of the virtual processors. When an ap-

plication starts, it maps the shared memory area in its

private address space. Next, the application’s main vir-

tual processor creates the rest virtual processors in sus-

pended mode and registers them into the shared area,

making them accessible from the resource manager and

enabling thus their manipulation from it. After this

point, the control of the application’s virtual processors

has passed exclusively to the resource manager, which

is responsible for their execution.

The resource manager, based on the information in

the shared memory area,applies a user-defined schedul-

ing policy to distribute the available physical proces-

sors across the registered applications. The scheduling

policy is executed periodically at a fixed time interval

called scheduler quantum. Both the scheduling policy

and the scheduler quantum are user-defined and can be

changed dynamically at runtime. The scheduling pol-

icy determines the number of processors that will be

allocated to each application during the next schedul-

ing quantum and which physical processors they will

be. The latter is decided based on a per-application

history that records the processors on which the appli-

cation runs during the previous quanta. Additionally,

it decides which virtual processors will run on these

physical processors, in order to preserve the affinity.

The resource manager applies the scheduling policy

decisions on the virtual processors of the applications,

by allowing some of them to run by resuming their ex-

ecution, while preventing some others by suspending

them. Eventually, resource manager maintains the total

number of running virtual processors across all appli-

cations, equal to the number of physical processors in

the system. The running applications cooperate with

the resource manager during their execution period in

order to minimize their execution time by avoiding the

idling of physical processors while exists some appli-

cation that could execute useful work on them. Before

entering a parallel region, each application informs,

through the shared memory area, the resource manager

about its requirements reflecting the actual degree of

parallelism that it can exploit in this region. The re-

source manager responds to the application’s require-

ments and allocates physical processors to it according

to the current scheduling policy. The application re-

ceives, through the shared memory area, the resource

manager’s decisions and tries to match the parallelism

that it will generate to the number of physical proces-

sors currently allocated to it. Based on the require-

ments of all the applications and the scheduling policy,

the resource manager decides about physical processor

reallocations between the applications. The removal

of a physical processor from an application means the

blocking of the associated virtual processor, while the

assignment of a physical processor to an application

means the unblocking of an application’s virtual pro-

cessor and its binding to the specific physical proces-

sor. This reallocation procedure can block a virtual

processor at an unsafe point, for example while being

V.K. Barekas and P.E. Hadjidoukas / A Multiprogramming Aware OpenMP Implementation 137

Dedicated Environment - Speedup

0

1

2

3

4

1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4

BT CG EP FT MG SP
Application / Number of Processors

S
p

ee
d

u
p

Nanos

PGI

Fig. 2. The speedup that the applications achieve on a dedicated execution environment.

inside a critical section, preventing the application to

make progress on its critical path. In order to eliminate
these undesirable preemptions, each virtual processor
checks for any non-safely preempted virtual processor

whenever it reaches a safe-point, where it is known that
the application and runtime synchronization constrains
are satisfied. If such a virtual processor is found, the

currently running virtual processor yields its physical
processor to the preempted one.

The general design of the resource manager allows its
collaboration with the native operating system sched-
uler. The resource manager controls the execution of

the virtual processors (kernel threads) of the applica-
tions built with our runtime library, by allowing some
of them to run, with preventing some others. It does

not disturb the kernel threads of the rest applications
that are executed in the same time on the system. The

virtual processors that the resource manager allows to
run contend with the kernel threads of the other appli-
cations for the physical processors. The operating sys-

tem scheduler decides which of the virtual processors
that are allowed to run, will actually run on the physical
processors. By this way we treat all the running appli-

cations with fairness, without violating the operating
system scheduling policy primitives. The collaboration
of the resource manager with the several applications

running on the system and its cooperation with the op-
erating system scheduler is depicted in Fig. 1. In this

Figure we have three applications, the first one of them
is independent, while the other two are controllable by
the resource manager. Resource manager scheduling

policy decides to grant two physical processors to each

one of its applications. But the operating system sched-

uler ignores it and schedules on physical processor 1

a kernel-level thread of the independent application.

More details about the design and the implementation
of the resource manager can be found in [4].

4. OpenMP application transformation

In this section, we describe how applications with
OpenMP directives use the functionality offered by our

environment. We use the NanosCompiler to compile

applications that are parallelized with OpenMP direc-

tives. NanosCompiler front-end is capable to convert
applications with OpenMP directives into equivalent

applications that use calls to our runtime library in order

to express the annotated parallelism.

Each application, during its initialization informs the

resource manager about the maximum parallelism that
it is capable to exploit during its execution. When

NanosCompiler reaches a combined parallel work-

sharing construct (OMP PARALLEL DO), which is the

common case in the applications examined in this pa-
per, it generates two functions that substitute the con-

struct and its body. The first function replaces the par-

allel construct, while the second function contains the

code of the parallel loop body. In the first function, the

compiler inserts code that consults the resource man-
ager, to find out how many physical processors are al-

located to the application in order to execute this re-

gion. The number of processors that are allocated to

the application is determined through the shared mem-

138 V.K. Barekas and P.E. Hadjidoukas / A Multiprogramming Aware OpenMP Implementation

Multiprogrammed Environment - Average Execution Time

1

10

100

1000

10000

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

BT CG EP FT MG SP

Application / Degree of Multiprogramming

E
x

ec
u

ti
o

n
T

im
e

(s
ec

)

Nanos

PGI

Fig. 3. The average turnaround times of the applications in each workload on a multiprogrammed execution environment.

ory area, that the resource manager uses for the com-

munication with the application. The first function is
executed exclusively by the master processor, which
creates a work descriptor structure that represents the

body of the parallel loop. This work descriptor speci-
fies the second compiler-generated function as the one
that represents the loop that must be executed in paral-

lel. Next, the master processor distributes the created
work descriptor to all the available processors includ-

ing itself. The work descriptor is distributed by coping
it to a per-processor specific memory location. At this
point, the master virtual processor suspends the execu-

tion of the first function in order to execute its own part
of the work descriptor. Each one of the slave proces-
sors, whenever it becomes idle, it searches for a new

work descriptor into its own memory location. Each
processor calculates the work descriptor chunk that it

will execute, based on its identifier and the total num-
ber of processors participating in the execution of this
region. When all processors finish the work descrip-

tor execution, the master virtual processor resumes the
execution of the suspended function, while the slave
processors remain idle.

When the compiler arrives at a parallel region con-
struct (OMP PARALLEL), it again generates two func-
tions that substitute the parallel region code. Addi-

tionally, in this case the compiler generates another
one function for each work-sharing construct (OMP DO

or OMP SECTION) that exists inside the parallel re-
gion. In this case the master processor does not cre-
ate a simple work descriptor structure that all avail-

able virtual processors executes. Instead, it creates

as many user-level threads as the number of the allo-

cated physical processors. The created threads are ex-

ecuted on the available processors through their local

ready queues. Each one of these threads, execute the

compiler-generated functions that represent the work-

sharing constructs that resides into the parallel region.

The original implementation of the resource man-

ager was designed to work with general parallel appli-

cations, where no distinction is made between the pro-

cessors of the application, since all of them are consid-

ered equal. Some modifications in the resource man-

ager design were required in order to work properly

with the fork/join model of the OpenMP applications.

This model defines a master processor, which executes

different code than the other processors. Since this

code belongs to the critical path of the application the

resource manager must treats the master processor with

more responsibility. This means that the master pro-

cessor must be always running, independently of the

number of physical processors assigned to the applica-

tion at any time. So, in the extreme case under mul-

tiprogramming, where a single physical processor is

shared among several OpenMP applications, the only

virtual processor that each application executes on this

physical processor, each time, is its master processor.

So, each application executes through its critical path,

if later another physical processor becomes available to

the application some of the other slave processors will

be assigned for execution on this physical processor.

V.K. Barekas and P.E. Hadjidoukas / A Multiprogramming Aware OpenMP Implementation 139

Table 1

The average execution times of the applications on a dedicated execution environment

proc. BT CG EP FT MG SP

Nanos PGI Nanos PGI Nanos PGI Nanos PGI NAnos PGI Nanos PGI

1 102.9 107.7 16.6 18.6 52.3 62.0 9.0 11.4 16.2 16.2 272.8 309.7

2 53.8 58.3 13.4 13.3 27.9 31.3 5.5 6.9 10.8 10.0 190.1 203.4

4 32.3 122.2 13.0 13.5 15.1 16.4 4.2 5.6 8.2 20.0 155.5 406.1

5. Performance evaluation

In this section we present the experiments that we

have conducted in order to evaluate the performance

of our implementation. In our experiments we used

the NAS Parallel Benchmarks suite, parallelized with

the OpenMP programming model. The NAS Paral-

lel Benchmarks is one of the most well known bench-

marking suite, written in Fortran 77, and is often used

for the performance evaluation on multiprocessors sys-

tems. In all experiments we used the class W prob-

lem sizes for all the applications. All the experiments

were performed on a quad-processor200 MHz Pentium

Pro system equipped with 512 MB of main memory,

running the Windows 2000 operating system.

We compare the performance obtained by the appli-

cations built using our environment (the NanosCom-

piler, the runtime system and the resource manager)

against the performance obtained when we built them

with the PGI Workstation compiler version 3.2 [11].

The PGI Workstation is a commercial compiler product

which supports the OpenMP standard. It takes as input

either C or Fortran code parallelized with OpenMP di-

rectives and produces the final executable. In order to

produce the final executable for the intermediate code

that the NanosCompiler front-end outputs, we linked it

with the NTLib library using the Intel Fortran compiler

version 4.5 [6]. The NAS Parallel Benchmarks suite

consists of seven applications, each one of them solv-

ing a different problem. In our experiments we run all

of them, except the LU application that the PGI com-

piler could not build. We performed two kind of ex-

periments, in the first set of experiments we executed a

single instance of an application on a dedicated system.

In the second set, we ran each application on a multi-

programmed environment, which we simulated by run-

ning multiple instances of the same application. For

each application, we built two versions, one with the

PGI compiler and one with our implementation and we

compared their performance in the two experiments.

In our first experiment, we measured the execution

time for each version of the applications on a dedicated

system with 1, 2, and 4 processors. We executed each

application 5 times, the average execution times are

presented in Table 1, while the equivalent speedups of

the applications for each case are depicted in Fig. 2.

As it is shown in Table 1, both versions of all the ap-

plications scale similarly when they are executed with

up to two processors. On the four-processor execution

three of the six application built with the PGI compiler

failed to scale as well as the Nanos versions. More

specifically, for the execution of BT, MG and SP on

four processors there is a slowdown over the sequen-

tial execution and the variation between the execution

times is quite high. We believe that this is due to the

incorrect stack alignment of the data into the code that

the PGI compiler produces or a problem into the run-

time library that the PGI compiler uses. The remaining

three applications CG, EP and FT it seems that they are

not affected by the same problem and they scale well on

any number of processors. On the contrary, the Nanos

version of all the applications achieve good speedup in

all cases. Even though the Nanos versions achieve bet-

ter execution time in all the cases, their speedup is com-

parable to the PGI version. The conclusions from this

experiment is that our implementation achieves com-

parable or even better speedups to that of a commercial

OpenMP compiler, on a dedicated execution environ-

ment. Additionally, our implementation is more reli-

able and more stable than the PGI compiler, achieving

robust performance with every application we tested.

In our second experiment, we compare the perfor-

mance of our implementation on a multiprogrammed

environment. In order to simulate a multiprogrammed

environment in our system we ran several workloads,

each one consisting of multiple instances of the same

application. In each workload, all the instances were

started simultaneously, at the same time. Each instance

of the application assuming that it is running on a dedi-

cated machine requested four processors from the sys-

tem. The number of instances that we run in each

workload determines the degree of multiprogramming

that we want to achieve. We run workloads with mul-

tiprogramming degree of 1, 2, 4, and 8 for each ap-

plication. For our implementation, we executed the

workloads while the resource manager was running in

the system in order to schedule the running applica-

tions on the available physical processors. The resource

140 V.K. Barekas and P.E. Hadjidoukas / A Multiprogramming Aware OpenMP Implementation

Table 2

The average turnaround times of the applications in each workload on a multiprogrammed execution environment

Ins. BT CG EP FT MG SP

Nanos PGI Nanos PGI Nanos PGI Nanos PGI NAnos PGI Nanos PGI

1 31.7 107.3 12.6 13.9 14.9 16.5 3.8 5.9 7.8 14.7 152.5 399.3

2 60.7 143.7 26.5 53.7 29.3 33.9 7.3 9.3 15.3 51.5 308.5 516.2

4 117.5 189.2 53.1 111.7 57.0 68.3 14.1 18.0 30.9 104.0 621.2 764.3

8 235.8 315.2 106.4 157.4 106.3 131.1 28.5 30.0 61.4 166.1 1245.8 1387.9

manager ran with a time-sharing version of the DSS
scheduling policy [10] and a scheduling quantum of
120 msec, which matches the quantum used by the op-
erating system scheduler for the kernel-level threads.
For the PGI version, we executed the workloads with-
out the resource manager. In this case the operating
system scheduler was responsible for the scheduling of
the applications on the available processors. We ran
each workload 5 times, and we measured the average
turnaround time for all the instances in each workload.
The measured times for each case are presented in Ta-
ble 2. In Fig. 3 the measured times are depicted using
a logarithmic scale for the time axis.

As shown in Table 2 and Fig. 3 the workloads with
the Nanos version applications achieves much lower
turnaround times. More specifically, when we use
the resource manager to coordinate the execution of
the multiprogramming workloads, the turnaround time
scales linearly to the degree of multiprogramming. This
means that when we run a workload with multipro-
gramming degree 2 it requires approximately twice the
time of a uni-programming workload. In the PGI case,
the workloads fail to scale well, because the operating
system scheduler does not schedule them efficiently,
since it has no knowledge about the requirements of
their applications. The workloads of the three PGI-
compiled applications that did not scale well on the
dedicated execution, now achieve superlinear scaling
as the multiprogramming degree increases. This hap-
pens because the extra instances fill in the time inter-
vals that the processors otherwise would be left idle,
since each instance does not manage to fully utilize all
of its processors. However, in any case our implemen-
tation achieves better turnaround times for the applica-
tions participating in the workloads. The improvement
ranges from 6% to 63% less time that the PGI case.
Additionally, in the Nanos case the deviation of the
turnaround time between the instances in each work-
load as well as the total execution time of all the work-
loads is also smaller than in the PGI case. This second
experiment shows the performance advantages and the
stability of our implementation when it is used in a
heavily multiprogrammed environment, where several
applications compete for the system resources.

6. Releated work and conclusions

As far as we know, there is only one related work
in this subject, and none for the Windows operating
system. In [1], the authors compare the performance
of a runtime system and a modified Linux kernel with
that of OmniMP, a research OpenMP compiler. They
achieve similar results to us, since the OmniMP com-
piler is totally unaware about multiprogramming. Our
work differs in that we use an independent resource
manager, implemented as a kernel loadable module, to
play the role of the operating system scheduler, instead
of modifying the kernel. Moreover, our approach is
more flexible without losing the performance advan-
tages and more portable since it can be easily installed
in new systems, by simply loading our module.

As we have stated, several OpenMP implementations
does not efficiently support application execution on a
multiprogrammed environment. In these implementa-
tion, the OpenMP feature for dynamic parallelism has
been ignored or not efficiently implemented. Our re-
sults confirm this statement, since our implementation
performs better that the commercial PGI implemen-
tation on a multiprogrammed environment. Further-
more, our experiments shows that our implementation
achieves better performance even when it is used on
a dedicated system. The immaturity of the OpenMP
implementations is also shown from the fact that 3 of
the NAS Benchmarks fail to scale with more that 2 pro-
cessors, when compiled with the PGI compiler and run
on a dedicated system. The PGI Workstation compiler
that we use in this work, does not support this feature
of the OpenMP standard. But, neither the OpenMP
version of the NAS Parallel Benchmarks that we use
in this work were written to use this feature. So our
results would not have change if we were using an ap-
plication or a compiler that support the dynamic par-
allelism feature. Our approach is completely transpar-
ent for the programmer of the original OpenMP-coded
application, and does not depend on the OpenMP stan-
dard feature for dynamic parallelism. In the future,
we plan to use this feature in our implementation as a
way to give the resource manager a hint, toward a more
efficient processor scheduling.

V.K. Barekas and P.E. Hadjidoukas / A Multiprogramming Aware OpenMP Implementation 141

Acknowledgements

We would like to thank our colleagues Christos

Antonopoulos and Ioannis Venetis for their valuable

help in the compilation of the NAS Parallel Bench-

marks. This work was partially supported by G.S.R.T.

research program 99E∆-566.

References

[1] C. Antonopoulos, I. Venetis, D. Nikolopoulos and T. Pap-
atheodorou, Efficient Dynamic Parallelism with OpenMP on

Linux SMPs, in Proc. of the 2000 international Conference on

Parallel and Distributed Processing Techniques and Applica-

tions, Las Vegas, Nevada, June, 2000.

[2] E. Ayguadé et al., NanosCompiler: A Research Platform for

OpenMP Extensions, in Proc. of the First European Workshop

on OpenMP, pp. 27–31, Lund, Sweden, September, 1999.

[3] V. Barekas, P. Hadjidoukas, E. Polychronopoulos and T. Pa-
patheodorou, Nanothreads vs. Fibers for the Support of Fine

Grain Parallelism in Windows NT/2000 Platforms, in Proc.

of the Third International Symposium on High Performance

Computing, pp. 146–159, Tokyo, Japan, October, 2000.

[4] P. Hadjidoukas, V. Barekas, E. Polychronopoulos and

T. Papatheodorou, A Portable Kernel-Mode Resource Man

ager on Windows 2000 Platforms, in Proc. of the Twelth

IASTED International Conference Parallel and Distributed

Computing and Systems, Las Vegas, Nevada, November,

2000.

[5] H. Jin, M. Frumkin and J. Yan, The OpenMP Implementation

of NAS Parallel Benchmarks and its Performance, Technical
Report NAS-99-011, NASA Ames Research Center, October,

1999.

[6] Intel Corporation, Intel Fortran Compiler, Available at:

http://developer.intel.com.

[7] X. Martorell, J. Labarta, N. Navarro and E. Ayguadé, A

Library Implementation of the Nano-Threads Programming

Model, in Proc. of the 2nd Euro-Par Conference, Lyon, pp.

644–649, August, 1996.
[8] X. Martorell et al., Thread Fork/Join Techniques for Multi-

level Parallelism Exploitation in NUMA Multiprocessors, in

Proc. of the 13th ACM International Conference on Super-

computing, Rhodes, June, 1999.

[9] OpenMP Architecture Review Board, OpenMP Specifica-

tions. Available at: http://www.openmp.org.

[10] E. Polychronopoulos et al., An Efficient Kernel-Level Schedul-

ing Methodology for Multiprogrammed Shared Memory Mul-

tiprocessors, in Proc. of the 12th International Conference

on Parallel and Distributed Computing Systems, Fort Laud-

erdale, Florida, August, 1999.

[11] Portland Group Inc, Web site. http://www.pgroup. com.

Submit your manuscripts at

http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

