
A Multiresolution A� Method for Robot Path
Planning
Antti Autere, Johannes Lehtinen
Department of Computer Science, Helsinki University
of Technology, Otakaari 1 M, SF-02150 Espoo, Finland
EMail: aau@cs.hut.�, jle@cs.hut.�

Abstract

In this paper, a point-to-point robot path planning problem is studied. It

occurs in industry for example in spot welding, riveting, and pick and place

tasks.

A new A� -based method is presented. The algorithm searches the robot's

con�guration space with many di�erent resolutions at the same time. When

a path candidate goes far from the obstacles, coarser resolutions correspond-

ing to bigger step sizes is used. When it goes near the obstacle surfaces,

�ner resolutions corresponding to smaller step sizes is used.

The algorithm always �nds a path from a starting robot con�guration to

the goal con�guration if one exists, which is a property of the A� search

in general. This is true given the �nest resolution of the search space.

These kind of path planning algorithms are called resolution complete in

the robotics literature.

A� is also applied because of the possibility to generate better guiding

heuristics. A better admissible heuristic roughly means that A� using it

expands fewer con�guration space nodes, which is known a priori.

A known AI-method utilizing relaxed models is applied to generate ad-

missible heuristics. Constructing relaxed models involves removing details

from the base level problem to get simpli�ed ones. The heuristics are then

obtained by solving these simpli�ed problems.

A simulated robot workcell is provided for demonstrations. The path

planning of a 5-degrees-of-freedom industrial robot appears to be reason-

ably fast.

Keywords: Robotics, Heuristic Searching, A�, Planning, Path Planning.

 Transactions on Information and Communications Technologies vol 19, © 1997 WIT Press, www.witpress.com, ISSN 1743-3517

1 Introduction

Robot path planning in known environments refers to �nding a collision-

free path from an initial robot con�guration to a desired goal con�guration.

This problem occurs in industry in spot welding, riveting, and pick and

place tasks, to mention some examples. Figure 1 illustrates an example

path for a 2-joint robot manipulator. In Fig. 1, \S" is a start con�guration

and \E" is the goal.

When an automated production line is operating, it is often very expen-

sive to stop it to re-program robots, e.g. to deal with new products. A

more economical way is to generate the movements of the robots o�-line,

in a simulator, and then download the programs into the robot controllers.

Minor modi�cations may still be required but the time the production line

needs to be \o� duty" is small compared to the manual teaching of the

robots.

Path planning has received much attention over the years and many dif-

ferent approaches have been presented. They can be roughly categorized

into potential �eld, cell decompositions and roadmap or skeleton methods

[14] and [11].

Potential �eld methods generally employ repulsive potential �elds around

obstacles and an attractive �eld around the goal. Path planning is then done

by following the negative gradient of the combined potentials. The major

drawback is that the potential function will often lead the path to some

local minimum, from which it cannot escape without additional help. Many

techniques for escaping from local minima have been presented, e.g. in [14]

and [3]. It is possible to construct potential functions that are free from

local minima but they must be calculated numerically, see e.g. [14], [3] and

[5]. However, present computers cannot keep, for example, a 6-dimensional

numerical potential function in memory.

Cell decomposition approaches are based on decomposing (either exactly

or approximately) the set of free con�gurations into simple non-overlapping

regions called cells, e.g. [8] and [14]. The adjacency of these cells is then

represented in a connectivity graph that is searched for a path. The draw-

back is that all the cells must be constructed before a path can be found.

However, recently a hierarchical method to do this has been reported in [1]

and [2].

Roadmap or skeleton approaches attempt to retract or map the set of fea-

sible motions onto a network of one-dimensional lines, called the roadmap,

skeleton, visibility graph or subgoal network. The path planner tries to

connect the start and goal con�gurations to this network and then search it

to �nd the (optimum) path. The roadmap is usually generated by prepro-

cessing (sampling) the robot's con�guration space. There are many ways

to do this. Examples of this approach are found in [4], [14], [13] and [12] to

mention a few.

 Transactions on Information and Communications Technologies vol 19, © 1997 WIT Press, www.witpress.com, ISSN 1743-3517

S
E

S

E

Figure 1: A 2-D path planning example

The nodes of the roadmap or the subgoals can also be constructed by the

A� algorithm. Reference [19] is an example of this. In the reference, A� �rst

searches with a coarse resolution to produce a set of collision free nodes.

Then, it tests whether a collision free path exists from the start to the goal

going through some of these nodes. If not, then A� uses a �ner resolution

etc.

In the roadmap methods, including the last one, it is usually not known

that a path exists from the start to the roadmap nodes or the subgoals. It

will be searched afterwards. This may cause unnecessary overhead.

In this paper, we discuss the principles of an A� -based method that

searches with both coarser and �ner resolutions at the same time. The

coarser resolutions correspond to bigger step sizes and the �ner resolutions

smaller ones. Bigger step sizes are used when the search proceeds far away

from obstacles and smaller ones when a path candidate is near the obstacle

surfaces. Further, a path from the start con�guration to a node has already

been found before the node is included in the list of subgoals.

2 Robot's Work and Con�guration Space

This section briey introduces some commonly used notions related to robot

path planning.

Let A denote the robot, W its work space, and C its con�guration space.

The left picture of Figure 1 shows a 2-joint robot manipulator in its work

space, and the right picture of Fig. 1 shows the corresponding con�gura-

tion space. A point q 2 C speci�es the position of every point in A with

respect to a coordinate system attached to W [7]. This point, q, is called a

con�guration of A. All the positions of the points of A speci�ed by q 2 C

belong to the robot's work space W .

The subset of C consisting of all the con�gurations where the robot, i.e.

its every point, has no contact or does not intersect the obstacles in W is

called the free space and denoted Cfree. The complement of Cfree consists of

 Transactions on Information and Communications Technologies vol 19, © 1997 WIT Press, www.witpress.com, ISSN 1743-3517

obstacles and is denoted Cobst. Cobst is composed of some distinct subsets.

These are called con�guration space obstacles or, for short, C -obstacles.

To determine whether a con�guration q is in Cfree or in Cobst, in a robot

simulator, some geometric calculations are needed. This is called collision

testing.

Let d be the dimension of C, i.e., the number of the joints or the degrees-

of-freedom of A. The con�guration q 2 C is represented as a d-dimensional

vector (q1; q2; :::; qd). Every qi has mi distinct values, so C is a graph of

m1 �m2 � ::: �md vectors. Let us call it a con�guration graph.

The graph has edges that connect each node q with all its neighbors. For

example, a neighbor of (q1; q2; :::; qd) is (q1; q2 +
qmax
m2

; :::; qd) with only one

component allowed to be changed. So, if C is d-dimensional, then every

node has 2 � d neighbors.

All searching for path planning is done in the robot's con�guration space.

We map every con�guration q onto a corresponding search node n. The

nodes are vectors n 2 Zd, where Zd is the set of vectors whose components

are integers, and d is the dimension of C. For example, the neighboring

con�gurations q = (q1; q2; :::; qd) and q0 = (q1; q2 +
qmax
m2

; :::; qd) are mapped

onto n = (n1; n2; :::; nd) and n0 = (n1; n2 + 1; :::; nd), respectively. This is

called a basic search graph. The neighboring relation of this graph is similar

to the one that the con�guration graph has.

3 The A� Algorithm

In brief, A� is an ordered best-�rst search algorithm that always examines

the successors of the \most promising" node based on the function: f(n) =

g(n)+ h(n), where g(n) is the length of the shortest path from the starting

node to n. The heuristic, h(n), is an estimate of the length of the shortest

path from n to any goal node.

The A� algorithm maintains two sets of nodes: a tree of paths already

obtained, called CLOSED, and a priority queue containing a subset of the

leaves of CLOSED, called OPEN. After removing a node n from OPEN, it

is tested whether the robot, located at n, contacts or intersects with the

obstacles, i.e, the collision test is done. If n belongs to Cfree, then it is

placed on CLOSED.

3.1 On A�

Theory

Using A� enables us to get shorter path planning times by constructing

\better" heuristics for the search. If we have a better heuristic, then we

know that the A� using it is also \better".

 Transactions on Information and Communications Technologies vol 19, © 1997 WIT Press, www.witpress.com, ISSN 1743-3517

De�nition 1. [16] p. 77. A heuristic function h is admissible if it underes-

timates the cost of the optimal solution from a node n to the goal, h(n)�,

i.e. h(n) � h(n)� 8n.

De�nition 2. [16] p. 83. A heuristic function h(n) is monotone if it satis-

�es the triangle inequality: h(n) � c(n; n0) + h(n0) 8(n; n0) j n0 2 succ(n),

where c(n; n0) is the cost of the edge from n to n0.

Theorem 1. [16] pp. 82-83. Monotonicity implies admissibility.

De�nition 3. [16] p. 85. An algorithm A�

2
largely dominates A�

1
if every

node expanded by A�

2
is also expanded by A�

1
except, perhaps, some nodes

for which f(n) = C�, where C� is the cost of the optimal solution.

Theorem 2. [16] p. 85. If h2 � h1 and both are monotone, then A�

2
(using

h2) largely dominates A�

1
(using h1).

3.2 Relaxed models and admissible heuristics

This section describes one method of generating admissible heuristics, namely

utilizing relaxed models.

Relaxed models are a well-known source of admissible heuristics [16], [18],

[15], [10] and [17]. They are abstract problem descriptions generated by ig-

noring constraints that are present in base-level problems [10]. The intuitive

reason that abstractions generate admissible heuristics is because they add

short-cut solution paths by simplifying the original problem [17]. Several

authors emphasize, however, that relaxed problems should be easily solvable

compared with their original counterparts in order to speed up the overall

computation time, [18], [16], [15], [10].

Let a search problem be a three-tuple hS; c; Gi, where S is a set of states;

c : S � S 7! < is a positive cost function; and G � S is a set of goal states.

A problem instance is a problem together with an initial state [17]. Formal

representation of a relaxed model is given in the next de�nition.

De�nition 4. [17]. An abstracting transformation � : S 7! S 0 removes

certain details (e.g. constraints) from the original problem hS; c; Gi and

produces a relaxed problem or a relaxed model hS 0; c0; G0i i� � reduces all

costs and expands all the goals:

(8s; t 2 S) c0(�(s); �(t)) � c(s; t) (1)

(8g 2 G) �(g) 2 G0; (2)

where c(s; t) and c0(�(s); �(t)) are the costs of the shortest paths between

the corresponding nodes. Note that an abstracting transformation does not

 Transactions on Information and Communications Technologies vol 19, © 1997 WIT Press, www.witpress.com, ISSN 1743-3517

have to be a function, in contrast to [17]. We will utilize this in the Section

HEURISTICS below.

The next theorem shows that heuristics generated by optimizations over

relaxed models are monotone and thus admissible.

Theorem 3., [18], [16]. Assign every node n 2 S of the original problem a

heuristic h(n) that is the cost of the optimal solution of a relaxed problem

instance with starting node �(n) 2 S 0. Then h(n) is monotone 8n 2 S.

Proof [16] p. 116: Suppose h(n) and h(n0) are the heuristics assigned to

nodes n; n0 2 S, respectively. These heuristics are minimum costs from

the corresponding nodes �(n); �(n0) 2 S 0 to a goal �(g) 2 G0. Thus

h(n) � c0(�(n); �(n0))+h(n0), where c0(�(n); �(n0)) is the relaxed cost, since

otherwise c0(�(n); �(n0))+h(n0) would constitute the optimal cost from �(n).

Monotonicity follows from equation (4): c(n; n0) � c0(�(n); �(n0)) 2

To satisfy the conditions of De�nition 4, it su�ces that s and t are neigh-

boring nodes in the original problem S. Finally, it is easy to prove the

following theorem:

Theorem 4. If hS 00; c00; G00i is a relaxed model of hS 0; c0; G0i and hS 0; c0; G0i is

a relaxed model of hS; c; Gi, then hS 00; c00; G00i is a relaxed model of hS; c; Gi.

4 The Multiresolution Idea

4.1 \Basic" A�

-Version

In the following, n 2 Zd refers to the node whose successors, succ(n) 2 Zd,

A� is expanding. In short, let n0 = succ(n). In the \basic" A� -application,

all n0s form a subset of the immediate neighbors of n (there is an edge

connecting n and n0 in a search graph). The costs between the n and n0

are: c(n; n0) = 1 8n; n0. Figure 2 A illustrates a 2-dimensional search graph

without any obstacles. We will call it a basic search graph.

Figure 3 A shows a 2 DOF path planning example produced by the above

basic A� algorithm. In Fig. 3 A, gray areas are C -obstacles. Thin black

lines illustrate the tree of the path candidates expanded by A�. The path

from start to goal is the bold black line. The goal is at the right end of

the path. Small black dots are the expanded nodes (that are in CLOSED).

In Fig. 3 A, there are 2429 nodes in CLOSED and the same amount of

collision tests completed. The collision test is the most time consuming

single operation during the search.

We have found this method to produce long searching times for realistic

path planning tasks, hours or so, see e.g. [6].

 Transactions on Information and Communications Technologies vol 19, © 1997 WIT Press, www.witpress.com, ISSN 1743-3517

Figure 2: Fig. 2 A (left): Basic search graph, Fig. 2 B (right): Modi�ed

search graph

4.2 Modi�ed Search Graph

Figure 2 B shows another 2-dimensional graph. We will call it a modi�ed

search graph. It is similar to the one in Fig. 2 A except it has many

additional edges between the nodes. In Fig. 2 B, all the edges are present

only in the upmost line of the nodes, for clarity.

In Fig. 2 B, the nodes n = (n1; n2) 2 Z2 marked with black squares have

all their components, n1 and n2, divisible by 8. We say that their m-value is

8. The m-value is synonymous with the resolution of the node. The nodes

with white squares have all their components divisible by 4 and not by 8.

Their resolution is thus 4, i.e. m = 4. Further, all the components of the

nodes with white triangles are divisible by 2 and not by 8 and 4 (m = 2).

In general, we de�ne the resolution or the m-value of the node n as the

greatest common divisor of n1; ::; nd (n = (n1; ::; nd)).

The costs c(n; n0), are not measured by dist(n; n0) =j n � n0 j. We cal-

culated them as follows. Let the maximum allowed m -value or resolu-

tion be max. In the multiresolution algorithm, m will always be 2k (k =

0; 1; :::; maxk). For example, in Fig. 2 B, max = 8. If dist(n; n0) = max =

8, then c(n; n0) = 20 = 1, see the black square -nodes. If dist(n; n0) = 4,

then c(n; n0) = 21 = 2, see the white square -nodes. If dist(n; n0) = 2, then

c(n; n0) = 22 = 4, see the white triangle -nodes, etc. The formula for the

costs is: c(n; n0) = max=dist(n; n0).

Actually, the modi�ed search graph is a relaxed model of the graph that

the multiresolution A� expands. This is because all the edges between the

neighboring nodes are not present, or the corresponding costs are in�nite,

when the multiresolution algorithm is running. We will discuss this next.

 Transactions on Information and Communications Technologies vol 19, © 1997 WIT Press, www.witpress.com, ISSN 1743-3517

4.3 Multiresolution A�

In the multiresolution search, the decision whether a con�guration qj 2

Cfree will or will not be mapped onto the search node nj 2 Zd depends

on how close that con�guration is to the C-obstacles. See Figure 3 B and

compare it to Fig. 3 A.

When a con�guration q corresponding to the node n is far away from C -

obstacles, then its successors n0 are also far away from n. These distances are

measured by the number of free con�gurations between n and C-obstacle

surfaces, or n and n0. This means that only low cost edges of the graph

shown in Fig. 2 B are present.

Instead, if the node n is near C -obstacle surfaces, then its successors are

also near n. Now, high cost edges shown in Fig. 2 B are also present. So,

the modi�ed search graph, discussed earlier, is a relaxed model of the graph

the multiresolution search expands. This is because some edges present in

the modi�ed search graph are now missing.

Figure 3 B has been produced by the algorithm based on these princi-

ples. In Fig. 3 B, there are 339 nodes in CLOSED and 1737 collision tests

completed cf. Fig. 3 A (2429).

Why are we doing the multiresolution search ? On average, there are some

large obstacles in Cobst and large connected areas in Cfree, see e.g. Figures 1

and 3. We want to \delay" the expansion of the nodes near the C -obstacle

surfaces. This is done by assigning the corresponding edges higher costs.

It follows that if a path exists that goes further away from the C -obstacle

surfaces, then it may be found sooner. The second reason is that the collision

testing algorithms are usually slower when a node (the con�guration) is near

the C -obstacle surfaces.

The multiresolution A� always �nds a path from the start to the goal

if one exists on a basic search graph. We will prove this in SUCCESSOR

GENERATING RULES below.

However, the problem that the basic A� solves is di�erent from the one

the multiresolution A� solves. Thus, these algorithms can only be compared

with each other empirically.

4.4 Successor Generating Rules

There are two rules to implement the multiresolution search. Their purpose

is to produce the successors for the current node n, i.e. to expand n. Then

A� inserts n into CLOSED and the successors into OPEN. All the simulation

results have been produced by A� based on these rules.

There is one more notion associated with a node, in addition to its m-

value or resolution. Remember that m is the greatest common divisor of

n1; ::; nd where the node n = (n1; ::; nd). We de�ne a j-value of the node

 Transactions on Information and Communications Technologies vol 19, © 1997 WIT Press, www.witpress.com, ISSN 1743-3517

Figure 3: Fig. 3 A (left): Basic A�, Fig. 3 B (right): Multiresolution A�

as follows: j is the number of the components n1; ::; nd that are divisible

by m+ 1. Intuitively the j-value measures how close the node is to a node

whose resolution is m + 1.

The next pseudo code generates a subset of the successors n0 of n. Note

the following comments. n = (n1; n2; :::; nd) as before. Let k = 1; :::; d

represent the normalized direction vector (0; ::; 1; ::; 0), where the index of

the number \1" is k. k + 1 represents the vector, where the index of \1" is

k + 1, etc. The subroutine \PROBE(k, t, n)" returns t that is the number

of the free con�gurations (q 2 Cfree) between n and a C-obstacle along the

direction k. t = 0; :::; n:m, where n:m is the resolution of n. In the next

example, the maximum allowed resolution is 8. The j-value of the node n

is n:j.

The goal is at the origo, so its resolution is max = 8 The �rst subroutine

call is: \RULE-1(1, n, n'-set)".

RULE-1(k, n, n'-set):

(1) PROBE(k, t, n)

(2) IF (t = 0) THEN

n' = (n_1,..,n_i+1,..,n_d) for all i

orthogonal to k such that n' is in C_free;

(3) ELSE IF (t = 1) THEN n' = (n_1,..,n_k+1,..,n_d);

(4) ELSE IF (2 <= t < 4) THEN n' = (n_1,..,n_k+2,..,n_d);

(5) ELSE IF (4 <= t < 8) THEN n' = (n_1,..,n_k+4,..,n_d);

(6) END IF

(7) Determine n'.m;

(8) RULE-1(k+1, n, n'-set);

(9) Put all n' into the n'-set

 Transactions on Information and Communications Technologies vol 19, © 1997 WIT Press, www.witpress.com, ISSN 1743-3517

if they are not already there;

Line (2) esures that all the surface nodes of any big C-obstacle will be ex-

panded eventially. While k increases from 1 to d, there is a variable tmin
that records the minimum of the t-values. Now, let the maximum allowed

m-value or resolution be max. While RULE-1 decreases the resolutions of

the successor nodes, RULE-2 tries to increase them.

RULE-2(tmin, k, n, n
0 � set):

(10) IF (n.m = max) THEN

(11) n' = (n_1,..,n_i+max,..,n_d) for all i

such that n' is in C_free,

Set n'.m = max;

(12) ELSE

(13) IF (t_min = n.m) THEN

(14) n' = (n_1,..,n_i+n.m,..,n_d) for all i,

Determine n'.j and n'.m,

Accept n' if (n'.j > n.j);

(15) IF (t_min < n.m) THEN

(16) n' = (n_1,..,n_i+n.m,..,n_d) for all i <> k

such that n' is in C_free,

Determine n'.m;

(17) END IF

(18) Include all n' into the n'-set

if they are not already there;

Finally, the costs c(n0; n) are assigned in the same way as was done in MOD-

IFIED SEARCH GRAPH.

Theorem 5. The A� using the Rules 1 and 2 �nds a path to the goal if it

exists.

Proof: A path must always go through nodes whose successors either collide

with the C-obstacles or not. The algorithm �nds subpaths of the latter type

because the j-values of the nodes always increase, see line (14). This implies

that also the m-values of the nodes along such subpaths increase until the

maximum is reached. This maximum is also the resolution of the goal. Then

the search proceeds similarly to the basic A�, lines (10-11).

Lines (2-5) enables the paths to approach to the C-obstacle surfaces until

their nodes' successors collide. Line (2) guarantee that all these surface

nodes will be expanded eventially. So, the surface of any big C-obstacle will

be explored by the algorithm, if necessary. Lines (13-16) guarantee that the

paths can escape from the C-obstacle surfaces to the \free" space again. 2

 Transactions on Information and Communications Technologies vol 19, © 1997 WIT Press, www.witpress.com, ISSN 1743-3517

5 Heuristics

In this section, we will present admissible heuristics for the multiresolution

algorithm and use them in the experiments of the next section. First, we

will introduce a method of decomposing a d -dimensional problem into sev-

eral lower dimensional problems that together form a relaxed model of the

former one.

5.1 Constructing � Using Projections

Assume a problem hN; c;Gi whose nodes n 2 N and g 2 G are vectors in

Zd. We will construct a relaxed problem hN 0; c0; G0i as follows.

We de�ne an abstracting transformation � : N 7! N 0: �(�j(n)) = �j(n),

where n 2 N and �j(�) 2 N 0 (j = 0; 1; 2; :::; d). �j(�) is a projection. For

example, if d = 2 then �1((n1; n2)) = (n1; s2) and �2((n1; n2)) = (s1; n2) (s 2
Zd). Note that � is a function of �j but not necessarily a function of n. If

we accept the latter, then we can do the following.

Let us consider a 2-dimensional example. Let a node n = (n1; n2) 2 N ,

the start node s = (s1; s2) 2 N , and the goal node g = (g1; g2) 2 G. We

de�ne �1((n1; n2)) = (n1; s2) 2 N 0 and �2((n1; n2)) = (s1; n2) 2 N 0 for all

nodes in N . It follows that the start node s remains the same. In particular,

�1(g) = (g1; s2) 2 N 0 and �2(g) = (s1; g2) 2 N 0. The goal node stays where

it was, in other words, we de�ne an additional mapping G0 3 �0(g) = g,

where the argument g 2 G.

Next, we will de�ne the costs c0 between the nodes �j(n1) and �j(n2),

where n1 and n2 are now vectors inN (Z2). First, if the �rst coordinate of n1

and n2 is the same, say r, then c0(�1(n1); �1(n2)) = 0, since they have been

mapped onto the same node (r; s2). Second, if n1 = (s; v) and n2 = (t; w)

so that t 6= s, and the nodes are neighbors in N , then c0(�1(n1); �1(n2)) =

minfc(n1; n2)g. In this paper, also v = w.

Similarly, if the second coordinate of n1 and n2 is the same, say r, then

c0(�2(n1); �2(n2)) = 0, since they have been mapped onto the same node

(s1; r). If n1 = (v; s) and n2 = (w; t) so that t 6= s, and the nodes are

neighbors in N , then c0(�2(n1); �2(n2)) = minfc(n1; n2)g.

Finally, there remains the question of how to de�ne the costs c0

1
=

c0(�0(g); (g1; s2)) and c0

2
= c0(�0(g); (s1; g2)). Let us �nd the minimum

lengths of the routes from s to (g1; s2) and (s1; g2) by searching and call

them t2 and t1, respectively. Then we assign c0

1
= t1 and c0

2
= t2.

We have now constructed a transformation � that satis�es De�nition 4

and, as a result, we have a relaxed model hN 0; c0; G0i of hN; c;Gi. The inter-

pretation is that we have decomposed a two-dimensional problem hN; c;Gi

into two one-dimensional subproblems called together hN 0; c0; G0i. Solving

 Transactions on Information and Communications Technologies vol 19, © 1997 WIT Press, www.witpress.com, ISSN 1743-3517

them for a particular node n0 2 N 0 essentially needs two one-dimensional

searches and is computationally e�ective.

The above argument that we call here the projection principle can

easily be extended to higher dimensional search spaces.

We calculate the heuristic for hN; c;Giby by summing the path lengths

obtained by solving the subproblems. This is the same as solving the re-

laxed problem hN 0; c0; G0i. It follows from Theorem 3 that the heuristic is

monotone and thus admissible.

However, we must be sure that the optimum paths for the subproblems

can be found. This usually means that the problem hN; c;Gi already is a

relaxed model of the original problem, constructed in a proper way. We will

discuss this next.

5.2 Manhattan -maxres

This heuristic is like the Manhattan distance from a node n to the goal that

is most often used in conjunction with the basic A�.

Suppose the robot manipulator has d degrees-of-freedom (DOF). The

Manhattan distance between a node n and the goal node g is: kn�gkL1 =
Pd

i=1 j ni�gi j, where n; g 2 Zd, i.e., nis and gis are integers. We cannot use

the Manhattan distance directly because the distance between a node and

its successor depends on the node's resolution (the step size). Therefore we

must use the maximum resolution value, max, see MODIFIED SEARCH

GRAPH.

This is done as follows. First, every j ni � gi j -term is divided by max.

Second, if there is a non-zero reminder, then 1 is added to the result. For ex-

ample, ifmax = 4 and j ni�gi j= 10, then hi = 2+1 = 3. TheManhattan-

maxres -heuristic is the sum of these hi-values: h(n) =
Pd

i=1 hi. One can

argue that when max is high then h(n) may not be very e�ective because

the actual path lengths may be very long compared to it.

Using the Manhattan distance as a heuristics corresponds to solving a

relaxed problem of the base level problem hS; c; Gi: all the C-obstacles have

been ignored. Let us call it hS 0; c0; G0i that now equals hN; c;Gi discussed

above.

Calculating the Manhattan distance corresponds to solving d one-dimensional

subproblems called together hN 0; c0; G0i. They can be constructed from

hN; c;Gi by using the projection principle (in d dimensions). It follows

from Theorems 3 and 4 that the Manhattan distance heuristic is admissible.

5.3 Manhattan-multires

The Manhattan-maxres heuristic may be very uninformative if the maxi-

mum resolution max is high. To utilize more our multiresolution algorithm,

 Transactions on Information and Communications Technologies vol 19, © 1997 WIT Press, www.witpress.com, ISSN 1743-3517

we will construct a better heuristic. Consider a d-dimensional version of the

modi�ed search graph in Fig. 2 B. Remember, it is a relaxed model of the

graph that the multiresolution algorithm expands during the search. This

is since all the obstacles have been ignored. So, we call it hS 0; c0; G0i that

equals hN; c;Gi.

Next, we apply the projection principle to it and obtain d one-dimensional

subproblems called together hN 0; c0; G0i. We get the Manhattan-multires

heuristic by solving these separately and summing the optimum path lengths.

Again, we conclude from Theorems 3 and 4 that the heuristic is admissible.

However, solving each one-dimensional subproblem needs one-dimensional

searching, in contrast to the Manhattan-maxres heuristic. This searching

is done by the multiresolution algorithm. The algorithm always �nds the

optimum path because there are no obstacles involved. The Manhattan-

multires heuristic is always bigger or as big as the Manhattan-maxres for

every node and thus is better, see ON A� THEORY.

5.4 K-DOF -multires

Consider again the d-dimensional version of themodi�ed search graph in Fig.

2 B. We decompose it into two subspaces: the �rst one is k-dimensional (k �
d) and the second one is d� k-dimensional. The �rst subspace corresponds

to the robot's k �rst degrees-of-freedom (DOFs) and the second one the

d� k rest DOFs.

First, we ignore the obstacles in the second subspace and calculate the

Manhattan-multires heuristic in it, as was done previously. Let us call this

subspace Zd�k
2 . Suppose Zd 3 n = (nk; nd�k), where nd�k 2 Zd�k

2 . Then,

let h(nd�k) denote the Manhattan multires-heuristic for nd�k.

Second, we preserve the obstacles in the �rst subspace but ignore the

d� k last degrees of freedom of the robot operating there. If we have, e.g.

a usual 5- or 6-DOF industrial robot, then we ignore the 2 or 3 last DOFs,

respectively. As a result, we have a robot manipulator that is \amputated"

above the wrist.

Third, we simplify the \amputated" robot by modeling it only by a cou-

ple of polygons that are inside the volume covered by the original robot.

The original robot model usually consists of tens of polygons. This makes

the collision tests more e�ective. Let us call this simpli�ed robot model a

reduced robot.

Fourth, we do collision tests by using the reduced robot. Some con�gu-

rations that originally are in Cobst, by using the original robot, may now be

in Cfree. This is because the volume covered by the reduced robot is a sub-

set of the volume covered by the original robot. It means that some costs

between the neighboring nodes decrease from in�nity to a small number.

Also, since we only have a k-DOF robot, the optimum path can be found

 Transactions on Information and Communications Technologies vol 19, © 1997 WIT Press, www.witpress.com, ISSN 1743-3517

by searching in the �rst subspace. Let us call this subspace Zk
1
. Suppose

Zd 3 n = (nk; nd�k), where nk 2 Zk
1
. Then, let h(nk) denote the heuristic

for nk.

Obviously, the space Zk
1
�Zd�k

2 is a relaxed model of the modi�ed search

graph. The heuristic, called the k-DOF-multires is: h(n) = h(nk) +

h(nd�k). We can now apply the projection principle to show that this

heuristic is admissible.

Let Zk
1
� Zd�k

2 correspond to hN; c;Gi. To construct a relaxed model

hN 0; c0; G0i, we de�ne the projections �j(�) j = 0; 1; :::; d� k + 1 as follows.

For example, let k = 3 and d = 5. Let a node n = (n1; n2; :::; n5) 2 N , the

start node s = (s1; s2; :::; s5) 2 N and the goal node g = (g1; g2; :::; g5) 2 G.

First, G0 3 �0(g) = g, as before. Second, �1(n) = (n1; n2; n3; s4; s5) 2 N 0.

Third, �2(n) = (s1; s2; s3; n4; s5) 2 N 0 and �3(n) = (s1; s2; s3; s4; n5) 2 N 0.

�1(n) projects every n onto the 3-dimensional subspace Z3

1
. �2(n) and �3(n)

project every n onto one-dimensional subspaces that together form Z5�3

2 .

The costs are de�ned analogously to the projection principle example, see

HEURISTICS.

So, we have constructed hN 0; c0; G0i, a relaxed model of hN; c;Gi that

further is a relaxed model of the modi�ed search graph. It follows from

Theorems 3 and 4 that the k-DOF-multires -heuristic is admissible. The k-

DOF-multires heuristic is always bigger or as big as the Manhattan-multires

for every node and thus is better than it.

Actually, we calculate the h(n3) -part of the heuristic for every n by the

breadth-�rst search in Z3

1
starting from the \projected goal" (g1; g2; g3;�;�).

The search is done by our multiresolution algorithm in 3 dimensions. The

calculations were done o�-line i.e. before starting the multiresolution search

of the original problem. The overhead time for doing this is about 1.5 min-

utes (k = 3).

Utilizing the k �rst DOFs of the robot to guide the search process is not new

in robotics, see e.g. [14]. However, we have applied it in conjunction with

our multiresolution A� algorithm and shown that the resulting heuristic is

admissible.

6 Experimental Results

6.1 Test Cell

Figure 4 shows the robot test cell. It has been adapted from [11]. The actual

dimensions may di�er from those in the reference. There is a 5-DOF Adept

industrial robot with an L-shaped object attached to its gripper. The left

picture shows the starting con�guration and the right picture the goal.

The robot has to bend its wrist to get the L-shaped object out of the

wicket. Then it has to lift its linear axis and to rotate its �rst and second

 Transactions on Information and Communications Technologies vol 19, © 1997 WIT Press, www.witpress.com, ISSN 1743-3517

TIME COLL. CLOSED TIME COLL. CLOSED

2.1 1609 354960 50605 2.1 749 166572 27267

2.2 592 159350 8428 2.2 152 39418 2325

2.3 387 107327 5057 2.3 101 25689 1614

Table 1: Table 1 A (left): max = 8, Table 1 B (right): max = 16

link to avoid the middle block, see Figure 5.

6.2 Simulations

We record the program execution times, the number of the collision tests

and the number of the nodes in CLOSED. The times reported are CPU

times in seconds on a SGI Indigo 2 computer with 150 Mhz R4400 pro-

cessor and 96 megabytes of main memory. The collision test was done

using a software package called RAPID (Rapid and Accurate Polygon In-

terference Detection) [9]. The collision test is the most expensive single

operation in the search process. The discretizations for the Adept robot are

150x100x40x100x40 corresponding to about 2 cm maximum movement of

the robot (in W).

We have used four algorithm versions in the tests. The �rst one is the

basic A�. It has a heuristic that is similar to the 3-DOF-multires heuristic.

The basic A� was very slow: we had to stop the searching since the main

memory was full. This happened after about 1.5 hours, 970000 collision

tests, 590000 nodes in CLOSED.

The second version is the new multiresolution A� algorithm. It has three

variants corresponding to the three heuristics presented. The �rst one uses

the Manhattan-maxres heuristic (algorithm 2.1). The next one uses the

Manhattan-multires heuristic (algorithm 2.2). The third one uses the 3-

DOF-multires heuristic (algorithm 2.3). The o�-line calculation time for

the 3-DOF-multires heuristics was about 1.5 minutes. This is not included

in the results since these calculations can be utilized for many di�erent path

planning problems in the same robot cell.

Tables 1-2 show the simulation results. The �rst column of each table,

e.g. Table 1 A, shows the algorithm version, the second one the planning

times in seconds, the third one the number of the collision tests, the fourth

one the nodes in CLOSED.

7 Conclusions

Tables 1-4 show that the new multiresolution idea, embedded in the struc-

ture of A� algorithm, clearly outperformed the basic A� search that had to

 Transactions on Information and Communications Technologies vol 19, © 1997 WIT Press, www.witpress.com, ISSN 1743-3517

TIME COLL. CLOSED TIME COLL. CLOSED

2.1 1921 428770 48957 2.1 >2464 >500000 > 50000

2.2 353 95333 3466 2.2 487 118875 3929

2.3 333 92379 3264 2.3 441 115891 3754

Table 2: Table 2 A (left): max = 32, Table 2 B (right): max = 64

be stopped during the search.

The computational costs are comparable to the measured computing

times, and the number of the collision tests. The amount of the mem-

ory used, on the other hand, is comparable to the amount of the nodes in

CLOSED.

In this simulation example, the best searching times did not vary very

much as a function of the maximum m -value, max, the maximum allowed

resolution, see the last lines of Tables 1 A, 2 A, and 2 B. An exception is

Table 1 B (max = 16), which shows the shortest planning times of all.

The Manhattan-maxres -heuristic produced searching times that were

longer than with the two other heuristics: the Manhattan-multires and the

k-DOF-multires. The amounts of the memory used with the Manhattan-

maxres were also clearly biggest. We stopped the test run shown in Table

2 B, the second row, after 2464 seconds.

On the other hand, the 3-DOF -multires -heuristic was not much bet-

ter than the Manhattan-multires. Tables 2 A and 2 B show insigni�cant

di�erences, the reason of which is unclear at the moment.

On the whole, the searching times of the multiresolution algorithm seem

to be reasonably short for on-line path planning in low dimensional robot

con�guration spaces, d = 5.

7.1 Future Work

We are now studying whether the heuristics obtained by sampling the search

space with a coarse resolution can be shown to be admissible. We are also

developing more sophisticated rules for successor generation to further de-

crease the number of the successors of the nodes in CLOSED.

Acknowledgements:

This work was supported by the Academy of Finland.

References

[1] Michael Barbehenn and Seth Hutchinson. E�cient search and hierarchical motion

planning using dynamic single-source shortest paths trees. In IEEE International

Conference on Robotics and Automation, May 1993.

 Transactions on Information and Communications Technologies vol 19, © 1997 WIT Press, www.witpress.com, ISSN 1743-3517

Figure 4: Robot test cell

[2] Michael Barbehenn and Seth Hutchinson. E�cient search and hierarchical mo-

tion planning by dynamically maintaining single-source shortest paths trees. IEEE

Trans. Rob. Autom., 11(2):198{214, 1995.

[3] Jerome Barraquad and Jean-Claude Latombe. Robot motion planning: Distributed

representation approach. The International Journal of Robotic Research, 10(6):628{

649, 1991.

[4] Bernhard Clavina. Solving �ndpath by combination of goal-directed and randomized

search. In IEEE International Conference on Robotics and Automation, 1990.

[5] Christopher I. Conolly. Harmonic functions and collision probabilities. In IEEE

International Conference on Robotics and Automation, Vol.4 May 1994.

[6] Antti Autere et. al. Robot motion planning by enhanced a
� algorithm. In 27th

International Symposium on Industrial Robots (ISIR), October 6-8 1996.

[7] Tomas Lozano-Peres et. al. Spatial planning: A con�guration space approach. IEEE

Trans. Computers C-32(2):108-120, 1983.

[8] Tomas Lozano-Peres et. al. A simple motion planning algorithm for general robot

manipulators. In 5th AAAI, Philadelphia, 1986.

[9] S. Gottschalk et.al. Obbtree: A hierarchical structure for rapid interference detec-

tion. In Computer Graphics Proceedings, SIGGRAPH 96, August 4-9 1996.

[10] Othar Hansson, Andrew Mayer, and Marco Valtorta. A new result on the complexity

of heuristic estimates for the a� algorithm. Arti�cial Intelligence, 55:129{143, 1992.

[11] Y. K. Hwang and N. Ahuja. Gross motion planning - a survey. ACM Computing

Surveys, 24(3):219{284, 1992.

[12] Lydia Kavraki and Jean-Claude Latombe. Randomized preprocessing of con�gura-

tion space for path planning: articulated robots. In IEEE/RSJ/GI International

Conference on Intelligent Robotics and Systems (IROS'94), Vol.3 September 1994.

 Transactions on Information and Communications Technologies vol 19, © 1997 WIT Press, www.witpress.com, ISSN 1743-3517

Figure 5: The resulting path

 Transactions on Information and Communications Technologies vol 19, © 1997 WIT Press, www.witpress.com, ISSN 1743-3517

[13] Lydia Kavraki and Jean-Claude Latombe. Randomized preprosessing of con�gura-

tion space for fast path planning. In IEEE International Conference on Robotics

and Automation, Vol.3 May 1994.

[14] Jean-Claude Latombe. Robot Motion Planning. Kluwer Academic Publishers, 1991.

[15] Jack Mostow and Armand E. Prieditis. Discovering admissible heuristics by ab-

stracting and optimizing: A transformational approach. In IJCAI-89, pages 701{

707, 1989.

[16] Judea Pearl. Heuristics: Intelligent Search Strategies for Computer Problem Solving.

Addison-Wesley, 1984.

[17] Armand Prieditis and Robert Davis. Quantitatively relating abstractness to the

accuracy of admissible heuristics. Arti�cial Intelligence, 74:165{175, 1995.

[18] Marco Valtorta. A result on the computational complexity of heuristic estimates

for the a� algorithm. Information Sciences, 34:47{59, 1984.

[19] Charles W. Warren. Fast path planning using modi�ed a
� method. In IEEE Inter-

national Conference on Robotics and Automation, May 1993.

 Transactions on Information and Communications Technologies vol 19, © 1997 WIT Press, www.witpress.com, ISSN 1743-3517

