
Behavior Research Methods. Instruments, & Computers

/990, 22 (5), 453-465

- COMPUTER TECHNOLOGY

A multipurpose software package for editing
two-dimensional animated images

JEAN LORENCEAU
Laboratoire de Psychologie Experimentale

Uniuersite R. Descartes, EHESS, CNRS, Paris, France

and

REMI HUMBERT

Unite Informatique Sciences Humaines
Universite R. Descartes, EHESS, CNRS, Paris, France

In this paper, we describe a software package, LEDA, for editing two-dimensional images and
films. It is written in Turbo-C and was first conceived to work with a high-resolution graphics
card (Adage PG90/10, 2,048 x 1,023 x8 bits) on an IBM PC/AT or compatible computer. The pro­
gram is intended for managing images and films used in the fields of visual psychophysics, electro­

physiology, and so forth.

Software packages intended to drive currently available

graphics displays are not always well adapted to the needs

of researchers who use visual stimuli to perform a vari­

ety of experiments. Consequently, a great deal of time

is spent developing programs able to build the images or

films needed for each experiment. It is common that, for

each series of experiments, new programs must be writ­

ten, even if parts of older programs can be reused. Some­

times, a new application requires a new data structure,

since old ones are too specific, and each procedure must

be modified accordingly. This increasingly large number

of potential modifications increases the probability of bugs

or program errors. Additional problems with this ap­

proach are the rapid increase in the number of programs

together with their specific graphic images, the lack of

comments in program code, the absence of compatibil­

ity, and so forth. This scenario represents one extreme;

a number of researchers and engineers, on the other hand,

have developed subtle methods and modular applications

with few of the aforementioned disadvantages.

We have developed a multipurpose program that allows

the rapid construction of many different images and films,

while taking into account the constraints of an experimen­

tal approach. Our goal. was to create software that would

allow editing of most of the stimuli needed to perform

a variety of experiments in our laboratory. These include

studies on subjective contours, apparent motion with

isoluminant stimuli, motion viewed through apertures,

We wish to thank Margaret Shiffrar for her comments and help in

improving an earlier draft of the text. This work was supported by Grant

DRET 88/114. Correspondence should beaddressed to Jean Lorenceau,

Laboratoire de Psychologie Experimentale. Universite R. Descartes,

EHESS, associe au CNRS, 28 rue Serpente, Paris 75006, France.

shape recognition, and texture discrimination. The soft­

ware also had to be versatile enough so that the user could

change any parameters of interest easily and rapidly.

We wanted the program to draw images quick!y, to build

a large variety of images, to be easily modifiable, and

to use as little memory as possible. Moreover, we wanted

a user-friendly program that anyone could use without

prior knowledge of programming. In addition, the pro­

gram had to be adaptable to different graphics displays.

In this paper, we describe the program LEDA, which

we designed to meet the criteria outlined above. It is cur­

rently used on an AT-compatible microcomputer with a

math coprocessor and a high-resolution graphics display

(Adage PG90/lO, 2,048 x 1,024x8 bits). The images are

displayed on a monitor (Sony GDM 1950) refreshed at

60 Hz. To ensure maximum machine-independence, the

program is written in Turbo-C and is distributed in differ­

ent modules, each one intended for specific applications.

First, we will describe the data structure and the differ­

ent modules that constitute the body of the program. Next,

we will describe the different functions that are available

and how they can be used to build different kinds of im­

ages. (More details on the editing process itself are

provided in Appendix A.) Finally, we will consider some

potential extensions as well as limitations of the software.

GENERAL STRUCTURE: MODULES

To ensure easy maintenance, the program is distributed

in 13modules, so that one can find, modify, or add func­

tions that pertain to specific applications.

Four modules deal with low-level applications, such as

the management of windows, control of keyboard inputs,

453 Copyright 1990 Psychonomic Society, Inc.

454 LORENCEAU AND HUMBERT

Don 0n
I I ~
LJ

menus, and cursor control. They are grouped into a

library. Four other modules manage operations on the

data. One deals with elements (e.g., allocation of

memory), one deals with images, and two manage parts

of images (block) and a complementary buffer (clipboard).

Two modules are used for mathematical operations on the

data. The first one contains low-level functions such as

calculating the x- and y-coordinates of lines from their

length and orientation, or calculating the value of a sinu­

soid from its amplitude, pulse, and phase. The second one

contains procedures that allow for more complex opera­

tions on the data. One module contains the functions used

to save or load images, change the directory, and so forth.

The procedures used to drive the graphics card are in a

separate module, so that modifications only at this level

are needed to adapt the program to different displays. (Ad­

ditional information for adapting the software is provided

in Appendix B.) Finally, the main program, LEDA, or­

ganizes the links between the modules.

STRUCTURES AND DATA:

IMPLEMENTATION

a

Null

First current

b

/~,

(
~: i~::ent)

N° column

\ N° line

~
preceding element following "ement

Last

Null

number of coordlnat..

Shape
color length
mode angle

Figure 1. (a) Structure of the double-chained list. (b) Data struc­
ture for a single element: addresses and pointers of the one element

and fields of the structure available for the user.

x

I relall

: to poettlonk L-_~

POIUIo"l

~ " - __ J

.....'
! ccefuon I
, X '

coordinates of the vertices of a polygon. The size of the

limbs is variable; it depends on the geometry itself (no

limbs are necessary for a dot). At any time, any field of

the element's structure can be changed. The facilities for

these changes are detailed below.

When a file is stored, each field ofthe element's struc­

ture is recorded instead of the usual bitmap (bitmap

recording is available, however). The size of the file is

thus adjusted to the size of the image, so that only the

memory that is needed is occupied (e.g., a circle uses 48

bytes). Since all the information is defined at the element

level, only the elements' list is stored.

As with elements, images are embodied in a double­

chained list. Each image is characterized by its number

in the list, as well as the number of lines and columns

in it. Four other fields are used. Two of them are pointers

to the following and preceding images. The two remain­

ing fields are pointers to the first and last element of the

image (Figure 2). At any time, images can be modified

and defined again with different values. For instance, one

image defined as a matrix of 10 columns and 10 lines can

To have a fast drawing program, we decided to directly

manage elements, which correspond to the primitives

generally implemented on graphics cards: dots, lines or

polylines, circles, ellipses, polygons, and text. In addition,

the software manages sprites (i.e., parts of the bit map)

in order to display elements corresponding to smoothly

varying gray levels, such as gabor functions, or shapes

that do not correspond directly to the simple combina­

tion of primitives. Fractal elements are also available.

Each image or film is a file of such elements. Elements

are embodied in a structure, which is larger than the in­
formation needed to draw an element. A large structure

allows various manipulations and also permits modifica­

tion of the program for future applications.

An element can be defined by a head, a body, and limbs

(Figure I). The head is a list of numbers, the first of which

defines the position of the element in the list, so that each

element can be easily found. Three additional fields con­

tain the number of the image, the column, and the line

to which the element belongs (these values are set to zero

if no image is defined). Two pointers indicate the follow­

ing and preceding element, as in double-chained lists.

The body is the list of the characteristics shared by all

the elements: the geometry of a given element, coded with

a number (this choice is intended to provide easy and rapid

inputs with the numeric keyboard, and it allows for basic

calculation and sorting), the color and the mode (the mode

is used to select the combination-AND, OR, XOR,

etc.-of an element with the background), the angle of

the element relative to the horizontal axis (when relevant

for the chosen geometry), and the location on the screen.

Two additional fields are used to store the radius of a cir­

cle and the number of sides of polygons. Finally, a pointer

is used to point to the limbs, if necessary.

The limbs are fields (arrays of x,y integers) used to en­

code the characteristics of a given geometry, such as the

EDITING TWO-DIMENSIONAL ANIMATED IMAGES 455

preceding image Image

¢=======l number of columns

following image

Figure 2. Data structure for the images. Fields for the definition of images, pointers between images,

and pointers toward the elements in the list corresponding to the first and last element of one image.

be changed into 10 images defined as matrices of 10

columns and I line. The modifications change the seg­

mentation of the list and not the locations of the elements

on the screen, since a particular function is used to as­

sign positions on the screen to the elements belonging to

the same image. The various allowable manipulations are

described below.

Note that the images' list is not recorded on disk, since

it is rebuilt from the elements' list when a file is loaded

to memory.

In addition to images, two volatile segmentations can

be used to manipulate separate parts of the elements' list.

Motifs are pieces of the elements' list defined by a start­

ing and an ending element, independently of the actual

image contents. Blocks are parts of an image (or images)

defined by the starting and ending numbers of the images,

the columns, and the lines. A block allows the selection

of a subpart of an image through a film. The elements

belonging to a block or to a motif can be copied in a

buffer, moved on the screen, or erased. The elements

stored in the buffer may be inserted anywhere in the list.

A film consists of a number of images that can be dis­

played sequentially with a given offset delay and a given

interstimulus interval. Several other functions, such as

panning the frame buffer or dynamic bit-plane segmen­

tation, intended to display a film, are described below.

It should be noted that a film may be used to store stimuli

corresponding to a block of trials, to a moving stimulus,

or to both.

PROGRAM AND FUNCTIONS

The structure of the program is depicted in Figure 3.

Activity is controlled through a switching procedure

toward basic functions. When the program is entered, a

user can choose from a number of functions, including:

editing elements (to assign values to the different fields),

saving a list of elements, loading a list, clearing the cur­

rent list from memory, changing directories, or exiting.

In the edit mode, four levels are accessible: edition of

elements, edition of images, manipulation of blocks, and

display functions. Within each of these levels, specific

functions are used to define, modify, or display the con­

tents or the structure of an element's list.

In the edit mode, the status of each of the different vari­

ables that define a list is shown: the number and attri­

butes of the current element, the number and characteris­

tics of the current image, the total number of elements

and images, the size of the current block, and the size

of the available memory (Figure 4). The different choices

corresponding to the current level can be selected from

a menu. Submenus are displayed in windows according

to keyboard inputs.

At the element level, one can edit a list (element by ele­

ment or all at once), add, insert, copy, or erase one or

more elements, and use arrows to move within a file. (In

addition, an element can be selected by its number and

then edited.) One can define or modify an element (a ge­

ometry) or access a specific field of this element (its color,

its angle, etc.). When defined (i.e., when the geometry

is specified), the current element is always displayed on

the graphics monitor, at the center of the screen if x- and

y-coordinates have not been defined (they are initialized

to zero), or else at the requested position. With the ar­

rows, an element can be displaced pixel by pixel. Plus

and minus signs are used to adjust the step size of dis­

placement. An element can be rotated by an adjustable

increment around its center. A switch allows the simul-

456 LORENCEAU AND HUMBERT

List of LEDA's modules

User
INPUTS

LCU RSE

LCWIND

LMENU

LCEDIT

Hard ')

\ Disk,

<:>'

LEDA

LEDEL

Figure 3. Modular conception of the software package: modules for keyboard inputs and management of
windows, management of elements, images, mathematical operations, block, and complementary buffer. Dis­
play functions are grouped in a single module, so that only modifications at this level are necessary when adapt­
ing the software to a different graphics library.

taneous presentation of several elements as one moves

through the list, so that one can control and adjust the

relative positions of different elements.

At this element level, one can copy the contents of a

motif of a given size (number of elements) from a start­

ing point to an end point. The contents of a motif, de­

fined by its size and the number of the first element, can

be elements as a whole or a single field of elements. For

instance, four colors assigned to four different elements

may be defined according to a color motif that can be ap­

plied to other elements of different shapes, orientations,

and so forth. In the same manner, three elements defined

as a triangle, a disk, and a line may be used as a motif

of three geometries copied within boundaries without

changing the color of the modified elements.

Mathematical functions (linear, triangle, exponential,

square, gaussian, sinusoid, etc.) can be applied to modify

a specific field of one part of the list and/or one type of

geometry. For instance, one can linearly increase the size

of all the lines between given limits of a file containing

disks and polygons. This option works in the following

manner: for each element within the defined boundaries,

a value, k, is regularly incremented and used to calculate

a function whose parameters have been input at the key­

board. On request, the result of the calculus, y, can

replace, be added to, multiply with, or divide, the value

of the element's attribute to be changed. The resulting

value is then assigned to the attribute's field.

The image level is designed to edit, move, modify, in­

sert, or add images to the image's list. The arrow keys

are used to move back and forth in the images' list; the

current image is always displayed on the graphics moni­

tor. A switch permits the viewing of successive images,

which are then superimposed. When the switch is on, all

but the current image are cleared.

If the number of elements in the list is not large enough

to build the desired images, additional elements are auto­

matically allocated and initialized to zero (the "copy a

motif" option can fill them in).

The structure of an image is a matrix of columns and

lines. Film editing requires the definition of the number

of images together with the number of columns and lines.

Images are defined one by one or all at once and can be

changed at any time.

Once the images are defined, the positions of the ele­

ments belonging to the same image can be defined. For

this purpose, one must define the position of the first ele­

ment of the image, the distance between columns, and

the distance between lines. It is also possible to use incre­

ments to modify the interelement, intercolumn, interline,

and interimage intervals. This permits one to edit differ­

ent types of periodic structures very rapidly (checker-

EDITING TWO-DIMENSIONAL ANIMATED IMAGES 457

\a: BRISTOL.LDA

Element Image List Block: first-last

nO 1 nO 1 110 elements image 0 0

Column 11 Film: column 0 0

Column 1 Line 10 110 elements line 0 0

Line 1 1 images Buffer :

Pos. X 132 from nO 1 Empty

Y 82 to nO 110 412840 bytes free

Rect. F. ELEMENT

side 1 25 1 Input one element

side 2 25 2 Input a list

angle 0 3 Search for an element

color 15 4 Modify an element F10

mode 0 5 Erase elements

6 Insert elements
7 Copy one element

8 Display a motif

F6 Coordinates Info.

F7 Copy a motif

F8 9 An mation Options
Save In tialize

ESC:ex t

(-) following/preceding menu F5 Displav

IMAGE
1 Define images
2 Define positions
3 Position Options
4 Move an image
5 Erase Ima.+ Elem.
6 List of images
7 Search for an image

F6 Erase a motif
F7 Copy a moti f
F8 Function Options

Save
Initialize
ESC: Exit

DISPLAY
1. Display Menu
2. Display images
3. Display the List
4. Modify the Palette

5. utilities
6. Define a window
7. Rotate the Palette

8. Rotate colors
F4 Rotate Bit-planes

F5 Paning
F6 Display motif
O. Test Bit-Planes

ESC: Exit

BLOCK

1 Define a block
2 Move a block
3 Rotate a block
4 Display current block

5 Sort Options

6 Text
& Fill Buffer

ESC : Exit

Figure 4. Copy of the control screen while in the edit mode. The menus for managing images, blocks, and display functions
are also shown. Depending on the user's choice, submenus are displayed in the main window. However, information about

the status of the file remains visible.

board, square-wave gratings, etc.). In addition, an im­

age can be moved in any direction with the arrow keys.

(Steps of displacement are adjustable with the plus and

minus keys.)

Since one often has to deal with different aperiodic

structures, facilities for the positioning of elements are

provided: One can fill in a pattern with the elements of

the list, given the intervals x and y between elements and

lines of elements. One can also copy a motif of positions

within boundaries of the elements' list. For instance, if

three or more elements have been placed at different lo­

cations, their relative positions can be assigned to any

group of three or more elements. Absolute positions can

be defined by fixing the amount of displacement on the

x- and y-axes relative to the copied positions.

Random noise can be applied to an image in order to

modify the positions of the elements by a random amount

on the x- and y-axes separately. A similar randomization

can be applied to each of the fields of the element's struc­
ture (color, length, etc.).

These different functions appear to be very powerful

for building simple or complex images, simply by mov-

ing between positioning functions and image definitions.
For instance, if several images are defined and positioned,

a simple redefinition of these images as one single larger

image will produce a much more complex structure,

which in turn can be replicated and modified. The result

will be a film of complex images.

LEDA can also be used to edit fractal images (Mandel­

brot, 1982). The construction of fractal images requires

the choice of a number of transformations of the element's

list (see Barnsley & Sloan, 1988). Each transformation

is defined by seven values, including the probability of

applying the transformation onto the list. These transfor­

mations apply on x and y locations and are added to the

current positions of the elements (for that reason, all the

elements should be initialized to the same location before

constructing a fractal image).

The block level is designed for manipulation of parts

of images, such as the elements between two different

columns, two different lines, and two different images.

A block can be moved, rotated, or erased. At this block

level (but also accessible from the element and the image

level), part of the list (i.e., a block or a motif) can be

458 LORENCEAU AND HUMBERT

copied in a buffer. The contents of the buffer can be rein­

serted anywhere in the list. (This function corresponds

to the copy-cut-paste functions available on Macintosh

computers, but it should be noted that LEDA deals with

elements rather than bit maps).

There are different animation procedures for computers

(see Proffitt & Kaiser, 1986). One can draw the different

images sequentially, with the constraint that the time be­

tween frames depends on the time needed to write the im­

ages. Other possibilities offer faster and more flexible ani­

mation. One is to write all the images in a different part

of the frame buffer. The animation is then produced by

panning the frame buffer with appropriate values in order

to present the images within a window. This method has

the constraint that the number and the size of the images

cannot be too large. When several bit planes are separately

accessible on the graphics display, and few colors are dis­

played simultaneously, one can write each image on one

or several bit planes. Animation is obtained by showing

the selected bit planes at a chosen rate. Dynamic changes

in the look-up table (LUT) have also proven to be power­

ful tools for animation.

The choice of one or another procedure (or their combi­

nation) depends on the required animation rates, the com­

plexity of the images, the number of colors to be displayed

simultaneously, and/or the number of images that make

a film. In apparent motion perception (Braddick, 1974;

Cavanagh & Mather, 1989; Papathomas & Gorea, 1988),

one often uses cyclic presentations of a reduced number

of images. This allows the use of more powerful anima­

tion procedures (i.e., the faster rates).

In LEDA, the film level includes display functions and

several other useful functions, such as the edition of colors

(i.e., changes of the LUT), zooming, panning, testing of

bit planes, and so forth.

The display menu permits one to look at a film-several
images-at a chosen rate, with or without an interimage

interval. The images are displayed one by one in sequence.

This menu allows a control of what should appear during

an experiment, although the rate is not optimized, since

information, printed on the control screen, is time­

consuming (moreover, the rate depends on the number

and type ofthe elements within an image; filled elements

are drawn more slowly than outlined elements).

LEDA also provides a cyclic display of the bit planes

(on an 8-bit graphics card, each bit plane can be accessed

separately for read or write operations). One can define

one, two, four, or eight planes to produce the desired seg­

mentation of the eight available bit planes. Animation is

realized by cyclic presentation of the selected bit planes

with an adjustable delay between frames. The rate of ani­

mation is then independent of the complexity of the im­

age. Along the same lines, a cyclic modification of the

LUT is available to produce high-rate animated images.

Suppose, for instance, that one image corresponds to 100

lines displayed side by side, but that 99 lines have the color

of the background (i.e., they are invisible). If the color

of the remaining visible line is successively assigned to

each of the lines, one will perceive an apparent motion

of one single line. The rotation of the colors of the LUT

available in the program can be realized within bound­

aries at a chosen rate. Moreover, different parts of the

LUT can be rotated simultaneously, which allows differ­

ent animation rates for different objects (e.g., two or more

gratings can drift in different directions at different rates).

The LUT available with 8-bit planes has 256 entries

(i.e., 256 colors can be displayed simultaneously). Each

color is defined by the intensity of the red, green, and

blue channel. LEDA proposes different predefined defi­

nitions of the LUT that can be chosen in a menu. In order

to manipulate the LUT further and thus change the colors,

several functions are available. One can change each color

separately by adjusting the red, green, or blue channel.

The values of calculated functions can also be applied to

each channel separately or to the three channels at once.

With these functions, it is easy to define different palettes.

For instance, one can define a sinusoidal variation of the

intensity of the red channel and a linear increase of the in­

tensity of the green channel, while the intensity of the blue

channel decreases. These functions can be applied within

limits. The LUT defmed in this way can be saved (or not),

together with the images.

POTENTIAL EXTENSIONS OF LEDA

Although the current version of the software allows the

construction of a large number of different images, several

extensions are possible. One extension under development

is the management of a mouse for positioning or editing

elements or images.

In order to run different experiments with specific

methods and procedures with the images edited with
LEDA, a specific module intended for running experiments

can be added to the existing ones. We developed such a

module for running experiments in our laboratory (Gorea,

Lorenceau, Bagot, & Papathomas, 1990; Lorenceau &

Shiffrar, 1990). The experiment module allows the defi­

nition of the parameters and procedures that are needed

for specific animations used in experiments, together with

the definition of specific variables such as the name of

the subject, the number of trials, and so forth. This

strategy is very useful for adjusting the parameters of one

experiment; it is economical, since all the functions used

to load a film or display the elements are already writ­

ten; and it is flexible, since only the experiment module

needs to be modified for a new experiment.

The software manages text, so LEDA can be used in

research concerned with reading. Each element can hold

a letter, a word, or a sentence. The size of the letters,

their color, and their position can be changed easily.

Image editing could be used to display several letters,

words, or sentences. The display facilities can be used

to run experiments.

Another extension concerns the synthesis of images

from frequency spectra. It is possible to use the fields of

an element's structure to define frequency, intensity,

EDITING TWO-DIMENSIONAL ANIMATED IMAGES 459

phase, location, and so forth. The program can allow for
manipulations (e.g., filtering) of the current spectrumbe­

fore it is sent to a Fourier synthesis module, in order to
draw images.

LEDA could also beof use in other fields of research,
such as psychoacoustics. For instance, the different fields
of an element's structure could be used to define param­
eters such as the frequency, intensity, and phaseof differ­
ent sounds. Only the messages displayed on the control
screenandthe outputmodule thatare actually usedto draw
elementson a graphicsdisplay needbe rewritten in order
to fit the hardware specifications.

The software's limitations should also be mentioned.
One is the limited number of elements and images that
can be managed simultaneously in the current version.
About 400K are available for the data (elements and
images). Extendedor expanded memory is not presently
managed by the software. In addition, the matrixstructure
of images doesnotallowthree-dimensional manipulations.

CONCLUSION

A general multipurpose software package for editing
and animating images was developed to avoid the disad­
vantagesthat occur when a new program mustbewritten
for each new experiment. This approach is very power­
ful and saves a great deal of time. Several experiments
thathavebeenrun withthis software haverequired a mini­

mum of additional programming, although it was some­
timeseasier to write an additional specificprocedure than
it was to edit the images with the tools available. How­
ever, a new procedure is easier to write when the data
structure is already defined.

The adaptationof LEDA to different graphics displays
is ensured by its modular design, although some of the
graphics functions in the present version may not exist
in other systems, and some functions available on more
sophisticated systems cannot be implemented in LEDA.
Thus, some time may be required for the user to adapt
the program to work with different graphics displays.

Althougha versionthat runs on an AT witha single mon­
itor is available for demonstration, the program should
be used with two monitors for maximum flexibility and
adaptability. Appendix B contains the procedure used to
display an elementon the screen. Procedures used to dis­
playa motif, an image,or a filmare repetitive calls, within
limits, to this "display element" procedure. Other modifi­
cations concern panning, zooming, writing a single color
or the whole palette, and so forth. It should benoted that
the procedures used in LEDAare availableon mostof the
graphicscards currentlyavailable, running on an AT with
MS-DOS 3.3. Adapting LEDAto run withdifferentoper­
ating systems (e.g., UNIX) requires the change of low­
levelprocedures for management of files, directories, and
so forth.

If one is interested in working with LEDA, the pro­
gram anddocumentation are available fromthe firstauthor
for $40 US. A version that runs on a PC (VGA display)
will be provided for testing; the program requires an
ADAGE PG90/lO graphics card.

REFERENCES

BARNSLEY, M. F., & SLOAN, A. D. (1988). A better way to compress
images. Byte, I, 215-223.

BRADDlCK, O. (1974). A short range process in apparent motion. Vision

Research, 25, 839-847.

CAVANAGH, P., & MATHER, G. (1989). Motion: The long and the short
of it. Spatial Vision, 4, 103-129.

GOREA, A., LORENCEAU, J., BAGOT, J. D., & PAPATHOMAS, T. V.

(1990). Color-based motionperception maybe strongerat equiluminant

than under nonequiluminant conditions. Investigative Ophthalmology

& Visual Science, 31(Suppl. 2544-51), 518.

LoRENCEAU, J., & SHIFFRAR, M. (1990). Motionviewedthrough several
apertures: Non-rigid percepts. Investigative Ophthalmology & Visual

Science, 3l(Suppi. 2557-61), 520.

MANDELBROT, B. (1982). The fractal geometry of nature. San Fran­
cisco: W. H. Freeman.

PAPATHOMAS, T. V., & GOREA, A. (1988). Simultaneous motion per­
ception along multiple attributes: A new class of stimuli. Behavior

Research Methods, Instruments, & Computers, 20, 528-536.
PROFFITI, D. R., & KAISER, M. K. (1986). The use of computergraphics

animation in motionperceptionresearch. Behavior Research Methods,

Instruments, & Computers, 18, 487-492.

APPENDIX A

To provide an example of the use of LEDA, we describe the steps needed to construct the
Bristol wall illusion.

l , Enter LEDA and select the "edit" mode.
2. Select "Input one element":

· define a filled rectangle and its characteristics:
· sides, color, mode.

3. Select "input a list":

· choose "all at once" option.
· choose "copy last element."
· enter the number of elements.

4. Use down arrow to display next element.
5. Select "modify an element" option:

· change the white color to gray.
6. Select the "copy a motif" option:

· enter: the size of the motif and its starting element.
: the limits for copying.

· select the element's fields to copy through the list.

460 LORENCEAU AND HUMBERT

APPENDIX A (Continued)

7. Use the right arrow to display the image menu.

8. Select the "define an image" option:

, enter the number of images to define.

, select the "all at once" option.

, enter: the number of columns and lines.

9. Select the "define positions" option:

, enter: X-, y-coordinates of the first element.

: the separation between columns and lines.

: the step increment on the x-axis.

: parameters for "alternate step's sign" option.

10. The image is displayed on the screen.

II. Each step can be reselected to change colors, positions, and size or structure of images,

or to apply a functionon one field of the element's list. Animationprocedures are available.

APPENDIX B

/* set the mode for combining element */

/* with the background */

/* set the color of the element */dscoltgraf-rcolor);

/* ---- Procedure used to display an element on the graphic screen ---- */
void ON_elem(liste_EL *grat)

{
dsopm(graf -+mod_disp);

/* move to the center of the screen if x = Y = 0 */

/* move to real x & y otherwise */

if (graf-rxposel = = 0 && graf-ryposel = = 0) dsamove(CentX, CentY);

else dsamovergrat-sxposel.graf-eyposel);

/* Selection of what procedure to call */
/* depending on the geometry of the element, coded by a number (0 to 15) */

/* Coordinates of the element are relative to X & Y location */

switch (graf'-rgeometry)

{
/* undefined geometry */

case 0: return;

/* Display a dot */

case I: dsdott):
return;

/* Display a line whose coordinates are stored in an array of integer */
case 2: dsrmove(graf-+ar[O].x, graf-+ar[O].y); /* makes a relative move */

dsrline(graf-+ar[I].x, graf-+ar[l].y); /* draw a relative line */

return;

/* Display a circle whose radius is equal to 'len' */

case 3: dscrcltgraf-r len);

return;

/* Display a disk. MOPIN is the mode for filling in */
case 4: dscrcl(graf-+ len); /* Display a circle */

dsrpaint(O, 0, graf-scolor, MOPIN); /* makes a relative paint */

return;

/* Display an outlined rectangle relative to XY location */

/* Length and height are stored in an array of integer */
case 5: dsrrct(graf-+arlO] .x, graf -+arlO] .y);

return;

EDITING TWO-DIMENSIONAL ANIMATED IMAGES 461

APPENDIX B (Continued)

/* Display a filled rectangle relative to XY location */

/* Length and height are stored in an array of integer */

case 6: dsrfrct(graf..... ar[O).x, graf..... ar[O).y);

return;

/* Display a polyline of 'arsize' sides */

case 9: dsrpll(graf..... arsize.graf..... ar);

return;

/* Display an outlined polygon regular (7) or irregular (10) */

/* Makes a relative move from XY location to the first XY coordinates */

/* and draws a polygon of 'arsize' sides */

case 7:
case 10:dsrmove(- graf..... ar[graf..... arsize) .X, - graf..... ar[graf..... arsize) .y);

dsrplg(graf..... arsize -I .graf..... ar);

return;

/* Display a filled polygon regular (8) or irregular (II) */

/* Makes a relative move from XY location to the first XY coordinates */

/* draws a polygon of 'arsize ' sides */

/* fills in from the XY location to the border */

case 8:
case II:dsrmove(- graf..... ar[graf..... arsize) .X, - graf..... ar[graf..... arsize) .y);

dsrplg(graf..... arsize -I ,graf..... ar);

dsrpaint(graf..... ar[graf..... arsize]. x.graf..... ar[graf..... arsize). y.graf..... color, MOPIN);

return;

/* Display an outlined ellipse defined by the ratio of X/Y and its length */

case 12:dselps(graf..... ar[0). x.graf..... ar[O).y,graf..... len);

return;

/* Display a filled ellipse defined by the ratio of X/Y and its length */

/* MOPIN defines the mode for painting */

case 13:dselps(graf..... ar[0).x,graf..... ar[0).y,graf..... len);

dsrpaint(O, 0, graf..... color, MOPIN);

return;

/* Makes a call to a procedure that display a text */

/* ON _text transforms integers stored in an array into letters */

/* concatenates these letters and display the string */

case 14:0N_text(graf);

return;

/* Makes a call to a procedure that displays a sprite */

/* wriLsprite reads an array of colors */

/* draws a dot within a squared matrix */

case 15:wriLsprite(graf, graf....mod Ldisp);

return;

/* Makes a call to a procedure that draws a fractal element. */

case 16:0N _frac(graf); /* plots colored dots only */

}

Note-The ON_elemO procedure is called each time an element is displayed on the graphic

screen. To adapt this procedure to another graphics card, one must change the calls to the graphics

library-for example, change dsamove(x,y) dscrcl(radius), which are used here to draw a circle

to circletx.y, radius) if a VGA graphics card is to be used. Other modifications-for panning,

zooming, writing the LUT, and so forth-are also needed. All these graphic functions are grouped

in the same module. If only one screen is available for graphics and controls, switches between

text and graphic modes should be inserted within the software.

462 LORENCEAU AND HUMBERT

APPENDIX C: Black and White Examples of Images Edited with LEDA

Image 1. Size in memory: 6,591 bytes. Editing process: 2min.

Image 2. Size in memory: 10,529 bytes. Editing process: 3min.

EDITING TWO-DIMENSIONAL ANIMATED IMAGES 463

Image 3. Size in memory: 63,081 bytes. Editing process: 10 min.

Image 4. Size in memory: 114,581 bytes. Editing process: 5 min.

464 LORENCEAU AND HUMBERT

Image 5. Size in memory: 80,208 bytes. Editing process: 10 min.

Image 6. Size in memory: 166,081 bytes. Editing process: 12 min.

EDITING TWO-DIMENSIONAL ANIMATED IMAGES 465

Image 7. Size in memory: 4,703 bytes. Editing process: 30 min.

(Manuscript received March 19, 1990;

revision accepted for publication 1uly 30, 1990.)

