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We define a multiresolution spline technique for combining two or more images into a larger image        

mosaic. In this procedure, the images to be splined are first decomposed into a set of band-pass                

filtered component images. Next, the component images in each spatial frequency hand are assembled           

into a corresponding bandpass mosaic. In this step, component images are joined using a weighted           

average within a transition zone which is proportional in size to the wave lengths represented in the             

band. Finally, these band-pass mosaic images are summed to obtain the desired image mosaic. In this              

way, the spline is matched to the scale of features within the images themselves. When coarse features        

occur near borders, these are blended gradually over a relatively large distance without blurring or          

otherwise  degrading  finer  image  details  in  the  neighborhood  of  th e border.

Categories and Subject Descriptors: I.3.3 [Computer Graphics]: Picture/Image Generation; I.4.3             

[Image  Processing]:  Enhancement

General Terms: Algorithms

Additional Key Words and Phrases: Image mosaics, photomosaics, splines, pyramid algorithms,       

multiresolution  analysis,  frequency  analysis,  fast  algorithms

1. INTRODUCTION

The need to combine two or more images into a larger mosaic has arisen in a          

number of contexts. Panoramic views of Jupiter and Saturn have been assembled           

for multiple images returned to Earth from the two Voyager spacecraft. In a              

similar way, Landsat photographs are routinely assembled into panoramic views               

of  Earth.  Detailed  images  of  galaxies  and  nebulae  have  been  assembled  from mul-
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Fig. 1.  A pair of images may be represented as a pair of surfaces above the (x, y) plane. The problem            

of image splining is to join these surfaces with a smooth seam, with as little distortion of each surface              

as  possible.

tiple telescope photographs. In each of these cases, the mosaic technique is                 

used to construct an image with a far larger field of view or level of detail than           

could be obtained with a single photograph. In advertising or computer graphics,          

the technique can be used to create synthetic images from possibly unrelated    

components.

A technical problem common to all applications of photomosaics is joining two

images so that the edge between them is not visible. Even slight differences in          

image gray level across an extended boundary can make that boundary quite      

noticeable. Unfortunately, such gray level differences are frequently unavoidable;       

they may be due to such factors as differences in camera position or in image   

processing prior to assembly. Thus, a technique is required which will modify          

image gray levels in the vicinity of a boundary to obtain a smooth transition       

between images. The two images to be joined may be considered as two surfaces,      

where the image intensity I(x, y) corresponds to the elevation above the x,y            

plane. The problem, as illustrated in Figure 1, may be stated as follows: How can          

the two surfaces be gently distorted so that they can be joined together with a         

smooth seam? We will use the term image spline to refer to digital techniques for   

making these adjustments. A good image spline will make the seam perfectly        

smooth,  yet  will  preserve  as  much  of  the  original  image  information  as possible.

It is probably safe to say that no fully satisfactory splining technique has yet        

been  found.  Most  image  mosaics  are  still  produced  without  any  attempt at  remov-
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Fig. 2. The weighted average method may be used to avoid seams when mosaics are constructed from

overlapped images. Each image is multiplied by a weighting function which decreases monotonically across

its border; the resulting images are then summed to form the mosaic. Example weighting functions are shown

here in one dimension. The width of the transition zone T is a critical parameter for this method.

ing visible boundaries (e.g., [4]). The magnitude of the gray level difference              

across a mosaic boundary can be reduced to some extent by a judicious choice of    

boundary location when splining overlapped images. The match may be improved         

by adding a linear ramp to pixel values on either side of the boundary to obtain         

equal values at the boundary itself [6, 7]. A still smoother transition can be          

obtained using a technique recently proposed by Peleg [9]: The "smoothest          

possible" correction function is constructed which can be added to each image of              

a mosaic to eliminate edge differences. However, this technique may not be            

practical for large images, since the correction functions must be computed using          

an  iterative  relaxation  algorithm.

We are concerned with a weighted average splining technique. To begin, it is    

assumed that the images to be joined overlap so that it is possible to compute              

the gray level value of points within a transition zone as a weighted average of            

the corresponding points in each image. Suppose that one image, Fl(i), is on the          

left and the other, Fr(i), is on the right, and that the images are to be splined at              

a point î  (expressed in one dimension to simplify notation). Let Hl(i) be a        

weighting function which decreases monotonically from left to right and let                

Hr(i) = 1 – Hl(i)  (see  Figure  2).  Then,  the  splined  image  F  is  given  by

F(i) = Hl(i— î ) Fl(i) + Hr(i— î ) Fr(i).

It is clear that with an appropriate choice of H, the weighted average technique        

will result in a transition which is smooth. However, this alone does not ensure           

that the location of the boundary will be invisible. Let T be the width of a         

transition zone over which Hl changes from 1 to 0. If T is small compared to           

image features, then the boundary may still appear as a step in image gray level,        

albeit a somewhat blurred step. If, on the other hand, T is large compared to           

image features, features from both images may appear superimposed within the      

transition  zone,  as  in  a  photographic  double  exposure.
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These extremes are illustrated in Figure 3 with several attempts to spline two    

synthetic images of stars. The original images, Figures 3a and 3b (257 x 257         

pixels) are identical except for a slight shift in vertical position and a slight shift            

in mean gray level. The first of these differences can arise from optical distortions          

or misalignments of actual photographs, while the second can be due to differ-           

ences  in  atmospheric  conditions  or  in  photographic  development.

In this example, photomosaics are obtained by joining the left half of Figure            

3a with the right half of Figure 3b. If this is done without any attempt to smooth        

the image transition (T = 0), the boundary will appear as a sharp edge (Figure             

3c). If instead the images are combined by the method of weighted average within          

a relatively narrow transition zone (T = 8), the edge appears blurred but remains        

visible (Figure 3d). When the images are splined with a broad transition (T =              

64), the edge is no longer visible but stars have a "double exposed" look within             

the  transition  zone  (Figure  3e).

Clearly, the size of the transition zone, relative to the size of image features,         

plays a critical role in image splining. To eliminate a visible edge the transition        

width should be at least comparable in size to the largest prominent features in           

the image. On the other hand, to avoid a double exposure effect, the zone should           

not be much larger than the smallest prominent image features. There is no             

choice of T which satisfies both requirements in the star images of Figure 3           

because  these  contain  both  a  diffuse  background  and  small  bright  stars.

These constraints can be stated more precisely in terms of the image spatial    

frequency content. In particular, a suitable T can only be selected if the images               

to be splined occupy a relatively narrow spatial frequency band. As a rough     

requirement, we may stipulate that T should be comparable in size to the wave-      

length of the lowest prominent frequency in the image. If T is smaller than this           

the spline will introduce a noticeable edge. On the other hand, to avoid a double    

exposure effect, T should not be much larger than two wave lengths of the highest

prominent frequency component in the images. This ensures that there will not            

be room for multiple features within the transition zone. While it is likely that        

these limits can be exceeded somewhat without noticeable degradation, the            

general conclusion—that the band width of images to be splined should be             

roughly  one  octave—is  an  important  one.

How can images which occupy more than an octave be splined? The approach    

proposed here is that such images should first be decomposed into a set of band-        

pass component images. A separate spline with an appropriately selected T can           

then be performed in each band. Finally, the splined band-pass components are

recombined into the desired mosaic image. We call this approach the multi-reso-       

lution  spline.  It  was  used  to  obtain  the  image  shown  in  Figure  3f.

In decomposing the image into frequency bands, it is important that the range           

of frequencies in the original be covered uniformly, although the bands themselves     

may overlap. As a practical matter, a set of low-pass filters are applied to generate         

a sequence of images in which the band limit is reduced from image to image in          

one-octave steps. Band-pass images can then be obtained simply by subtracting           

each low-pass image from the previous image in the sequence. This not only          

ensures complete coverage of spatial frequencies but means that the final mosaic           

can  be  obtained  simply  by  summing  the  band-pass  component  images.
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Fig. 3.  Common artifacts of the weighted average techniques are demonstrated in these attempts to        

spline two synthetic images of stars (Figure 3a and 3b). These differ only in mean gray level and a          

slight vertical shift. A seam is clearly visible when the left half of figure 3a is joined with the right               

half of Figure 3b without any adjustment in gray level, as shown in Figure 3c. The seam is still visible        

when the weighted average technique is used with a narrow transition zone (Figure 3d). However, if           

the transition zone is wide, features within the zone appear double (Figure 3e). The first of these           

artifacts is due to a gray level mismatch at low spatial frequencies, while the second is due to a               

position  mismatch  at  high  frequencies.  Both  are  avoided  in  the  multiresolution  method  (Figure  3f).
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Fig. 4. A one-dimensional graphical representation of the iterative REDUCE operation used in              

pyramid  construction.

In Section 2 we present a highly efficient ''pyramid'' algorithm for performing           

the required filtering operations and in Section 3 we show that the pyramid             

structure  is  ideally  suited  for  performing  the  splining  steps  as  well.

2. BASIC PYRAMID OPERATIONS

A sequence of low-pass filtered images G0, G1, . . ., GN can be obtained by         

repeatedly convolving a small weighting function with an image [1, 3]. With this

technique, image sample density is also decreased with each iteration so that the

bandwidth is reduced in uniform one-octave steps. Sample reduction also means           

that  the  cost  of  computation  is  held  to  a  minimum.

Figure 4 is a graphical representation of the iterative filtering procedure in one

dimension. Each row of dots represents the samples, or pixels, of one of the         

filtered images. The lowest row, G0, is the original image. The value of each node         

in the next row, G1, is computed as a weighted average of a 5 x 5 subarray of G0      

nodes, as shown Nodes of array G2 are then computed from G1 using the same        

pattern of weights. The process is iterated to obtain G2 from G1, G3 from G2 and            

so on. The sample distance is doubled with each iteration so that successive             

arrays are half as large in each dimension as their predecessors. If we imagine            

these arrays stacked one above the other, the result is the tapering data structure       

known as a pyramid [10]. If the original image measures 2N + 1 by 2N + 1, then         

the  pyramid  will  have  N  + 1  levels.1

Both sample density and resolution are decreased from level to level of the         

pyramid. For this reason, we shall call the local averaging process which generates      

each pyramid level from its predecessor a REDUCE operation. Again, let G0 be          

the  original  image.  Then  for  0 < l < N:

Gl = REDUCE [Gl-1],

by which we mean:

G i j w m n G i m j nl l

m n

( , ) ( , ) ( , ).
,

= + +−
=

∑∑ 1

1

5

2 2

________
More generally, a pyramid of N + 1 levels may be constructed from any image which measures                
MR2N + 1 rows by MC2N + 1  columns, where MR and MC are integers.
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The pattern of weights w(m, n) used to generate each pyramid level from its

predecessor is called the generating kernel. These weights are chosen subject to           

four constraints: First, for computational convenience, the generating kernel is  

separable, w(m, n) = ŵ (m) ŵ (n). Second, the one dimensional function ŵ  is

symmetric, ŵ (0) = a, ŵ ( - 1) = ŵ (1) = b, and ŵ (- 2) = ŵ (2) = c, as shown in    

Figure 4. Third, ŵ  is normalized, a + 2b + 2c = 1. The final constraint stipulates      

that each level l node must contribute the same total weight to level l + 1 nodes:       

thus, a + 2c = 2b. Now, combining constraints, we find that a may be considered           

a  free  variable,  while  b = 1/4  and  c = 1/4  —  a/2.

2.1 Equivalent Weighting Functions

It is clear that every level l node in the pyramid represents a weighted average of              

a 5 × 5 subarray of level l – 1 nodes. Each of these in turn represents an average          

of a subarray of level l – 2. In this way, we can trace the weights for a given       

pyramid node back to the original image G0 to discover the "equivalent weighting

function" Wl which, if convolved directly with the original image, would have          

given the same node values at level l. It is convenient to discuss pyramid-based

computations in terms of these equivalent weighting functions, although the         

iterative REDUCE process is considerably more efficient and is used in all    

computations.

The equivalent weighting functions have several properties which will be       

important in filtering and splining operations. The scale of these functions          

doubles from level to level of the pyramid while their shape does not change [1].

Function shape does depend on the value of parameter a in the generating kernel.         

For example, if a = 0.5, the functions are all triangular in shape, while if a = 0.4,         

the functions resemble the Gaussian probability density function. Convolution            

with a Gaussian has the effect of low-pass filtering the image. Pyramid construc-        

tion is equivalent to convolving the image with a set of Gaussian-like functions          

to produce a corresponding set of filtered images. Because of the importance of             

the multiple filter interpretation, we shall refer to this sequence of images G0,             

G1, . . ., GN  as  the  Gaussian  pyramid.

Suppose samples in G0 are separated by a unit distance. Then, samples at level           

l are separated by the distance 2 l. It can be shown that the width of the equivalent

weighting function W l  is 2l+2 – 4, covering 2l+2 – 3 image samples, or just less          

than four times the sample distance (see Figure 5). Thus equivalent weighting       

functions centered on level l sample points will overlap in such a way that each        

image pixel contributes to the value of at most 16 level-l samples (4 in one     

dimension). If the contributions of any image pixel are summed, the result will            

be  unity.  For  each  i, j, and l,

m n

l

l l
W i m j n

,

( , ) .
=−

∑ − − =
2

2

2 2 1

This result follows from the equal contribution property of the generating kernel.

The Gaussian shape and summation properties of the functions W l mean                 

they can  be used to  construct  the  weighting functions  H   needed  for  image  splining
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Fig. 5. Equivalent weighting functions, Wl, are shown centered at level l sample points on the left                    

in the figure, while zero weight is given to points on the right. When these weights are summed, a          

uniform value of unity is obtained on the left, a value of zero on the right, and a monotonic transition              

in the center. The weighting functions H used in image splining can be constructed in this way (see           

Figure  2).

(Figure 2). Suppose Wl is associated with each node in the left half of Gl while           

zero weight is associated with nodes in the right half (Figure 5). Then, the sum            

of these functions will be a function which decreases monotonically from 1 to 0,        

with a transition zone width T equal to 3 times the level l sample interval. This   

property will be used in the pyramid-based multiresolution spline, although         

functions  H  and  W  will  never  be  explicitly  computed.

2.2 The Laplacian Pyramid

The Gaussian pyramid is a set of low-pass filtered images. In order to obtain the      

band-pass images required for the multiresolution spline we subtract each level             

of the pyramid from the next lowest level. Because these arrays differ in sample      

density, it is necessary to interpolate new samples between those of a given array      

before it is subtracted from the next lowest array. Interpolation can be achieved            

by reversing the REDUCE process. We shall call this an EXPAND operation.             

Let  Gl,k  be  the  image  obtained  by  expanding  Gl k  times.  Then

Gl,0 = Gl,

and  for  k > 0,

Gl,k = EXPAND[Gl,k-1].

By  EXPAND,  we  mean

G i j G
i m j n

l k l k

n n

, ,

,

( , ) , .= + +



−

=−
∑∑4

2

2

2

2
1

2

2

Here, only terms for which (2i + m)/2 and (2j + n)/2 are integers contribute               

to the sum. Note that G l,1 is the same size as Gl-1, and that G l,l  is the same size as        

the  original  image.
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We now define a sequence of band-pass images L0, L1, . . ., LN. For 0 < l < N,

Ll = Gl - EXPAND[Gl+1] = Gl - Gl+l,l.

Because there is no higher level array to subtract from GN, we define LN = GN.

Just as the value of each node in the Gaussian pyramid could have been            

obtained directly by convolving the weighting function W l with the image, each       

node of L l can be obtained directly by convolving W l - Wl+1 with the image. This

difference of Gaussian-like functions resembles the Laplacian operators            

commonly used in the image processing [5], so we refer to the sequence                    

L0, L1, . . ., LN  as  the  Laplacian  pyramid.2

2.3 Summation Property

The steps used to construct the Laplacian pyramid may be reversed to recover             

the original image G0 exactly. The top pyramid level, LN, is first expanded and           

added to LN-1 to recover GN-1; this array is then expanded and added to LN-2 to            

recover  GN-2,  and  so  on.  Alternatively,  we  may  write

G Ll l

l

N

0

0

=
=
∑ , .

The expand and sum procedure will be used to construct a mosaic image from             

its  set  of  splined  band-pass  components.

2.4 Boundary Conditions

In both the REDUCE and EXPAND operations, special attention must be given           

to edge nodes. For example, when a REDUCE is performed, the generating kernel         

for an edge node at level Gl=1 extends beyond the edge of level Gl by two nodes.   

Therefore, before the REDUCE (or EXPAND) is performed, Gl is augmented by        

two rows of nodes on each side. Values are assigned to these nodes by reflection          

and inversion across the edge node. Thus, if Gl(0, j) is a node on the left edge of           

Gl,  we  set

Gl( -1, j) = 2Gl(0, j) - Gl(1, j),

and

Gl( -2, j) = 2Gl(0, j) - Gl(2, j).

This treatment of boundaries has the effect of extrapolating the images in such                

a way that the first derivative is constant at the edge node (the second derivative             

is  zero).

3. THE MULTIRESOLUTION SPLINE

3.1 Splining Overlapped Images

The multiresolution spline algorithm may be defined rather simply in terms of           

the basic pyramid operations introduced in the last section. Here variations on               

the  method  will be  described  for  splining  overlapped  and  nonoverlapped  square  im-
_________
2In fact, the equivalent weighting functions for the Laplacian pyramid are slightly different from                  
Wl  - Wl-1,  because  of  the  EXPAND  operation  used  at  level  l + 1.
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ages and for splining images of arbitrary shape. Modifications for other tasks            

will then be apparent. To begin, suppose we wish to spline the left half of image          

A  with the right-half of image B. Assume that these images are both square,         

measuring 2N + 1 pixels on a side, and that they overlap completely. The spline            

is  achieved  in  three  steps:

Step 1. Laplacian pyramids LA  and LB are constructed for images A  and B  

respectively.

Step 2. A third Laplacian pyramid LS  is constructed by copying nodes from             

the left half of LA  to the corresponding nodes of LS , and nodes in the        

right half of LB to the right half of LS . Nodes along the center line of         

LS  are  set  equal  to  the  average  of  corresponding  LA  and  LB  nodes.

The center line for level l of a Laplacian pyramid is at i = 2N-1. Thus, for                 

all  i,  j,  l,

LS i j

LA i j

LA i j LB i j

LB i j

if

if

if

i

i

l

l

l l

l

N

N

N

( , )

( , )

( ( , ) ( , )) /

( , )

= +








<

=

>

−

−

−

2

1 2

2

2

1

1

1

Step 3. The splined image S  is obtained by expanding and summing the levels           

of  LS.

The result of applying this procedure to the star example is shown in Figure            

3f. Note that the transition between image halves is now smooth, without the         

blurred  step  edge  of  Figure  3d  or  the  doubling  of  Figure  3e.

A second example is given in Figure 6. Here we wish to spline two Landsat            

images of San Francisco, Figures 6a and 6b. These images are identical except            

for diffuse background noise which has been added to simulate the effects of         

possible differences in atmospheric conditions or image processing. Again, we          

wish to construct a mosaic in which the left half of one image is joined to the           

right half of the other. If this is done without a spline, the boundary is easily          

visible (Figure 6c). If the multiresolution spline is used, however, the edge is     

completely  removed  (Figure  6d).

A third example shows the result of splining two quite different images, an            

apple and an orange (Figures 7a and 7b). The mosaic obtained without a spline             

is given in Figure 7c, while that obtained with the spline is shown in Figure 7d.          

In this case the transition between component images has been made slightly           

more gradual: in addition to averaging Laplacian nodes along the center line,             

nodes on either side of the center nodes have been averaged with a 3/4 to 1/4              

ratio of weights. The splining process has been repeated separately for the red,           

green, and blue image color components. Again, a smooth transition is obtained      

despite  the  rather  large  step  in  gray  level  between  the  apple  and  orange  halves.

In this pyramid-based splining procedure, the equivalent weighting functions             

W l play a dual role. Within the domain of each image, they act as interpolation      

functions between level l samples. Along the boundary between the image halves,      

they act as the splining functions H. If the images to be splined are identical,             

then  the  mosaic  obtained  through  the pyramid-based  splining  will be  the  same  im-
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Fig. 6. The spline applied to Landsat images of San Francisco. When the left half of Figure 6a is joined to the

right half of Figure 6b without a spline, the boundary is clearly visible (Figure 6c). No boundary is visible

when the multiresolution spline is used (Figure 6d).

age again. In this sense, the splining procedure by itself does not introduce             

image distortion. As shown in Figure 5, W l extends twice the sample distance 2l           

on each side of the level l sample point. This is an appropriate transition distance          

for  splining  the  frequencies  represented  in  the  lth  pyramid  level.

3.2 Splining Regions of Arbitrary Shape

The steps outlined above can be generalized for constructing a mosaic from image  

regions of arbitrary shape. Again, we assume that the regions to be splined are   

contained in images A and B and that these completely overlap. As before, nodes          

of the Laplacian pyramids LA  and LB for the component images will be combined         

to form the Laplacian pyramid LS  of the image mosaic S . We introduce an        

additional pyramid structure in order to determine which nodes of LS  should be          

taken from LA , which from LB, and which should be an average of the two. Let           

R  be a binary image of the same size as A  and B, in which all pixels inside the        

region of A  to be splined with B are 1 and all those outside the region are 0. The        

steps  of  the  multiresolution  spline  are  modified  as  follows  (on  page  230):
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Fig. 7. The spline can be used to combine very different images. Here the left half of an apple              

(Figure  7a),   is  combined  with  the  right  half of  an  orange  (Figure  7b).   Figure  7c,  obtained  without   a

ACM Transactions on Graphics, Vol. 2, No. 4, October 1983
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spline, shows that the orange and apple differ considerably in gray level and color. Still, a smooth        

transition  is  obtained  with  the  multiresolution  spline  (Figure  7d).
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Step la. Build Laplacian pyramids LA and LB for images A and B respectively.

Step lb. Build a Gaussian pyramid GR for the region image R.

Step 2. Form a combined pyramid LS  from LA  and LB using nodes of GR as    

weights. That is, for each l, i and j:

LSl(i, j) = GRl(i, j)LAl(i, j) + (1 - GRl(i, j))LBl(i, j).

Step 3. Obtain the splined image S  by expanding and summing the levels of          

LS .

The Gaussian pyramid serves two purposes here: It is a convenient method for

determining which nodes at each pyramid level lie within the mask area of image          

R , and it "softens" the edges of the mask through an effective low-pass filter.        

Without this the spline would be overly sensitive to the position of the mask        

relative to the pyramid sample points. Nodes which fall exactly on the mask edge       

will receive a 50 percent weight, just as in the procedure outlined in the previous    

section. Here nodes to a distance of two sample positions on either side of the         

mask edge will also be combined as a weighted average of their LA  and LB values        

(see  Figure  5).

An example using this technique is given in Figure 8. Figures 8a and 8b show         

the two original images, an eye and a hand. Figure 8c shows the region of the           

first image to be splined into the second image and Figure 8d shows the end              

result  of  the  spline:  a  hand  with  an  eye  embedded  in  the  palm.

3.3 Splining Nonoverlapped Images

Images must overlap if they are to be joined using any weighted average technique.

Nonetheless, a satisfactory spline can be obtained with images that abut but do            

not overlap, if each image is first extrapolated across its boundary to form an    

overlapped transition zone. Since the width of the transition zone can be a         

significant fraction of the width of the image itself, extrapolation may at first           

seem to be a formidable task. However, in the multiresolution spline technique

extrapolation can be performed separately in each frequency band. Furthermore,          

when the pyramid algorithm is used, only two samples need to be extrapolated        

beyond the edge of each level. In fact, it is just this type of extrapolation that is      

already handling boundary conditions during construction of both the Gaussian           

and  Laplacian  pyramids.  No  further  steps  need  to  be  taken  in  the  spline.

An application of splining to nonoverlapping images is shown in Figure 9. We    

begin with a single image which is itself a mosaic of 16 by 16 pixel blocks (only       

the central 8 × 8 array of blocks is shown in the figure). Each block has been

reconstructed from a highly compact transform code, which, in this case, repre-           

sents the image at a rate of only 0.5 bits per pixel (see for example, [8]). Block    

transform coding at a very low bit rate produces prominent block boundaries in       

addition to other severe image degradation. Our task is to remove the boundaries          

by  means  of  a  multiresolution  spline.

The original image contains a 16 × 16 array of blocks. Before attempting the        

spline, we use extrapolation to add a row on the right and bottom sides of each          

block. The resulting 17 × 17 pixel blocks fit into the Laplacian pyramid structure        

and  overlap  in  the  image  by  one  pixel  on  each  side.  The  first  step  of  the spline
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Fig. 8. The spline may be used to combine oddly shaped regions of very different images. The portion of

Figure 8a within the region indicated by the mask in Figure 8c is inserted in the portion of Figure 8b which is

outside this mask region (Figure 8d).

procedure is to construct a separate Laplacian pyramid for each of these 256             

blocks. These pyramids are then joined into a single pyramid with nodes in the   

overlapped  edges  of  each  pyramid  level  being  averaged.

Let Llmn be the lth level of the Laplacian pyramid constructed for the nth block            

in the mth row of blocks. Then, for i and j not on block boundaries (i.e., i and j           

are  not  equal  to  a  multiple  of  24 - l)  and  level  0  <  l  <  3,

LS i j L i jl lmn( , ) (ˆ, ˆ),=

where m  is the integer part of i/24 - l, n is the integer part of j/24 - l,                            

î = i - m24 - l, and ĵ  = j - 24 - l.

If i or j is on a block boundary above level zero, 0 < l < 3, then the LS  node            

will  be  an  average,

LS i j
L j L j

l

l m n l m n( , )
( , ˆ) ( , ˆ)

., , , ,=
+−1 16 0

2
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Fig. 9. The multiresolution spline used to remove block boundaries from a block transform encoded        

image. Figure 9a shows an image which has been block transform encoded at a rate of 0.5 bits per          

pixel. An 8 x 8 array of blocks is shown, each containing a 16 × 16 array of pixels. Blocks were              

treated as separate, nonoverlapped images to obtain the splined result shown in Figure 9b. Image             

quality remains low because of the very low bit rate of the code, but the perceptually prominent block

boundaries  are  almost  completely  eliminated.

This average is not computed for boundary nodes in the bottom level because            

the  node  Ll,m-1,n(16, j)  represents  an  extrapolated  value.  Instead,  we  simply  say

LS0(i, j) = L0,m,n(0, ĵ ).

Reconstruction through the expand and sum process yields the image shown              

in Figure 9b. Note that the block boundaries have been almost completely           

removed. The image is still of low quality, but this is due to the very low bit rate           

of  the  original  block  encoded  image  rather  than  to  the  splining  technique.

4. SUMMARY AND DISCUSSION

We have described a multiresolution spline technique for combining two or more      

images into a larger image mosaic. In this procedure, the images to be splined            

are first decomposed into a set of band-pass filtered component images Next,              

the component images in each spatial frequency band are assembled into a     

corresponding band-pass mosaic. In this step, component images are joined using            

a weighted average within a transition zone which is proportional in size to the          

wave lengths represented in the band. Finally, these band-pass mosaic images               

are summed to obtain the desired image mosaic. In this way, the spline is matched         

to the scale of features within the images themselves. When coarse features occur         

near borders, these are blended gradually over a relatively large distance without       

blurring or otherwise degrading finer image details in the neighborhood of the          

border.

The basic steps of the multiresolution spline are illustrated in Figure 10. In              

this case,  the left half of an apple (Figure 7a)  is splined with the  right half of an orange
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(Figure 7b). The first column of images in Figure 10 (10a-10d) shows                   

high, medium and low frequency components of the half apple. Note that the             

high frequency components extend only slightly to the right of the midline, while          

the low frequencies extend considerably further. If these images are summed             

(along with a number of other components which are not shown), the half apple              

at  the  bottom  is  obtained  (Figure  10d).

Figures in the center column (10e-10h) show the corresponding components              

for the orange. Figures in the right hand column (10i-10l) are obtained by          

summing the orange and apple components in each spatial frequency band. All

computations are linear. Thus, the final mosaic, Figure 10l, can be obtained by  

summing the half apple of Figure 10d with the half orange of Figure 10h, or by

summing the composite band-pass images in the right hand column (10i-10j)          

(along  with  other  components  not  shown).

We have demonstrated the multiresolution spline with a variety of image           

mosaic examples. In all cases, it has eliminated visible seams between component   

images. This is true even when the component images are very different (e.g.,            

the orange-apple), or of irregular shape (e.g., the hand-eye). The multiresolution     

approach avoids artifacts such as the blurred edge and double exposure effect          

obtained with a simple (single resolution) weighted average, as shown in Figures           

3d  and  3e.

In the implementation described here, pyramid algorithms have been used both          

for filtering and splining operations. The pyramid structure is uniquely suited to         

the present task. It is a highly efficient filter, requiring only seven arithmetic      

operations (adds and multiplies) per image pixel to produce a full set of low-pass     

images [2]. Furthermore, the weighting functions H used in each spline are           

implicit in the pyramid computation: they need never be specified explicitly, yet         

they are matched to each frequency band represented in the pyramid. In a similar          

way, the image extrapolation required in splining nonoverlapped images is             

provided as a boundary condition in the standard pyramid construction algo-              

rithm.

In sum, the multiresolution spline appears to be a practical and quite general      

technique for forming image mosaics. The pyramid in turn offers a unifying          

structure in which required filtering and splining steps may be performed both            

easily  and  efficiently.
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