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A Multi-resolution Manifold Distance for Invariant

Image Similarity
Nuno Vasconcelos, Member, IEEE, Andrew Lippman, Member, IEEE

Abstract— Accounting for spatial image transformations is a
requirement for multimedia problems such as video classification
and retrieval, face/object recognition or the creation of image
mosaics from video sequences. We analyze a transformation
invariant metric recently proposed in the machine learning
literature to measure the distance between image manifolds -
the tangent distance (TD) - and show that it is closely related to
alignment techniques from the motion analysis literature. Expos-
ing these relationships results in benefits for the two domains.
On one hand, it allows leveraging on the knowledge acquired in
the alignment literature to build better classifiers. On the other,
it provides a new interpretation of alignment techniques as one
component of a decomposition that has interesting properties
for the classification of video. In particular, we embed the TD
into a multi-resolution framework that makes it significantly less
prone to local minima. The new metric - multi-resolution tangent
distance (MRTD) - can be easily combined with robust estimation
procedures, and exhibits significantly higher invariance to image
transformations than the TD and the Euclidean distance (ED).
For classification, this translates into significant improvements in
face recognition accuracy. For video characterization, it leads to
a decomposition of image dissimilarity into “differences due to
camera motion” plus “differences due to scene activity” that is
useful for classification. Experimental results on a movie database
indicate that the distance could be used as a basis for the
extraction of semantic primitives such as action and romance.

Index Terms— Image similarity, Manifold distance, Tangent
distance, Multi-resolution, Invariance, Affine transformations,
Robust estimators, Face recognition, Semantic movie classifica-
tion

I. INTRODUCTION

A
large collection of problems in multimedia involve either

classifying or aligning visual information. In particular,

classification and alignment are a substantial component of

the challenges posed by visual information retrieval and sum-

marization. Consider the problem of finding the most similar

match, in a given image database, to a query image provided

by a user. This is clearly a classification problem: each image

(or, if some form of labeling is available, each collection of

images under the same label) in the database defines a class,

and the goal is to find the class that best explains the query in

the sense of minimizing the probability of retrieval error [32].

Other components of the retrieval problem, e.g. face/object

detection and recognition [16], [19], [30], or extraction of

semantic descriptors such as “action” vs “romance” [34] or

“indoors” vs. “outdoors” [29], [31] are naturally formulated
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as classification problems as well. In these cases, a large

collection of images of the same “theme”, e.g. face or outdoors

images, are assembled and used to train a classifier off-line.

The classifier is then applied to the images of a particular

database, labeling them with semantic tags related to that

theme, e.g. “images containing people” or “images of the

wild”. Such labels extend the query language along semantic

dimensions that greatly increase the power and usefulness of

the retrieval system.

With respect to summarization, the standard solution is to

segment the movie into its composing shots and select one,

or a few, keyframes to represent each shot [2], [26], [37].

While this is a reasonable representation of the underlying

video content, important information can be lost by completely

eliminating the shot’s dynamic component. For example, it

may become impossible to distinguish two shots of a movie

where the same people perform different actions on the same

set. A better sense of the scene dynamics is achieved through

a mosaic [10], [14], [21] that presents the average of all the

images after alignment according to the dominant motion in

the scene (typically that of the camera). If the registration

is precise, static objects appear crisp while moving objects

create a smooth spatial trail determined by their motion. This is

generally sufficient to enable a coarse understanding of object

motion through the entire shot from the observation of the

static mosaic. Still better rendition of the scene dynamics can

be achieved with layering [21], [35], [36]. Here, each frame

is segmented into the composing objects, and an individual

mosaic created for each object. The combination of this

mosaic with a segmentation mask for each frame and the

object’s motion allows the perfect reconstruction of the objects

evolution in the scene.

For both retrieval and mosaic creation, significant perfor-

mance improvements are achievable by relying on precise

image alignment. In the case of retrieval, alignment is a means

to achieve invariance against spatial transformations such as

rotation or scaling. For mosaic creation, alignment is the

fundamental problem since without it the resulting mosaics or

layers will simply render an arbitrary average of the individual

frames and will not reflect the scene or its dynamics. In fact,

as we will show below, alignment and classification can be

seen as two sides of the same coin: while, on one hand, the

appropriate distance for classification is that which maximizes

alignment, on the other, classification requires very little else

once alignment is reached.

Despite these synergies, there are few unified treatments of

the two problems. In the vision literature, while a significant

body of work has been devoted to alignment (or recovery of
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motion parameters), considerably smaller attention has been

given to the question of how to explicitly account for it in

the context of classification [8]. Instead, invariance is usually

encoded in the features [12], [17], [22] or learned from exam-

ples [20], [23], [27]. Such solutions are not always satisfying:

invariant features can be quite arbitrary and it is usually

difficult to evaluate the impact on the classification error of

the information that is discarded, learning has combinatorial

complexity on the number of degrees of freedom of the

transformations to be learned [8]. Conversely, classification

has received tremendous attention in the learning literature,

where little attention has been given to the problem of visual

alignment.

One exception to this rule is the TD classifier introduced

in [24]. The key idea behind the TD is that, when subject to

spatial transformations, images span manifolds in high dimen-

sional Euclidean space, and an invariant metric should measure

the distance between those manifolds instead of the distance

between other properties of (or features extracted from) the

images themselves. The distance between two manifolds is

defined as the ED between their closest points. Because these

manifolds may have complex shapes, the resulting optimiza-

tion problem is usually a difficult one. It can, nevertheless, be

made tractable by considering the minimization of the distance

between the manifolds’ tangent spaces - the TD - instead of

that between the manifolds themselves. It turns out that the

tangent hyperplane to a manifold at the point corresponding

to a given image, is the first-oder Taylor series expansion of

the image intensity function. This expansion has been widely

used in the motion analysis literature (since [11]), and is well

known to hold only locally, i.e. when the ED between the

images to align is small.

Making the connection between the TD classifier and image

alignment techniques therefore explains one of the major

limitations of the former: while leading to impressive re-

sults for the problem of character recognition [25], it cannot

handle well natural images since these are usually subject

to a larger set of image transformations. In this paper, we

make the connection explicit by formulating recognition as

classification, alignment as regression, and showing that the

particular classification architecture on which the TD classifier

is based, known as nearest neighbors, actually embeds a

regression problem in the decision function used for classi-

fication. The TD classifier can, therefore, be seen as solving

the alignment problem for each evaluation of the decision

function. The new interpretation allows leveraging on the

knowledge acquired in the alignment literature to improve

the classification performance. In particular, we use the fact

that, by extending the range over which linear approximations

hold, multi-resolution decompositions significantly improve

the performance of image registration algorithms based on the

Taylor series approximation. In the context of classification,

this leads to a classifier that embeds the computation of

the TD on a multi-resolution framework [5]. We denote the

new metric by multi-resolution tangent distance (MRTD) and

evaluate its performance on the task of face recognition. These

experiments show that, when compared to the TD or ED,

the MRTD exhibits significantly higher invariance to image

transformations.

From the point of view of image alignment, the connection

to classification is important because it emphasizes the fact that

what cannot be explained by the alignment model, the MRTD,

is a significant piece of the information about two images. In

fact, it leads to a decomposition into “alignment parameters

plus what cannot be explained by alignment” which is, for

some alignment models, interesting by itself. We illustrate this

property by showing that when combined with simple models

of camera motion, such as affine transformations, the TD can

be interpreted as a metric of the activity in a video sequence,

an important feature for the semantic characterization of

a movie. Experiments on a movie database show that the

simple integration of the MRTD throughout a scene is a good

descriptor for the action content of that scene.

As a metric of image similarity, the MRTD is shown to

have several appealing properties: 1) maintains the general

purpose nature of the TD; 2) can be easily combined with

robust estimation procedures, exhibiting invariance to moder-

ate non-linear image variations (such as those caused by slight

variations in shape or occlusions); 3) is amenable to computa-

tionally efficient screening techniques where bad matches are

discarded at low resolutions; 4) performs well on recognition

tasks; and 5) enables the design of a single architecture

for problems as diverse as face recognition, semantic video

classification, and mosaic creation.

II. CLASSIFICATION

Consider a classification problem where a query pattern � is

to be classified into one of � classes. Both � and � can vary

depending on the classification domain. For example, in image

retrieval � is the number of image classes in the database,

while � can be a feature (e.g. a color histogram) or collection

of features (e.g. a collection of wavelet coefficients) extracted

from a query image. On the other hand, for face recognition

� � � (“face” and “non-face” classes) and � an image

patch. Defining a class-indicator variable � � ��� � � � � �� and

denoting by � the random variable according to which the

observed patterns are drawn1, it is well know that, when the

goal is minimize the probability of classification error, the

optimal solution is provided by the Bayes classifier [6], [7]

����� � �����	
�

�� �������� (1)

Furthermore, the probability of error is lower bounded by the

Bayes error

�� � ����
��	
�

�� �������℄� (2)

where �� means expectation with respect to �����.
The Bayes classifier is not always easy to implement in

practice. A simpler and very popular alternative is the nearest

neighbors classifier. Denoting by �� � ������ � � � � �����
� the

1We use upper case for random variables and lower case for particular
values, e.g. � � � denotes that the random variable � takes the value �.
When the meaning is clear from context, we usually omit one of the symbols.
For example, ���� ����� is commonly used instead of ���� �� � ��� � ��.
Boldface type is used to represent vectors.
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training sample for the ��� class, it corresponds to the decision

function

���� � �����
�
���

�
���� ���� ��� (3)

where � is a metric, typically the ED. A common extension

is the 	-nearest neighbors classifier where the minimization

above is replaced by a majority vote among the 	 training

points that are closest to �. In addition to its simplicity,

kNN rules are attractive because it can be shown that their

probability of error is upper bounded by [6]

���� � ���� �
�
��
	
��� (4)

where �� is the Bayes error. Hence, even for 	 � �, there is

a guarantee that the probability of error will be at most twice

the Bayes error. Even though all that is presented in this work

is valid for 	-nearest neighbor classifiers, for simplicity we

concentrate on the nearest neighbor case.

III. REGRESSION

Regression is a statistical technique for modeling relations

between variables [15]. The most popular regression model is

� � ����� � �� (5)

where � is a predictor variable, � a response variable, and � a

random variable that accounts for the noise associated with the

observation of the response variable. The function �� belongs

to a family of functions parameterized by the parameter vector

�. Other regression models are possible, e.g. models that allow

noise not only in the observation of the response but also on

the predictor itself, but we will not consider them here.

Given a probability density for the noise ����� it is straight-

forward to see, from (5), that

��������� � ����� ������� (6)

The goal is, for a given training sequence of observed pairs

��� ���, to find the parameter vector that maximizes the like-

lihood of the observations under this model

�� � �����	
�

����� ������� (7)

where � and � are the vectors with entries �� and �, respec-

tively. A common assumption is that the noise is a a zero-mean

stochastic process from the exponential family

����� � ������� (8)

where � is a normalizing constant. In this case, (7) reduces

to

�� � �����
�
���� ������ (9)

which can usually be rewritten as

�� � �����
�
���� ������� (10)

where � is a metric. For example, when the noise samples

are independently distributed and Gaussian, � is the ED

���� ������ � ���� �������� �
�
�

��� � 
�����℄��
�� (11)

The problem of image alignment is naturally formulated as

a regression problem. Consider two image patches with pixel

intensities ����� and �����, where �� is the 2D vector of

image coordinates of pixel �, and the manifold spanned by all

the possible spatial transformations

�� 
�����℄ � ����������� (12)

that a pattern may be subject to, where � is a function

(typically) linear on �, but not necessarily linear on � �. Letting

�� � �����, � � �����, and ����� � ��
�����℄, the

optimal parameter vector is

�� � �����
�
������� ��
����℄�� (13)

IV. THE TANGENT DISTANCE

Comparing (10) with (3) it can be seen that, for each

� and �, the standard nearest neighbor classifier solves a

regression problem. The particular aspect of this regression

problem is that the family of functions ����� is restricted to

the identity map, leading to the trivial solution ������ � �.

The TD classifier relaxes this constraint by allowing a generic

regression problem inside the decision function (3).

The main idea is that the distances in which the classifica-

tion is based should be those between the manifolds spanned

by the query pattern and that in the training set, not the

distances between the patterns themselves. This is illustrated

in Figure 1.

yM

X

z
X

ED

MD

y

z

M

Fig. 1. The Euclidean distance (ED) between patterns � and �, and manifold
distance (MD) between the corresponding manifolds �� and ��.

Given two patterns ���� and ����, the distance between

the associated manifolds - manifold distance (MD) - is

	 ����� � ��
���

����
����℄� ��
����℄���� (14)

where ����� is the Euclidean norm (11). For simplicity, we

consider a version of the distance in which only one of the

patterns is subject to a transformation, i.e.

	 ����� � ��
�
������� ��
����℄���� (15)
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but all results can be extended to the two-sided distance.

Notice that this is exactly the image alignment equation of (13)

(when � is the Euclidean norm).

Since the pixel intensity ���� is usually a highly nonlinear

function of the image coordinates, there is, in general, no

closed form solution for (15). A well known trick from the

alignment literature is to linearize ��
����℄ through a first

order Taylor series expansion [3], [11]. Using the fact that


���
����℄ � 
����������

� 
�������
����������� (16)

where 
��� is the gradient of �� with respect to �, ��
����℄
can, for small �, be approximated by a first order Taylor

expansion around the identity transformation

��
����℄ � ���� � ��� ��	
�������
������

As shown in [24], this is equivalent to approximating the

manifold by a tangent hyper-plane, and leads to the TD.

Substituting this expression in (15), setting the gradient with

respect to � to zero, and solving for � leads to

� �

��
�


�������
�����
	
�����
	

�������

���

�
�
�

����
�������
����� � �� (17)

where ���� � ���� �����. Given this optimal �, the TD

between the two patterns is computed with (12) and (15).

The main limitation of this formulation is that, since it is a

first-order approximation, it is only valid for a small range

of variation in the parameter vector �. This is illustrated in

Figure 2.

z

X

z

M

x

x

x
x

x x x

x

Fig. 2. Outside a narrow range of transformations, points close to the
manifold�� can have large TD (shown as a dashed line). Notice that for the
points on the right, the distance between the TD and the MD is much larger
than that for those on the left. I.e. the error depends on how the manifold
deviates from a plane.

A. Manifold distance via Newton’s method

As an alternative to linearization, the minimization of the

MD (15) can be performed through iterative procedures such

as Newton’s method

�
�� � �
 � �
�
�

�	 �����
���
�	 ����� � (18)

where 
�	 and 
�
�	 are, respectively, the gradient and

Hessian of the cost function (15) with respect to the parameter

�,


�	 � �
�
�


����� ��
����℄℄
���
����℄


�
�	 � �

�
�

��
���
����℄
	
���
����℄ �

� 
���������℄
�
���
����℄

�
and �
 the optimal solution at iteration �.

Disregarding second-order order terms, choosing � � � �

and � � �, using (16), and substituting in (18) leads to (17).

I.e. the TD corresponds to a single iteration of the minimiza-

tion of the MD by a simplified version of Newton’s method,

where second-order derivatives are disregarded. This reduces

the rate of convergence of Newton’s method, and a single

iteration may not be enough to achieve the local minimum,

even for simple functions. It is, therefore, possible to achieve

improvement if iteration (18) is repeated until convergence.

V. EXTENSIONS TO THE TD

The iterative minimization of (18) suffers from two major

drawbacks [4]: 1) it may require a significant number of

iterations for convergence, and 2) it can easily get trapped in

local minima. Both these limitations can be at least partially

avoided by embedding the computation of the MD in a multi-

resolution framework, leading to the multi-resolution manifold

distance (MRMD).

A. The multi-resolution manifold distance

To compute the MRMD, the patterns to classify are first

subject to a multi-resolution decomposition (such as a Gaus-

sian pyramid [5]), and the MD is then iteratively computed for

each layer, using the estimate obtained from the layer above

as a starting point,

�
��� � �
� � �

��
�


����
�

����℄
	

����� 
����℄

���

�
�
�

�

� ���
����

�

����℄� (19)

where, �

� ��� � ���� � ���

�

����℄. If only one iteration

is allowed at each image resolution, the MRMD becomes the

multi-resolution extension of the TD, i.e. the multi-resolution

tangent distance (MRTD).

To illustrate the benefits of minimization over different

scales consider the signal

��� �

��
���

�������

consisting of a sum of sinusoids at frequencies �� which

are multiples of a fundamental frequency �� � 	��� 	 �
�� � � � ��, and the manifold generated by all its possible

translations

� ��� �� � ��� �� �

��
���

������� ����
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For a given translation �, the ED between the original and

translated functions is

���� �

� �
��
���

�������� ������� ����

��
��

and the corresponding manifold distance

	 � ��


�����

Figure 3 depicts the multi-resolution Gaussian decomposi-

tion of ���, together with the ED between ��� and � ��� ��
as a function of the translation �. Notice that as the resolu-

tion increases, the distance function has more local minima,

indicating that the manifold is “bumpier”. Therefore, even

when the patterns to align are on the manifold, the range

of translations with guaranteed convergence to the global

minimum (at � � �) decreases inversely to the resolution. I.e.,

at higher resolutions, a better initial estimate is necessary to

obtain the same performance from the minimization algorithm.

Notice also that, since the function to minimize is very

smooth at the lowest resolutions, the minimization will require

few iterations at these resolutions if a procedure such as New-

ton’s method is employed. Furthermore, since the minimum

at one resolution is a good guess for the minimum at the

next resolution, the computational effort required to reach that

minimum will also be small. Finally, since a minimum at low

resolutions is based on coarse, or global, information about

the function or patterns to be classified, it is likely to be

the global minimum of at least a significant region of the

parameter space, if not the true global minimum.

B. Affine-invariant classification

There are many linear transformations that can be used

in (12). In this work, we consider manifolds generated by

affine transformations

������ �

�
� � � � � �
� � � � � �

�
� � ������ (20)

where � � ����� ���� ���� ���� ���� ����
	 is the vector of

parameters which characterize the transformation. Taking the

gradient of (20) with respect to �, 
������� � ����	 ,

using (16), and substituting in (19),

�
��� � �
� �

�

��
�

����	
��
����
	

��
��������	

���

�
�
�

���������	
��
����� (21)

where � ���� � �������
� ��, and ����� � ���� �� ����.
For a given level � of the multi-resolution decomposition, the

iterative process of (21) can be summarized as follows.

1) Compute � ���� by warping the pattern to classify ����
according to the best current estimate of p, and compute

its spatial gradient 
��
����.

2) Update the estimate of �� according to (21).

3) Stop if convergence, otherwise go to 1.
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Fig. 3. Left: Five scales of the multi-resolution decomposition of ����. Right:
Euclidean distance vs. translation for each scale. Resolution decreases from
top to bottom.

The parameter � must be found through a line search [4]

in order to guarantee a decrease of the cost function at each

iteration. The simplest way to achieve this is to consider a

sequence �� � �����, with �� � �. These �� are successively

tried in step 2, until the ED between ���� and ���� warped

according to �
��� is smaller than that obtained with �
� . In

practice, it suffices to try two or three values of � since

a very small � indicates convergence. Once the final � � is

obtained, it is passed to the multi-resolution level below (by

doubling the translation parameters), where it is used as initial

estimate. Since the initial guess provided by the higher level

of the pyramid is, in general, close to the actual minimum,

the iterative procedure of steps 1-3 usually converges within

a small number of iterations. Given the values of � � that

minimize the MD between a pattern to classify and a set of

prototypes in the database, a K-nearest neighbor classifier is

used to find the pattern’s class.

C. Robust classifiers

One issue of importance for classification systems is that of

robustness to outliers, i.e errors that occur with low probability,
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but which can have large magnitude. Examples are errors due

to variation of facial features (e.g. faces shot with or without

glasses) in face recognition, errors due to undesired blobs

of ink or uneven line thickness in character recognition, or

errors due to partial occlusions (such as a hand in front of a

face) or partially missing patterns (such as an undoted i). It

is well known that a few (maybe even one) outliers of high

leverage are sufficient to throw mean squared error estimators

completely off-track [18].

Several robust estimators have been proposed in the statis-

tics literature to avoid this problem. In this work we consider

M-estimators [9] which can be very easily incorporated in the

MD classification framework. M-estimators are an extension

of least squares estimators where the square function is sub-

stituted by a functional ���� which weighs large errors less

heavily. The robust-estimator version of the MD then becomes

to minimize the cost function

	 ����� � ��
�

�
�

������� ��
����℄�� (22)

and it is straightforward to show that the “robust” equivalent

to (21) is

�
��� � �
� �

�

��
�

���
����℄����	
��
����
	

��
��������	

���

�
��

�

��
����℄����	
��
����

�
� (23)

where ���� � ���� � � ���� and ����� and ������ are,

respectively, the first and second derivatives of the function

���� with respect to its argument.

VI. EXPERIMENTAL EVALUATION

In this section, we report on experiments carried out to

evaluate the performance of the MRTD in various tasks.

The first set of experiments was designed to illustrate the

invariance of the TD to affine transformations, and compare

the range of invariance attained with the different extensions.

The second set demonstrates the benefits of the MRTD for

a classification task: face recognition. Finally, the third set

illustrates how the intuitive interpretation of the TD as “all that

cannot be explained by affine transformations” can be useful

for important multimedia applications such as the semantic

classification of movies.

A. Affine invariance of the TD

Starting from a single view of a reference image, we created

an artificial dataset composed by 441 affine transformations

of it. These transformations consisted of combinations of all

rotations in the range from ��� to �� degrees with increments

of 3 degrees, with all scaling transformations in the range from

��� to ���� with increments of ��. The images associated

with the extremes of the scaling/rotation space are represented

on the top portion of Figure 4.

On the bottom of Figure 4 are the distance surfaces obtained

by measuring the distance associated with several metrics at

Scaling

R
o

ta
ti

o
n

0

−30

30

10.7 1.3

−30
−20

−10
0

10
20

30

0.7

0.8

0.9

1

1.1

1.2

0

500

1000

1500

2000

2500

3000

Rotation angleScale

D
is

ta
n

c
e

Fig. 4. Invariance of the tangent distance. In the bottom picture, the surfaces
shown correspond to ED, TD, MD through Newton’s method, MRTD, and
MRMD. This ordering corresponds to that of the nesting of the surfaces, i.e.
the ED is the cup-shaped surface in the center, while the MRMD is the flat
surface which is approximately zero everywhere.

each of the points in the scaling/rotation space. Five metrics

were considered in this experiment: ED, the TD, the MD

computed through Newton’s method, the MRMD, and the

MRTD. While the TD exhibits some invariance to rotation

and scaling, this invariance is restricted to a small range of the

parameter space and performance only slightly better than the

obtained with the ED. The performance of the MD computed

through Newton’s method is dramatically superior, but still

inferior to those achieved with the MRTD (which is very

close to zero over the entire parameter space considered in this

experiment), and the MRMD. The performance of the MRTD

is in fact impressive given that it involves a computational

increase of less than 50% with respect to the TD, while each

iteration of Newton’s method requires an increase of 100%,

and several iterations are typically necessary to attain the

minimum MD.

B. Face recognition

To evaluate the performance of the MRTD on a clas-

sification task, we conducted a series of face recognition

experiments, using the Olivetti Research Laboratories (ORL)

face database. This database is composed by 400 images of 40

subjects, 10 images per subject, and contains some variation

in pose, illumination, expressions and facial features. On the

other hand it exhibits almost no variation in terms of scaling,

or in-plane head rotation, and assumes no translation, i.e. all

faces are centered at approximately the same position.
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Fig. 5. A subset of the ORL face database.

For these reasons, the ORL database is a suitable candi-

date for the controlled experiments required to quantify the

impact on the recognition accuracy of the different degrees

of invariance achieved by different extensions of the TD. The

idea is to start from the original set of faces in the canonical

pose (a small subset of which is presented in Figure 5) and

create several replicas by applying different degrees of trans-

lation, scaling and rotation. The dependence of recognition

accuracy on these variables can then be quantified by simply

measuring the recognition rates on each dataset. We created

three artificial datasets by applying to each image a random

transformation drawn from a multivariate normal distribution

with zero average displacement and rotation, unitary average

scaling and the standard deviations presented in Table I. They

are ordered by increasing variability, i.e. degree of difficulty

that they pose to the recognition task. Figure 6 presents the

samples corresponding to that of Figure 5 for each of the three

new datasets.

Dataset �� �� �� ��
D1 4 3 5 1
D2 4 3 10 5
D3 4 3 20 10

TABLE I

STANDARD DEVIATION OF THE MULTIVARIATE NORMAL DENSITIES FROM

WHICH THE IMAGE TRANSFORMATIONS WERE DRAWN. �� , AND �� REFER

TO TRANSLATION,�� TO DEGREES OF ROTATION, AND �� TO PERCENT

SCALING.

We next designed three experiments with increasing degree

of difficulty. In the first, we selected the first view of each

subject as the test set, using the remaining nine views as

training data. In the second, the first five faces were used as test

data while the remaining five were used for training. Finally,

in the third experiment, we reverted the roles of the datasets

used in the first. The recognition accuracy for each of these

experiments and each of the datasets is reported on Table II

for the ED, the TD, the MRTD, and a robust version of this

distance (RMRTD) with

���� �

� �
��

�� if� �  �
	 �

� � if� !  ��

where � is a threshold (set to 2 in our experiments), and  a

robust version of the error standard deviation defined as  =

Fig. 6. Transformed versions of the sample of figure 5, according to the
parameters of Table I. Top to bottom: datasets D1, D2, and D3.

median ��� - median ����� / 0.6745. Notice that since for points

such that � !  � both the first and second derivatives of the

robust functional are zero, this estimator simply disregards

outliers. All results were obtained with a simple nearest

neighbor classifier to maintain consistency across experiments.

Bar graphs corresponding to these tables are plotted in

Figure 7. It is clear that the multi-resolution distances provide

a significantly higher invariance to linear transformations than

the ED or the TD, increasing the recognition accuracy by as

much as 37.8% in the hardest dataset (D3). In fact, for the

easier tasks of experiments one and two, the performance of

the multi-resolution classifiers is almost constant and accuracy

always above 90%. It is only for the harder experiment that

their invariance starts to break down. Even in this case the

degradation is graceful - recognition accuracy only drops

below 75% for considerable rotation and scaling (dataset D3).

On the other hand, the ED and the single resolution TD break

down even for the easier tasks, and fail dramatically when

the hardest task is performed on the more difficult datasets.

Among the multi-resolution distances the best performance is
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Train/Test Distance D0 D1 D2 D3

ED 97.5 82.5 75.0 60.0
9/1 TD 97.5 92.5 85.0 70.0

(exp. 1) MRTD 100.0 100.0 100.0 97.5
RMRTD 100.0 100.0 100.0 97.5

ED 92.0 81.5 82.5 82.5
5/5 TD 92.5 88.0 85.5 84.0

(exp. 2) MRTD 95.0 95.0 96.0 92.5
RMRTD 95.5 95.5 95.0 92.0

ED 71.1 39.7 35.3 21.7
1/9 TD 73.6 49.2 40.0 24.7

(exp. 3) MRTD 75.0 75.6 73.0 59.7
RMRTD 79.1 78.6 75.5 62.5

TABLE II

CLASSIFICATION ACCURACY (PERCENTAGE OF FACES CORRECTLY

RECOGNIZED) FOR THE THREE EXPERIMENTS DISCUSSED IN THE TEXT.

D0 IS THE DATASET OBTAINED FROM THE ORL DATABASE, WHILE D1, D2

AND D3 WERE OBTAINED THROUGH THE TRANSFORMATIONS OF TABLE I.

achieved by the RMRTD. A significant gain over the MRTD is,

however, only observed in the hardest problem (D3) indicating

that the MRTD is a sufficient solution whenever various

examples of the faces to recognize are available for training.

C. Detailed analysis

While the previous results demonstrate that significant gains

can be achieved by replacing the TD classifier by its multi-

resolution counterpart, a thorough understanding of the prop-

erties of the MRTD requires additional experiments. As seen

in section V the MRTD classifier propagates the parameter

estimates obtained at a given resolution to obtain initial

estimates at the next. Errors can therefore occur whenever

the low-resolution estimates are of poor quality or whenever

a minimum at a given (low) resolution occurs on a region

of parameter space where there are no minima at the higher

resolutions. It follows that it is possible for a test pattern to

be correctly classified under the TD and erroneously classified

under the MRTD. Quantifying how frequently such errors can

occur is an important requisite for a complete understanding

of the MRTD classifier.

For this, we start by noticing that the error rate achievable

by any classifier is strongly dependent on how well the

underlying representation separates the various image classes

in the database. Ideally, all patterns from the same class should

be confined to a region that does not overlap with the region

containing the patterns from all other classes. Or, in other

words, the distances between the patterns in the same class

(to which we refer as in-class distances) should be small,

while those between patterns in different classes (out-of-class

distances) should be large. An interesting way to compare two

classifiers is therefore to measure the ratios between their in-

class and out-of-class distances.

Figure 8 presents a characterization of these ratios, for the

TD and MRTD2, under the conditions of experiment three and

dataset D2. We measured all distances between test and train-

ing views and, for each test/train pair, the ratio ���	�"�	�

2Qualitatively similar results were observed on identical experiments com-
paring the RMRTD and TD classifiers whose analysis is omitted for brevity.
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Fig. 7. Recognition accuracy. From top to bottom: results from the first,
second, and third experiments. Datasets are ordered by degree of variability:
D0 is the ORL database D3 is subject to the affine transformations of greater
amplitude.

was computed. The figure presents the cumulative distribution

function of this ratio for both the in-class and out-of-class

distances, supporting two main conclusions. First, the MRTD

is smaller than the TD with very high probability, in both in

and out-of-class cases. However, the decrease is significantly

more drastic in-class than out-of-class, e.g. 1) while ��� of

the in-class ratios are smaller than ��� there are no out-of-class

ratios of such magnitude, and 2) while the MRTD is smaller

than half of the TD with probability ��� for in-class distances,

the corresponding probability for out-of-class distances is only

���. Second, while the MRTD can lead to an increase of the

in-class distances, the probability of such an event is very

small (about ����). Together, these observations show that the

MRTD separates the different classes significantly better than
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the TD.

Since better class separation usually translates into a smaller

number of classification errors, the results of this experiment

suggest that the probability of misclassification by the MRTD

when the TD classifier is correct should be quite small. To

confirm this conjecture, we collected statistics for the vari-

ous types of MRTD/TD error combinations. These statistics,

presented on table III, confirm that the percentage of MRTD

errors which are not also TD errors is indeed quite small (��).

On the contrary, about ��� of the TD errors are not MRTD

errors.

TD errors 228
TD errors which are not MRTD errors 101
MRTD errors 123
MRTD errors which are not TD errors 6

TABLE III

ERROR STATISTICS FOR THE TD AND MRTD CLASSIFIERS.

Figure 9 presents the � test patterns for which the TD clas-

sifier was correct and the MRTD counterpart in error. Analysis

of the images reveals a common theme for these errors, which

can be summarized by the following two conditions: 1) the

mapping between the test pattern and the database pattern

of the same class3 cannot be captured by the affine model

(e.g. due to out-of-plane rotation or changes in lighting) and

2) the (two-dimensional) pose of the database pattern of the

correct class is quite close to that of the test pattern. While

the first condition is responsible for the failure of the MRTD,

the second enables the success of the TD. The fact is that

whenever the transformation between the patterns deviates

strongly from the affine model neither the TD or the MRTD

should work. In these cases the reduced range of the TD

prevents it from aligning out-of-class patterns that may belong

or be very close to the manifold spanned by the test view but

whose distance along the manifold is large. Consequently it

will settle for patterns that are further away from the manifold,

3Remember that in this experiment there is only one view of each face in
the training set.

but whose manifold projection is close to the test pattern.

While, typically, these matches are errors there is some (small)

probability that they will belong to the right class. This,

however, is the result of pure chance rather than any principled

advantage of the TD classifier.

D. Robustness to deviations from the affine model

The artificially affine-transformed datasets of the previous

section allow a precise quantification of the range of transfor-

mations over which the extensions of the TD hold. However,

practical recognition usually involves image transformations

that cannot be captured by a pure affine model, e.g. including

some amount of illumination variation, out-of-plane rotation,

or background clutter. For this reason, it is important to

complement the evaluation above with a set of experiments

performed on a database where the transformations are not

imposed artificially. One example is the Media Laboratory’s

face database originally acquired to test the eigenfaces tech-

nique [30]. This database contains images of �� subjects that

vary in pose (head orientation), scale (camera zoom), and

lighting, in a total of �� images per subject (see Figure 10).

It reflects a practical recognition scenario in the sense that no

effort was made to keep the subjects from moving in between

pictures, to precisely segment the faces from the background,

or to precisely calibrate the variations in lighting, pose, etc.

To analyze how changes in the various imaging variables

affect recognition accuracy we created two databases: a neu-

tral database that contained one face from each subject

in neutral position (upright face, head-on illumination, and

medium scale) and a non-neutral database containing the

remaining faces. We then considered each face in the non-

neutral database as a query and ordered all faces in the neutral

database according to their similarity to this query, measuring

the average hit rate �� for the top 	 matches, with 	 variable.

The average hit rate is defined as

�� �
�

�

��
���

�� � hits in top 	 matches of ��� query�
where a hit is an image from the query subject and �� is �
when � is true and � otherwise. This experiment simulates a

common application scenario where a database is assembled

under controlled conditions (e.g. a database of mugshots of

convicted felons, or a photo gallery of a movie star) and is

latter used for recognition in an uncontrolled scenario (e.g.

airport surveillance or the detection of the scenes where the

actor appears in a given movie).

Figure 11 a) presents the average hit rate for the ED, TD,

MRTD, and RMRTD classifiers. It is clear that while the TD

classifier is not much more accurate than the ED counterpart, a

significant improvement can be achieved by using the MRTD

or RMRTD. In fact the increase in hit rate of the two multi-

resolution-resolution classifiers, relative to that based on the

TD, is always larger than at least ��� (in absolute terms).

When compared to the results from the previous sections, the

only surprising aspect of the plots in the figure is the somewhat

disappointing performance of the RMRTD, which slightly

under-performs the MRTD. To explain this observation, as
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query TD MRTD query TD MRTD query TD MRTD

Fig. 9. Test patterns for which the TD classifier is correct and the MRTD classifier in error. Query is the text pattern, TD the best match under the TD, and
MRTD the best match under the MRTD.

Fig. 10. The set of images from a subject in the MIT Media Laboratory’s face database.

well as gaining some insight on the precise dependence of

the MRTD on the imaging conditions, we performed a second

set of experiments.

For this second set the goal was to analyze the impact of

each type of transformation on the recognition accuracy. To

fulfill this goal we considered each face in neutral database as

a query and created five subsets of the non-neutral database,

containing the following images:

� rotation database - all faces at the scale of the query,

under the same illumination, but with different head

orientation;

� scale database - all faces with the pose of the query,

under the same illumination, but at different scale;

� scale and rotation database - all faces under the same

illumination, but with different head orientation and scale;

� illumination database - all faces with the same head ori-

entation and scale as the query, but different illumination;

� scale, rotation, and illumination- all faces with different

head orientation, scale, and illumination than those of the

query.

We then ordered all faces in each of these databases according

to their similarity to each query. Figure 11 b)-f) presents plots

of the resulting average hit rate for the ED, TD, MRTD, and

RMRTD classifiers in each database.

Three interesting conclusions can be taken from the figure.

The first is that both the MRTD and RMRTD perform better

than the TD or ED in all but one case (the illumination

database). In fact, as long as the illumination is the same

for the query and database images the former outperform the

latter by a significant amount. For example, the hit ratio for

	 � � (percent of the queries for which the first match is

correct) of the MRTD or RMRTD is always more than twice

that of the ED or TD. While undesirable, the degradation of

recognition accuracy in the presence of illumination variability

was expected, since illumination changes are beyond the scope

of the affine model. Notice, nevertheless, that the MRTD and

RMRTD do exhibit some robustness to these changes, for

which retrieval accuracy is actually better than that achieved

under rotation. What is surprising is the high robustness of the

ED and TD under variable illumination conditions.

A second interesting aspect is the very different response

of the MRTD and RMRTD to variations in scale and head

orientation. While both perform very well under scaling trans-

formations (the RMRTD actually achieves a perfect score

of �� � � for all 	 considered) the recognition accuracy

degrades considerably under rotation. This is, once again, a

consequence of a significant deviation from the affine model.

While under scaling both the face and the background are

subject to the same affine transformation, for rotation only the

subject’s head is tilted (the background remains the same).

Therefore, a single affine transformation cannot map the query

into the database image. Nevertheless, while the performance

of the MRTD and RMRTD degrades in the presence of head

tilt, the gain over the TD or ED is still significant.

A third interesting observation is that while the performance

of the RMRTD is equivalent to or better than that of the

MRTD when the mapping between query and prototype is

approximately affine, that is not the case in the presence of

illumination variation. In fact, Figure 11 f) shows that the

MRTD actually performs best when illumination variation,

scaling, and rotation are all present. This confirms the results

of Figure 11 a) and supports the following conclusion: while a

robust estimator is advantageous when image transformations

comply with the model used to the derive the TD (affine in
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Fig. 11. Average hit rate as a function of the number of matches for the ED, TD, MRTD, and RMRTD classifiers on the various databases discussed in the
text. While in a) the images in the non-neutral database were used as queries, in the remaining cases the queries came from the neutral database. Retrieved
images came from: a) neutral, b) rotation, c) scaling, d) scale and rotation, e) illumination, and f) scale, rotation, and illumination database.
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these experiments) it can, on the other hand, perform worse

when this is not the case. Such a conclusion is consistent with

what is known about robust estimators, namely that there is

always a breakdown point in terms of the number of outliers

above which they are likely to fail [9], [18].

Hence, while a robust classifier can be useful by, for ex-

ample, ignoring background pixels when they do not conform

with the affine model, it is important to guarantee that it will

never operate above this breakdown point. In practice this can

usually be achieved in two ways: 1) extending the transfor-

mation model on which the TD is based in order to cover

all sources of variation present in the application of interest,

or 2) pre-process all images to eliminate such variations. For

example, illumination changes could be handled by 1) re-

defining the TD as

	 ����� � ��
�����

������� #��
����℄ � $���� (24)

where # and $ are constants, or 2) using standard pre-

processing tricks in common use in the face detection and

recognition literature, such as subtracting a plane to the image

intensities, performing histogram equalization, or cropping the

images tightly around the face area [19], [27]. The latter

solution would also eliminate the problems caused by the

background, namely when it does not follow the transforma-

tion of the subject’s face. The results obtained for the scaling

database (where the affine model holds reasonably well for

most of the image area considered in the matching) indicate

that, if these steps are taken, a robust estimator should be

sufficient to overcome the errors of the MRTD.

E. Implementation complexity

The previous sections illustrate a clear advantage, in terms

of recognition accuracy, of the multi-resolution classifiers.

However, this gain is achieved at the expense of increased

computational complexity. The practical relevance of the

multi-resolution classifiers can therefore only be assessed after

an analysis of this computational penalty.

For this we notice that all the distances considered above

involve, at some point, cycling through all the pixels in the

query and database images. The operations carried inside this

“pixel loop” include subtracting the two images (all that is

required by the ED), collecting spatial derivatives, and com-

puting running sums such as those of (17) or (19). Hence, the

computational complexity of this pixel loop is 
���� where

� and � are the image dimensions. The multi-resolution

classifiers execute this loop inside a “multi-resolution loop”,

i.e. by repeating the estimation at each resolution level. If there

are � � � such levels and the images are sub-sampled by a

factor of two (in each dimension) at each level, the overall

complexity is
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a sequence that rapidly converges to 
����"��. Hence, the

computational increase of the multi-resolution classifiers is

never larger than ��� of the computation required by the TD.

This, however, assumes that an exhaustive search is per-

formed at each resolution. In practice it usually becomes clear,

even at the lowest resolutions, that some of the images in

the database will not be a good match to the query. These

images can therefore be ignored in the subsequent levels of

the multi-resolution decomposition without any degradation

of recognition accuracy. Assuming that there are a total of %
images in the database and, on average, only 	% are retained

at each level, 	 � ��� �℄, the overall search complexity will be
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The ratio of computation involved in the multi-resolution

search over that required by the full resolution search is

therefore ��	���� � �"����	 � ��. Figure 12 shows the

dependence of this ratio on 	 and �, making it clear that,

for each �, there is a significant range of 	 for which the

multi-resolution search is more effective than full search. For

example when � � �, the value which we have used in all

experiments discussed above, this will hold as long as 	 is

smaller than ����, i.e. even if only �� of the images are

discarded at each resolution.
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Fig. 12. Ratio of computation complexity between multi-resolution and
single-resolution search as a function of the number of resolution levels (�)
and the percentage of images retained at each level (	).

F. Semantic video classification

We finalize with some experimental evidence for the ability

of the MRTD to capture elements of video structure that are

important for its semantic classification. The goal is not so

much to describe a full fledge semantic classifier or to show

that one of the variations of the TD is much better than

the others for this task, but to make clear that the MRTD

is applicable in much broader settings than simple visual

recognition. We emphasize that this is an important attribute

when one considers the design of practical multimedia ar-

chitectures, which must be versatile enough to be usable in

diverse applications. For the MRTD, it stems from the fact that

the MRTD has an objective, but intuitive, interpretation: it is

a measure of the differences between two patterns that cannot
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be canceled by alignment. Obviously, the meaning of these

differences depends on the particular set of transformations

that are allowed. In the affine case, they can be seen as the

image differences that cannot be compensated by nulling out

camera motions such as pans, zooms, or in-plane rotation.

This suggests that the MRTD could be used as a metric for

the action in a scene. Once the camera motion is compensated,

the differences that are left are likely to be due to the motion

of objects in the scene. In general, the stronger the amplitude

of the object motion and the larger the object size, the larger

will be the TD. While the ability to detect action is an asset

for various multimedia applications (from detecting events in

interactive environments to retrieving the action scenes of a

movie), it is hard to conceive that it could be done without

at least compensating for camera motion. For example, pans

are prevalent in scenic videos that depict scenes of very low

activity. Hence, one could argue that the TD should be a

dimension of any feature space used for detecting action. We

next present evidence that, in fact, the TD by itself already

appears to capture most of the information required for this

detection. Since these results were already presented in [33],

we will only summarize them here.

To evaluate semantic classification we relied on a database

containing 23 promotional movie trailers for commercially

released feature films. Each trailer consists of 2 to 5 minutes

of video and the total number of shots in the database is 1959.

The movie titles are presented in Table IV. Figure 13 shows

how the movie database populates a feature space obtained

by segmenting the video into shots and simply measuring the

average duration of each shot and the average value of the

MRTD (normalized to 
�� �℄ by dividing by the maximum

value along each axis) between consecutive frames in the

shot. We also performed a search in the Internet Movie

Database (IMDB) [1] for the genre assigned to each movie

by the Motion Picture Association of America. Three major

classes were identified: romance/comedy, action, and other

(which includes horror, drama, and adventure). There were

not enough points in the movie sample to further subdivide

the other class in a meaningful way. The genre classes are

indicated in the plots by the symbol used to represent each

movie.

Several interesting observations can be made from the

figure. First, the points seem to obey a law of the type ����&�
#�(�� � )�*#�. This is particularly interesting because

the existence of a related law, &#+#�+�#�)� � )�*#�
has been postulated in the film theory literature [13]. This

seems to confirm the fact that the MRTD is a good indicator

for the action content of a movie. Second, there seems to

be a clear separation between the three semantic classes in

the activity/length feature space. In particular, movies of the

romance and comedy genres are mostly above the top dashed

line, action movies below the bottom one, and the other genres

in between.

In fact, there are only four movies that violate these

rules, “jungle”, “madness”, “blankman” and “edwood”, and

all correspond to cases where the semantic classification is

ambiguous. For example, while the comedies above the top

dashed line are typically categorized as comedy/romance or

TABLE IV

TITLES OF THE ENTRIES IN THE MOVIE DATABASE AND NAMES THAT

APPEAR ON FIGURE 13.

Movie Legend

“Circle of Friends” circle
“French Kiss” french
“Miami Rhapsody” miami
“The Santa Clause” santa
“Exit to Eden” eden
“A Walk in the Clouds” clouds
“While you Were Sleeping” sleeping
“Bad Boys” badboys
“Junior” junior
“Crimson Tide” tide
“The Scout” scout
“The Walking Dead” walking
“Ed Wood” edwood
“The Jungle Book” jungle
“Puppet Master” puppet
“A Little Princess” princess
“Judge Dredd” dredd
“The River Wild” riverwild
“Terminal Velocity” terminal
“Blankman” blankman
“In the Mouth of Madness” madness
“Street Fighter” fighter
“Die Hard: With a Vengeance” vengeance

simply comedy, “edwood” receives the awkward categorization

of comedy/drama (indicating that characterizing its content

is probably a difficult task), and “blankman” that of com-

edy/screwball/super hero confirming the fact that it is an

action-packed comedy, which could easily fall in the action

category. Thus while, strictly speaking, the placement of these

movies on the other and action classes is incorrect, it is se-

mantically plausible. Similarly, while the romances above the

top line either belong to the category drama/romance or com-

edy/romance, “jungle” is categorized as adventure/romance

indicating a degree of action which is unusual for movies in

the romance class. Finally, while “madness” is assigned to the

horror genre, it is full of action-packed scenes. More samples

from the horror class would be necessary for a deeper analysis

of the interplay between these two genres.

We believe that these results illustrate how the natural

decomposition into “what can be explained by camera motion”

plus “what is left” is likely to play a role in semantic

video analysis. A more thorough analysis of the semantic

classification results is presented in [33], where we compared

the MRTD to histogram intersection [28], the most commonly

used similarity function in content-based image retrieval. It

was shown that, although the classification rates were similar,

histogram intersection led to to less intuitive errors. A good

example is the movie “riverwilde”, an action movie whose

plot revolves around white-water rafting and contains numer-

ous shots depicting this sport. While these shots exhibit a

significant amount of motion from frame-to-frame, the color

histograms tend not to change too much, because there is

always plenty of water in the background. The action content

cannot, therefore, be captured well by the histogram distance.

On the other hand, since it cannot be explained by camera

motion, it is captured by the MRTD.
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Fig. 13. Population of the feature space by the movies in our database. Movie names are listed in Table IV.

VII. CONCLUSIONS

In this work, we introduced the multi-resolution tangent

distance. In the multimedia context, this distance has several

interesting properties. First, it is generic and can be used

for any task involving image similarity. For example, the

MRTD classifier applies equal well to face recognition or

detection, gesture and character recognition, recognition of

traffic signals, video shot segmentation, etc. Despite its general

purpose character, the MRTD achieves high classification

rates, particularly for tasks where multiple views of each

prototype pattern are available, and exhibits high invariance

to linear transformations of the patterns to classify (that can

impair significantly the performance of techniques based on

the ED). It relies on a iconic (i.e. pixel-based) representation

of the images to classify and does not, therefore, depend

on features which are inherently task dependent, typically

tricky to define, error prone, and many times expensive to

compute and track. The MRTD can also be implemented with

complexity equivalent to or smaller than that of the ED, is

easily combined with robust estimation techniques, and is

suited for hierarchical image analysis tasks.

In addition to recognition, the natural interpretation of the

MRTD as what remains after camera motion is compensated

makes it suited for various video analysis and classification

tasks. We illustrated this fact with simple experiments on

semantic movie classification, but the distance could also be

applied to the segmentation of video into shots, the creation

of image mosaics, or any application where the decomposition

into camera and object motion is relevant. Despite all these

good properties, the main advantage of the MRTD as a simi-

larity metric may be of a practical nature. Because multimedia

processors are required to support a wide array of applications,

it is important that various tasks can share the same hardware

architecture. The flexibility of the MRTD, shown here by its

application to problems as diverse as face recognition and

video classification, as well as the natural connection to motion

estimation and mosaic creation can be significant assets in this

context.
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