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Abstract

We examine FCC nickel undergoing simple shear by using three different
numerical frameworks formulated at three different size scales. The three
frameworks included embedded atom method potentials used in molecular
dynamics simulations, crystal plasticity used in finite element simulations,
and a macroscale internal state variable formulation used in finite element
simulations. Simple shear simulations were performed in which the specimen
aspect ratio was varied to give insight into the homogeneous and inhomogeneous
aspects of large deformation. This study revealed that the ‘apparent’ yield stress
was sensitive to the specimen aspect ratio except when the length-to-height ratio
reached about 8 : 1, the yield stress remained constant. The three numerical
frameworks gave similar qualitative responses related to inhomogeneous stress
and strain distributions in the corner regions of the specimens and also similar
responses in the centralized homogeneous deformation region. However, when
comparing the shear stress distribution for the finite element analyses to the
atomistic simulations, a much narrower distribution arose for the finite element
analyses due to the lack of thermal vibrations experienced in the atomistic
simulations at 300 K. A 10 K an atomistic simulation which dampened out the
high frequency thermal vibrations verified this reasoning. Three different sizes
of blocks of atoms were also used in the atomistic simulations and the results
showed very similar stress and strain distributions with respect to each other
indicating that no size scale effect is evidenced when normalized by the global
shear stress. However, a size scale effect exists related to the global (volume
average) shear stress in the specimen. As the specimen size increased, the
yield stress decreased. Finally, when comparing the three different numerical
frameworks, the location of maximum dislocation nucleation occurred at the
location of the maximum plastic spin, stress gradients, and strain gradients.
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1. Introduction

In this study, we explore three different numerical modelling frameworks for evaluating plas-
ticity in simple shear of nickel. The numerical frameworks include atomistic modelling, crystal
plasticity using finite elements, and internal state variable theory using finite elements. Starting
from the atomistic to the crystal plasticity and then to the macroscale internal state variable
frameworks, the degrees of freedom in the simulations decrease. The atomistic simulations
start from one atom and build up. The crystal plasticity formulation starts at the scale of
the grain and builds up. And the macroscale internal state variable starts from a macroscale
continuum point, which usually represents a polycrystalline material. As such, the macroscale
internal state variable formulation does not include explicit details about the plastic spin (texture
effect) nor the atomic level dislocations, but the crystal plasticity and atomistic formulations do.
Furthermore, the macroscale internal state variable theory and crystal plasticity formulations
do not include the thermal velocity (and vibration) effects related to atomic rearrangement or
subgrain division arising from large strains, but the atomistic formulation does.

In order to bridge length scales, one can perform physical experiments to quantify the
appropriate cause–effect relations between the microstructure and mechanical properties.
However, these experiments are costly and to date are wanting. An alternative view is to
use ‘numerical’ experiments by using different numerical methods that clearly describe the
cause–effect relations at different size scales. As a side note, we are not claiming that the crystal
plasticity nor the internal state variable models have an explicit length scale parameter (they
are size independent), but because of their kinematic starting points represent different scales.
Because the crystal plasticity kinematics starts at the level of the crystal, rotations, strains,
and hence stresses would be different than the macroscale internal state variable formulation.
One might argue that the crystal plasticity and macroscale internal state variable formulations
really represent the same scale because the hardening equations could be intermixed in the
formulations, and no inherent length scale parameters exist. However, because of kinematic
rotations, the specimen stresses of the crystal plasticity and macroscale internal state variable
formulations would be very different. By comparing then the macroscale internal state and
the crystal plasticity formulations with the atomistic simulations, we can clearly distinguish
the role of the kinematics. Before this writing, neither multiscale physical experiments nor
multiscale numerical experiments have been performed on a material like single crystal nickel;
hence, this is our contribution.

Researchers have investigated the response of constitutive models to simple shear or
torsion for years, because crystallographic slip occurs on shear planes. In this study, we do
not strictly examine simple shear. Simple shear requires that the face of the continuum point
remain planar and parallel, strictly speaking. We loosen the planar and parallel requirement to
analyse the inhomogeneous and homogeneous portions of the material block for the modelling
frameworks. Our ultimate goal was to examine general shearing experiments, which do not
constrain the traction free faces to be planar and parallel and as such our boundary conditions
are more applicable to shear experiments.

The paper is outlined as follows. Section 2 briefly describes the three modelling
frameworks. Section 3 presents the results and a discussion focused on comparing and
contrasting the results, and some conclusions are presented in section 4.

2. Simulation preliminaries

In this section, we briefly describe the pertinent attributes of the three numerical methods related
to plasticity at different length scales for nickel. The atomistic simulations were conducted
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using embedded atom method (EAM) potentials (Daw and Baskes 1984). Finite element
simulations using ABAQUS were conducted using two different constitutive models. One
model was a crystal plasticity formulation based on the Cuitino and Ortiz (1992) kinematics
first proposed by Hill and Rice (1972) but with the hardening equations from Horstemeyer
et al (1999). Another constitutive model used was a macroscale internal state variable theory
from the work of Bammann (1990), Bammann et al (1993, 1996).

For the boundary conditions in all three cases, we apply a velocity at the top of the material
in a horizontal, shearing manner and fix the nodes or atoms at the bottom. We keep the left
and right sides free from tractions. Also keep in mind that the atomistic simulations are of the
nanometre scale, and the continuum simulations are of the centimetre scale. We mention this
only to give the reader an idea of the orders of magnitude difference in the simulations. The
size scales are represented by the context of the models not the geometry of the meshes. We
discuss mesh issues in the section when we discuss specimen aspect ratios.

2.1. Atomistic simulation background

The atomistic simulations employed embedded atom potentials developed by Daw and Baskes
(1984) proposed as a numerical method for calculating atomic energetics of metals. Daw et al

(1993) review several applications of EAM. Essentially, EAM comprises a cohesive energy of
an atom determined by the local electron density into which that atom is placed. A function,
ρ, is viewed as the contribution to the electron density at a site due to the neighbouring atoms.
The embedding energy F i is associated with placing an atom in that electron environment.
The functional form of the total energy is given by
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where i refers to the atom in question and j refers to the neighbouring atom, r ij is the separation
distance between atoms i and j , and φij is the pair potential. Subscripts denote the rank of the
tensor, for example, one subscript denotes a vector, two subscripts denote a second rank tensor,
and so on. Superscripts identify the atom of interest. In molecular dynamics, the energy is
used to determine the forces on each atom,
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At each atom the dipole force tensor, β (termed as the local stress tensor hereafter) is given by
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where i refers to the atom in question and j refers to the neighbouring atom, f
ij

k is the force
vector between atoms, r

ij
m is a position vector between atoms i and j , N is the number of

nearest neighbour atoms, and �i is the atomic volume. When stress is defined at an atom, then
β i

km is the stress tensor at that point. Since stress is defined at a continuum point, we determine
the stress tensor (termed the global continuum stress hereafter) as a volume average over the
specimen,
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in which the stress tensor is defined in terms of the total number of active atoms, N∗, in the
specimen. We took this averaged stress then to determine the stress–strain response and yield
point of the specimen.

The EAM potential for nickel was developed by Angelo et al (1995) with a lattice parameter
of 3.52 Å. The EAM potential was implemented into a molecular dynamics framework.

2.2. Crystal plasticity background

For the single crystal kinematics, the multiplicative decomposition of the deformation gradient
into elastic (including rigid lattice rotation) and plastic parts is assumed, i.e. F = F eF p · F p

is computed at the end of the time step by applying the following:

F
p
t+�t = exp(Lp�t)F

p
t , (5)

where F
p
t and F

p
t+�t are the plastic deformation gradients at the beginning and end of the time

step, respectively. Lp is the plastic velocity gradient in the intermediate configuration that
occurs during the time step, which is determined by (Asaro 1983)

Lp =

N
∑

i=1

γ̇i(si ⊗ mi), (6)

where N is the number of slip systems, γ̇i is the continuum slip or shear rate on the ith slip
system, si is the slip direction vector, and mi is the slip plane normal vector. The hyperelastic
stress–strain relation is specified in the intermediate, or stress-free, configuration as

σ(Ê) = C : Ê, (7)

where the elastic stiffness tensor, C, is objective for a given crystal in the intermediate
configuration (cf Asaro (1983)). The intermediate configuration is aligned with the crystalline
axes. σ̂ is the second Piola–Kirchhoff stress in the intermediate configuration, and Ê is the
conjugate Green elastic strain.

The viscoplastic kinetic relation used is a kinematic hardening generalization of the form
employed by Hutchinson (1976), i.e.

γ̇i = γ̇0 sgn(τi − αi)
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where the plastic slip rate on the ith slip system, γ̇i , is a function of a fixed reference strain
rate, γ̇0, the reference shear strength, gi , the resolved shear stress on the slip system, τi , the rate
sensitivity exponent for the material, M , and an internal state variable representing kinematic
hardening effects resulting from backstress at the slip system level, αi . The isotropic hardening
evolution law for the internal hardening state variable, gi , on ith slip system is given by

ġi =

12
∑

i,j=1

hij γ̇j , (9)

where hij are the hardening (or plastic) moduli. The self-hardening components arise when
i = j and the latent hardening components arise when i �= j . The increase or decrease of
flow stress on a secondary slip system due to crystallographic slip on an active slip system is
referred to as latent hardening. A modified hardening-recovery equation was used with the
PAN rule (Peirce et al 1982) given by

hij = Z(γ )(δij + lhr(1 − δij )), (10)
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where lhr is the latent hardening ratio. The modified Armstrong and Frederick (1966)
hardening-recovery equation that was also used is given by

Z(γ ) = h0 − Rg(γ ), (11)

where R is a material constant. We employ a substructural internal variable evolution equation
(Horstemeyer and McDowell, 1998) that is assumed to evolve at the level of the grain. For the
Armstrong–Frederick form, we employ the following form for each crystal

α̇i = Crate(Csatγ̇i − αi‖γ̇i‖), (12)

where Crate controls the rate of evolution, and Csat is the saturation level of the backstress.
These two parameters were chosen to fit the experimental data. The substructural hardening
internal state variable reflects dislocation interactions within the grain (cf Rice (1971)) and
follows the Coleman and Gurtin (1967) postulate that the rate must be governed by a differential
equation in which the plastic rate of deformation appears.

Once the material constants were determined from single crystal nickel experiments
(Edington 1969), simple shear simulations were run with different geometries, and the volume
average of the shear stress was used for the discussion purposes to follow. We should note
here that although yield is included in the formulation, there exists an ‘apparent’ yield for
the specimen when all of the element stresses are averaged. In the discussion section, we
use the word ‘yield’ in the sense of the apparent yield stress to make comparisons with the
atomistic simulations.

2.3. Macroscale internal state variable theory background

For the internal state variable (ISV) plasticity model (Bammann 1990, Bammann et al 1993,
1996) used in this study, the kinematics and work hardening equations are similar to the crystal
plasticity formulation except that the intermediate configuration is not aligned necessarily to
the crystalline axis of a single crystal due to the absence of a plastic spin component. The
pertinent equations in this model are denoted by the rate of change of the observable and
internal state variables. The equations used within the context of the finite element method
are given by,

o
σ = σ̇ − W eσ − σ W e = λtr(De)I + 2µDe, (13)

De = D − Din, (14)

Din = f (t) sinh
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The rate equations are generally written as objective rates (
o
σ ,

o
α) assuming a Jaumann rate

in which the continuum spin equals the elastic spin (W = W e). The internal state variable
(ISV) equations (16) and (17) are functions of the observable variables (temperature, stress
state, and rate of deformation). In general, the rate equations of generalized displacements, or
thermodynamics fluxes, describing the rate of change may be written as independent equations
for each ISV or as derivatives of a suitably chosen potential function arising from the hypothesis
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of generalized normality (Rice 1971). In equation (13), the elastic polycrystalline Lame
constants are denoted by λ and µ; hence, a slight difference existed in the elastic modulus for
the single crystal plasticity formulation and the polycrystal ISV formulation. The elastic rate
of deformation (De) results when the flow rule as shown in equation (15) is subtracted from
the total deformation (D), which is defined by the boundary conditions.

The independent variables for the inelastic rate of deformation are given in equation (14)
as the stress, temperature, and internal state variables. The deviatoric inelastic flow rule,
Din, encompasses the regimes of creep and plasticity and is a function of the temperature,
the kinematic hardening internal state variable (α), the isotropic hardening internal state
variable (R), and the functions f (T ), V (T ), and Y (T ), which are related to yielding with
Arrhenius-type temperature dependence. The function Y (T ) is the rate-independent yield
stress. The function f (T ) determines when the rate-dependence affects initial yielding. The
function V (T ) determines the magnitude of rate-dependence on yielding. These functions are
determined from isothermal compression tests with different strain rates and temperatures,

V (T ) = C1 exp

(

−
C2

T

)

, Y (T ) = C3 exp

(

C4

T

)

, f (T ) = C5 exp

(

−
C6

T

)

.

(18)

The kinematic hardening internal state variable, α, reflects the effect of anisotropic dislocation
density, and the isotropic hardening internal state variable R, reflects the effect of the
global dislocation density. The functions rs(T ) and Rs(T ) are scalar in nature and describe
the diffusion-controlled static or thermal recovery, while rd(T ) and Rd(T ) are scalar functions
describing dynamic recovery. Hence, the two main types of recovery that are exhibited by
populations of dislocations within crystallographic materials are captured in the ISVs. Note
that the discrete dislocations that are present in the EAM simulations are not explicitly included
here. In the context of this paper, the static recovery terms are set to zero. The anisotropic
hardening modulus is h(T ), and the isotropic hardening modulus is H(T ).
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)
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The material constants were determined from the polycrystalline nickel experiments
(Hughes and Nix 1988) used for the crystal plasticity formulation. Then simple shear
simulations were run with different geometries, and the volume average of the shear stress
in the elements was used. The same comments about the yield stress and apparent yield stress
of the specimen is same as the crystal plasticity formulation to make comparisons with the
atomistic simulations.
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2.4. Computational setup

For all three numerical methods, fixed-end simple shear boundary conditions were prescribed in
which the computational specimen had free surfaces in the x- and y-directions was periodic in
the z-direction (see figure 1 for reference). The initial temperature was set at 300 K. The applied
strain rate for the atomistic simulations was very large (∼1 × 109 s−1), while the parameters
for the crystal plasticity and macroscale ISV models were determined from rate-independent
rates (∼1 × 104 s−1). This introduces a contrast in stresses since the larger applied strain rate
would induce a larger stress level. Hence, there exists not only a size scale difference but a
timescale difference between the atomistic simulations and the continuum level simulations.
For the EAM and crystal plasticity simulations, the crystal orientation was [100, 011, 01̄1],
and the loading on y-face was in the [100] direction. Another study (Horstemeyer et al

2002) focused on varying orientation effects showed that the atomistic methods provide the
same general Schmid-type responses as macroscopic theories. For the macroscale ISV model,
the crystallographic orientation cannot be represented discretely, although some deformation-
induced anisotropy is included in the kinematic hardening variable.

In this study, we focused on fixed-end simple shear at the three size scales because we had
planned a complementary experimental study that is yet to be completed with different size
specimens in this condition. For the atomistic study, some other comments are warranted. In a
previous atomistic study, Horstemeyer and Baskes (1999) showed that in fixed-end simulations,
the global continuum stress saturates if the z-direction is four or more unit cells in thickness;
smaller specimens introduce a separate size scale effect. Since a goal was to model the largest
cross-sectional area possible, we used a four unit cell z-direction thickness in our simulations.
After creating the samples with a desired crystal orientation, a few planes of atoms at the top
and bottom (xz planes at the +y and −y extreme) were frozen on their perfect lattice sites.
For initialization, the remainder of the atoms were allowed to energetically minimize their
positions to accommodate any relaxation at the two remaining free surfaces (yz planes). Two
types of velocities are considered in these simulations: the applied velocity and the thermal
velocity from the atomic vibrations. Thermal velocities of the interior (or active, non-frozen
atoms) were initialized at a chosen temperature (typically 300 K). For simple shear, a strain
rate was then applied to the block of atoms by setting the x-velocity of the frozen xz planes to a
constant value. The bottom atomic plane had a prescribed x-velocity of zero for the duration of
the dynamics simulation, and the top atomic plane had a prescribed constant velocity to create
a strained sample. If just the top row of atoms initially experienced the prescribed velocity
without the active internal atoms experiencing the same velocity field, a shock was induced
into the specimen because of the high strain rates. In our calculations, we introduced an initial
applied velocity field that mitigated the shock wave and then applied the boundary velocity
fields. To accomplish this, the interior atoms in the model were also given an initial x-velocity
(superposed on their thermal 300 K velocities) that ramped linearly from 0.0 to the prescribed
velocity at the top atomic plane depending on their y-coordinates in the simulation box.

One final notion regarding the yield point is worth mentioning and is illustrated by figure 1.
We define two microyield points and a macroyield point to give understanding of yield for the
atomistic simulations. First, the average global stress of the active atoms was computed in
equation (3), and a stress–strain curve was plotted. We distinguish between three locations on
the curve. The first location is defined as microyield 1, where the stress–strain behaviour first
deviates from elastic linearity, i.e. the proportional limit. At this point, initial dislocations are
emitted from the surface because of the local stress gradients near the corners. The second
location is microyield 2, which is defined by the macroscale continuum concept of a 0.2%
offset strain. The third location is defined as macroyield, the point at which the maximum



272
M

F
H

orstem
eyer

et
a

l

0

2

4

6

8

10

12

0 0.1 0.2 0.3 0.4 0.5

shear strain

yield 1
GPa

microyield 2
 = 6.4 GPa

macroyield
= 10.1 GPa

unload

unload at macroyield 

unload at microyield 1

50% shear strain

x

y

Figure 1. Shear stress–strain curve for 2242 atoms of nickel illustrating atomic positions and relative displacements (denoted by arrows on atoms) at different strain
levels.
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stress occurs. Because we start with perfect lattices, all initial defects are eliminated. As such
the stress–strain responses, in terms of the stress drop-off, look very similar to experimental
data of metal ‘whiskers’ which have essentially no initial defects (cf Yoshida et al (1966)). In
whiskers, experiments have shown that yield is typically defined at the ‘macroyield’ point. At
this point, the stress required to activate a certain density of dislocations is reached and the
material plastically deforms precipitating dislocations with subsequent propagation of local
Luders bands that lead to irregular fluctuations in the plateau region of the stress–strain curve
after the macroyield stress drop-off. Figure 1 illustrates that microyield 1 and microyield 2 are
essentially the same and in many cases, as exemplified in the ten thousand atom simulation,
macroyield is very close to the other two microyield points.

In determining the yield points in many of the simulations, we also unloaded the material
block at each of the microyield and macroyield points to give information regarding permanent
set and the influence of dislocations on the yield points. In figure 1, we show the atom positions
at different locations along a simple shear deformation path for a block of nickel material with
2242 atoms. Here, we unloaded at microyield 1 and microyield 2. It is clear from this
simulation that the unload at microyield 1, returns the atoms to their original positions and
at microyield 2 almost returns the atoms to their original positions with several dislocations
remaining in the block near the right-hand edge of the block.

3. Results and discussion

In this section, we first discuss the qualitative comparisons of the results from the three types of
simulations. Afterwards, we discuss the quantitative differences and describe the underlying
mechanisms that are attributed to the aspect ratio of the specimen, material model, stress state,
and kinetics.

First, in all of the atomistic simulations, dislocations nucleate from the free-surfaces of
the x-faces and in particular, near the specimen corners where inhomogeneous deformation
arises. Figure 2 illustrates this point for an eight-by-one x/y aspect ratio. Figure 2(a) shows
a close-up view of the corner in which the dislocations were nucleated. Clearly, the shear
stresses as designated by the brown colours are higher near the corner when contrasted with
the bulk atomic shear stresses, which show an almost homogeneous distribution of yellow
atoms in figure 2(b). Figure 2(c) shows that as deformation proceeds to 30% strain that the
dislocations populate the whole material bulk.

To further illustrate the flow of dislocations, we employ the centrosymmetry parameter
of Kelchner et al (1998), which shows deviations of the atomic positions from original lattice
positions. Figure 3 shows colour contours of the centrosymmetry parameter at different strains
in the stress–strain response. The second picture in figure 3 approximately corresponds to
figures 2(a) and (b) year yield. Also, figure 2(c) corresponds to the last picture in figure 3 at
30% strain. When comparing figures 2 and 3, one can see that the stress response (figure 2)
and centrosymmetry parameter (figure 3) correlate fairly well in signifying the dislocation
nucleation, motion, and interaction.

Figures 4 and 5 compare the shear stress and shear strain responses, respectively, of
the three numerical methods for the one-by-one specimen. Figures 6 and 7 show the same
comparisons for the eight-by-one specimen. Interestingly, the material response at the corners
due to these boundary conditions is the same for each numerical method whether you examine
the stress or strain. Although the magnitude of the stress is different for each method (because
of the size scale and applied strain rate), the kinematic response is essentially the same. This
is extremely important for development of the kinematics of higher scale modelling such as a
crystal plasticity model or a macroscale ISV model. One can also see that the centre region of
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Figure 2. Shear stress contour plots (GPa) at (a) yield-zoom, (b) yield, and (c) 30% strain,
illustrating the deformation response for a length-to-height ratio of approximately 8 : 1 (225 Å
by 28 Å) simulation.

Figure 3. Average stress–strain response of an 8 : 1 specimen (225 Å by 28 Å) simulation with
the centrosymmetry parameter illustrating the dislocation nucleation, motion, and interaction
throughout deformation.
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(b)(a)

(c)

Figure 4. Shear stress contours (GPa) for a specimen with an aspect ratio of 1 : 1 at yield for
(a) macroscale internal state variable theory (S12), (b) crystal plasticity (S12), and (c) atomistics
(yellow are low shear stresses and brown are high shear stresses; arrows denote relative
displacements).

the crystal plasticity simulation is qualitatively different than the macroscale ISV simulation
due to the rate of change of the crystal orientation. Figure 7(d) shows that for one of the Euler
angles with an initialization of 90˚ throughout the bulk at yield we see an angle decrease in
some elements by 5˚ at the corners indicating that local rotations play a role in accommodating
the simple shear boundary conditions. When you couple this information with the atomistic
simulation results of dislocation nucleation, you can deduce that the gradient in rotation plays
a role in the nucleation of dislocations.

Similar to figures 4–7 at ‘apparent’ yield, we show the simulation responses at 30% strain,
which puts the simulations well into the plasticity region in figures 8–11. The stress and strain
plots in figures 8–11 show similar trends as the yield plots. The similarities between the three
different numerical methods is again very close when considering the kinematic responses
and is qualitatively similar for the stress distributions. One interesting observation related
to figure 11(d) is that the crystal orientation has changed from an initial orientation of 90˚ to
almost 30˚ for some elements for the x/y aspect ratio of eight, indicating a very large difference
in rotations for some elements of the crystal plasticity simulation.

Another similarity between the three computational methods can be seen in figure 12.
Figure 12 shows the volume averaged yield stresses normalized by the shear modulus over
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(a) (b)

(c)

Figure 5. Shear strain contours for a specimen with an aspect ratio of 1 : 1 at yield for (a) macroscale
internal state variable theory (E12), (b) crystal plasticity (E12), and (c) atomistics (yellow are low
shear strains and brown are high shear strains; arrows denote relative displacements).

the specimen with varying aspect ratios for the macroscale internal state variable theory
simulations, crystal plasticity simulations, and the atomistic simulations. This plot illustrates
that as the x/y aspect ratio of the specimen increases, the yield stress increases until a saturation
is achieved. Further, as the y/x aspect ratio of the specimen increases, the yield stress
decreases. In figure 12(a), the yield stress increases as the x/y ratio increases until a saturation
level is reached at an aspect ratio of approximately eight. Horstemeyer and Baskes (1999)
proposed that this could arise for two reasons. Because the stress gradients near corners
induced dislocations that determine the yield point, a more bulk-like response arises as the
material in the x-direction is increased, then the global effect of dislocations nucleating from
the corner decreases. Another notion to describe the x/y ratio increase in shear stress comes
from an argument that image force effects could aid the nucleation event. However, the crystal
plasticity and macroscale ISV theory show the same qualitative stress and strain gradients,
and these numerical treatments do not include explicit functions for dislocation nucleation or
image force effects.

Since we have discussed the qualitative similarities of the three computational methods,
we now discuss their quantitative differences. In figures 4–11, at yield and at large strains, we
saw similar trends in the kinematic and stress response. In figure 12, we saw that the specimen
aspect ratio differences gave similar trends in the stress response. However, in each of the
cases the stress magnitudes are different for the three different numerical methods.
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(a)

(b)

(c)

Figure 6. Shear stress contours (GPa) for a specimen with an aspect ratio of 8 : 1 at yield for
(a) macroscale internal state variable theory (S12), (b) crystal plasticity (S12), and (c) atomistics
(yellow are low shear stresses and brown are high shear stresses).

(a)

(b)

(c)

(d)

Figure 7. Shear strain contours for a specimen with an aspect ratio of 8 : 1 at yield for (a) macroscale
internal state variable theory (E12), (b) crystal plasticity (E12), and (c) atomistics (yellow are low
shear strains and brown are high shear strains). Orientation angle (SDV37) from the crystal plasticity
simulation is given in (d).
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(a) (b)

(c)

Figure 8. Shear stress contours (GPa) for a specimen with an aspect ratio of 1 : 1 at 15%
strain for (a) macroscale internal state variable theory (S12), (b) crystal plasticity (S12), and
(c) atomistics (yellow are low shear stresses and brown are high shear stresses; arrows denote
relative displacements of atoms).

In figure 12 note that the ordinate has logarithmic units so as the size of the material
decreases, the yield stress significantly increases. This occurs because the strength of a solid is
inversely proportional to the material size as described by Horstemeyer and Baskes (1999). For
the atomistic simulations, we conducted simulations with the same aspect ratios for the blocks
of material but with different absolute sizes to illustrate the length scale effect. The macroscale
ISV theory and crystal plasticity formulation do not have an inherent length scale included.
However, with the crystal plasticity and macroscale ISV theory do show the general trend
of size scale dependence as the material model parameters were determined from large scale
single crystal data and polycrystalline data. This results because the ratio of homogeneous
deformation to inhomogeneous deformation increases as the length-to-height ratio increases
in all of the computational methods.

Now, we would like to discuss the contrasting results from the varying aspect ratios of
the specimens. Using the macroscale ISV theory figure 13 illustrates that when the length-to-
height (x/y) aspect ratio transitions from eight to unity, the stress distribution is more diffuse
because of the influence of the gradients. When the x/y aspect ratio transitions from unity
to eight, the stress distribution becomes less diffuse as shown in figure 13. One can think
of large x/y ratios as ‘pure’ simple shear and small x/y ratios as ‘pure’ bending. When the
ratio approaches unity, a combined multiaxial response results. Note that if the distribution
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(a) (b)

(c)

Figure 9. Shear strain contours for a specimen with an aspect ratio of 1 : 1 at 15% strain for
(a) macroscale internal state variable theory (E12), (b) crystal plasticity (E12), and (c) atomistics
(yellow are low shear strains and brown are high shear strains; arrows denote relative displacements
of atoms).

(a)

(b)

(c)

Figure 10. Shear stress contours (GPa) for a specimen with an aspect ratio of 8 : 1 at 30%
strain for (a) macroscale internal state variable theory (S12), (b) crystal plasticity (S12), and
(c) atomistics (yellow are low shear stresses and brown are high shear stresses; arrows denote
relative displacements of atoms).
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(a)

(b)

(c)

(d)

Figure 11. Shear strain contours for a specimen with an aspect ratio of 8 : 1 at 30% strain for
(a) macroscale internal state variable theory (E12), (b) crystal plasticity (E12) and (c) atomistics
(yellow are low shear strains and brown are high shear strains; arrows denote relative displacements
of atoms). Crystal orientations (SDV37) are shown from the crystal plasticity simulation in (d).
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different modelling methods.
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Figure 13. Stress distribution normalized by highest local stress from macroscale ISV model finite
element analysis for different aspect ratios under simple shear.

(a)

(b)

Figure 14. Shear stress contours (S12) of (a) 1 : 1 and (b) 8 : 1 specimens after 30% shear strain.
Both blocks show similar distribution of stresses in corners despite different aspect ratios.

of stresses is volume averaged, like in the data in figure 12, as the x/y aspect ratio increases,
the stress increases. This occurs even though a very similar stress distribution occurs in the
corners of specimens for the x/y aspect ratios of unity and eight as shown from the ISV
model simulation in figure 14 (which exaggerates the effect from the yield point because
these stress contours are shown at 30% strain). However, when the x/y aspect ratio is near
unity, the gradients in stress from the corners play more of role than the average values in
the centre of the specimen. Essentially, the corners introduce inhomogeneous deformation,
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Figure 15. Comparison of orientation angle distribution at 30% strain from the (a) 1 : 1 and (b) 8 : 1
specimens from the crystal plasticity calculations.

but the centre of the specimen accommodates homogeneous deformation. As the aspect ratio
size increases in either direction, the average stress swamps out the gradient effects. Based on
these observations, we can conclude that the stress gradients drive the atomic level dislocation
nucleation events as well.

From figure 12(b), one can see that as the y/x ratio increases, the yield stress decreases.
Horstemeyer and Baskes (1999) claimed that volume per surface area of the specimen
represents a length scale that correlates to yield and is illustrated by increasing the surface
area on the y-face of the material block. Horstemeyer et al (2001a, b) also showed that
this length scale dependence occurs at varying applied strain rates. With this in mind, we
perform similar crystal plasticity and macroscale ISV simulations to gain some insights into
the material responses. Essentially, as the height increases, the mechanism for inducing yield
changes because the stress state changes from simple shear to one in which normal stresses
are dramatically increased (more bending involved). As such, the volume averaged yield is
lowered. Clearly, the response in figure 15 is different when compared to figure 2, which
shows a specimen with a y/x ratio of 0.125. The larger y/x ratio appears to not only have
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(a)

(b)

Figure 16. Colour contours of (a) shear stress (GPa) and (b) crystal orientation illustrating
dependence of stress state on lattice orientation.

more surface area available for dislocation nucleation, but experiences material thinning and
a inhomogeneous deformation from beam bending, where the smaller x/y ratio (or larger
x/y ratio) shows a more ‘homogeneous’ deformation.

When a distribution of the angles is monitored and compared to the x/y aspect ratio
of unity as shown in figure 15, we see that the x/y aspect ratio of eight has a less diffuse
distribution of angles than the x/y aspect ratio of unity. The smaller x/y aspect ratio almost
has an even distribution from 69˚ to 75˚, but the larger x/y aspect ratio has a distribution that
mostly saturates at 77˚. Hence, the width and mean value of the distributions are different.
This observation is consistent with those made for the stresses. In fact, the gradient in crystal
rotation corresponds well with the gradients shown by the shear stresses and shear strains as
illustrated in figure 16, which shows the x/y aspect ratio of unity at 30% strain.

Although these three different numerical methods show stress and strain gradients at the
same locations within the specimen, the magnitude of the stress gradients are slightly different
and can be illustrated when the results from the different simulations are normalized as shown
in figure 17. The ordinate in figure 17 is the relative frequency of the local value for the
shear stress divided by the total number of elements (for the FEM simulations) or number of
atoms (for the EAM simulations). This helps to normalize the number density of the different
simulations. The abscissa in figure 17 is the local shear stress (equation (3)) divided by the
average global stress (equation (4)). The results in figure 17 show that the mean values are
normalized at unity. The data to the right of the mean value illustrates the stress gradients that
arise from the specimen corners with higher local shear stresses than average. The data to the
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Figure 17. Relative frequency of local shear stress over the global average stress at yield for an
aspect ratio of 2 : 1 for the internal state variable theory, crystal plasticity theory, and three different
block sizes of atomistic simulations.
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Figure 18. Relative frequency of local shear stress over the global average stress at yield for an
aspect ratio of 2 : 1 for an atomistic simulation at 10 and 300 K for 372 atoms of nickel.

left of the mean value represent the atoms and elements on the left and right x-faces away from
the corners. The stress and strain gradients that arise from the transition of the corner to the face
occur where the dislocations nucleate in the atomistic simulations. Note from the atomistic
simulations that as the size increases, the normalized distribution does not change. However,
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the crystal plasticity and internal state variable results show a much narrower distribution than
the atomistic simulations. Furthermore, the lower bump that is observed to the right of the
mean value in the atomistic simulations is to the left in the finite element simulations. These
two differences can be explained from a kinetics perspective. The 300 K atomistic simulations
include fluctuations of local stresses from thermal vibrations. These vibrations do not exist in
the finite element simulations. To illustrate this point, we ran the smallest block of atoms (372
atoms) at 10 K with the same boundary conditions. The results in figure 18 show that the 10 K
simulation has a much narrower distribution and a lower bump to the left of the mean, much
like the finite element simulations. In the 10 K simulation, the thermal vibrations are reduced
to a minimum.

4. Conclusions

In this study, we compared and contrasted three different numerical methods representing three
different size scales of simulations (atomistic modelling, crystal plasticity using finite elements,
and internal state variable theory using finite elements). Qualitative similarities were found
related to the yield stress of the specimens as a function of aspect ratio. As the x/y aspect ratio
of the specimen increased (close to simple shear conditions), the yield stress increased until the
ratio reached about 8 : 1 in which the yield stress saturated. Similarly, as the y/x aspect ratio of
the specimen increased (close to bending conditions), the yield stress decreased until the ratio
reached about 8 : 1 in which the yield stress saturated. The three different numerical methods
also gave similar qualitative responses related to inhomogeneous stress and strain distributions
in the corner regions of the specimens and a centralized homogeneous deformation region.
However, several differences in the three numerical methods were evidenced. When comparing
the distribution for the finite element analyses to the atomistic simulations, a much narrower
stress distribution arose for the finite element analyses due to the lack of thermal vibrations
experienced in the atomistic simulations. A 10 K atomistic simulation which dampened out
the high frequency thermal vibrations verified this notion. A size scale effect related to the
volume averaged shear stress in the specimen was evidenced. As the specimen size increased,
the yield stress decreased. Finally, when comparing the three different numerical methods, the
place of highest dislocation nucleation occurred where the highest plastic spin, highest stress
gradients, and highest strain gradients occurred.
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