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A Multiscale Assembly
Inspection Algorithm

An important aspectofrobust automatedassembly is an accurate and effi
cient method for the inspection offinished assemblies. This novel
algorithm is trained on synthetic images generatedusing the CAD
modelof the different components of the assembly. Once trained on

synthetic images, the algorithm can detect assembly errors by exam
ining real images of the assembled product.
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A t a time when quality and cost are becoming even more

important in the manufacturing process, accurate and

efficient inspection is critical. However, the complexity of

electrical and mechanical assemblies has reached a point

where human inspection can be fatiguing, unreliable, and

expensive. This has prompted many manufacturers to imple

ment automated inspection systems, particularly for the

inspection of two-dimensional components such as printed

circuit boards [1]. These systems are typically driven by the

information available in the CAD model of the circuit to be

implemented.

Unfortunately, efforts to achieve the advantages of CAD

driven inspection systems for three-dimensional assemblies

have been largely unrealized. While a large body of research

exists in the area of CAD-driven vision [2], this work has been

primarily focused on the recognition of three-dimensional

objects as opposed to their inspection. For object recognition

tasks, one typically needs to index into a large or complex

database of possible object models. Discrete object features,

such as edges and corners, have been widely used in these
recognition approaches because they allow for efficient index

ing into the model database [3].
In contrast to feature-based techniques, template-based

approaches directly compare gray-scale image data to a prede

fined model, or template. For inspection, the additional infor

mation present in gray-scale

data makes template-based

approaches potentially more

sensitive. In fact, direct com

parisons have shown that

template-based methods can
outperform feature-based

methods in some applications [4]. Traditionally, template

matching has been viewed as being computationally expen

sive; however multiresolution processing can make these

approaches computationally efficient [5].

Our approach to automated inspection is grounded in

multiresolution template matching, however, the templates

are stochastic models of the expected gray-scale variations in

the image [6, 7]. These models are built by examining com

puter-generated images that exhibit the allowable variations

in a correct assembly. The process of obtaining a model is

conceptually illustrated in Figure 1 using the example assem

bly shown in Figure 2. The process starts by using informa

tion from the CAD model to generate multiple ray-traced

images of the assembly within the range of acceptable toler

ances [8, 9]. Connectivity information calculated from the

CAD model is used to create an object tree that describes how

assembly errors can manifest themselves in the image [10,

11]. The synthetic images and object tree are then used by the
training algorithm to determine a stochastic model of the

acceptable gray-scale and positional variations in an image of
a real assembly. The training is performed using the Expecta

tion Maximization (EM) algorithm [12] with the resulting

parameters normalized using a single real image.

A key feature of our approach is the utilization of comput

er-generated synthetic images in the training process. This
approach has the advantages

of avoiding the manufacture

of physical prototypes while

providing a wider variety of

acceptable variations. This not

only results in a more robust
inspection algorithm but also
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MULT/SCALE OBJECT DETECTION
We approach automated inspection as a problem in object

detection, where we assume the inspection algorithm must

make decisions based on a monochrome image of the object.

facilitates concurrent design of the assembly and its inspec

tion system. Since each step in the inspection design process

is automated, inspection becomes feasible for small batches.

In the next section we present an overview of the multiscale

inspection. We will next describe the CAD database and its

role in guiding the inspection algorithm and address the syn

thetic image generation process. We will then present an

example with our experimental results and summarize our
conclusions.

Our multiscale detection algorithm is based on a stochastic

object model, which is tailored to a specific object by adjust

ing the model structure and changing model parameters. The

model generation and parameter estimation is driven by a

CAD model of the object as described in the following sec

tions.

Our inspection algorithm models an object as a stochastic

tree, where the nodes of the tree represent various compo

nents, or subassemblies, of the object. These subassemblies
contain the key features for discrimination and error detec

tion. Nodes near the root of the tree typically model larger

structures that aid in locating the object while nodes further

down "zoom in" on the critical areas where assembly errors

are likely to occur. We represent the two-dimensional posi

tion and orientation of each subassembly as a state vector X.

Since the position of a subassembly varies from image to

image we model it as a random vector. The state density func

tion for a node depends only on the state of its parent node in

the object tree and on a set of node specific parameters <1>.

Thus, the states form a Markovchain along any path from the
root of the object tree.to a leaf node.

Figure 3 shows an object tree, where the superscript (i) is

used to denote quantities specific to node i. The image data Y
associated with each node is modeled as a set of random vari

ables with density functions parameterized by a template 8

that indicates the expected appearance of the subassembly as

well as the expected data variability. The data values will also

depend on the position of the subassembly in an image, so the

overall object model is as shown in Figure 3, with the arrows

~
j -x position

X'O) = 0 - .
1 
o - rotation angle

Training

Object Tree

Model Parameters

...

Synthetic Training Images

Normalization with one real image

Figure 1. Toobtaina model ofwhat a correctlyassembledproductlooks

like, the system firstdeterminesoptimalviewingparameters. It then

generates numeroussynthetic imagesof the assemblywhich include

acceptable variations that donot affectits function. Thelocationsof

potentialerrorsareautomaticallyidentifiedfrom the CAD modeland

passedto the trainingprocedure using a datastructure referredto asan

objecttree. Themodelparameterswhichdescribe the statisticalgray

scaleand positionalvariations areobtainedusing maximum likelihood

estimation. A singlerealimage is used to adjust forthe lightingcondi

tions in the testingenvironment.

Figure 2. A videoimageof a pat

tern wheelassemblythat is usedas

a representative exampleof a typi

calmechanicalassembly forwhich

the inspection algorithmwas

implemented.

Figure 3. An example ofan object tree that identifies the significant loca

tions within a trainingimageas wellas their relationship to eachother.

ThestateX of eachnode is modeledas a randomvectorwith density

functionsthat dependon the state of the parentnode and a set ofnode

specificparameters<p. Theimagedata Y of eachnode consistsof the

wavelettransformof the imageand is modeledas a randommultiscale

fieldwith density functionsparameterizedby a template e.
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from the root to the leaves, performing a sequential MAP

(SMAP) estimate of the state at each node [6] and passing this

estimated state to the child nodes. The object passes inspec

tion only if all subassemblies are located and found to match

the model. This procedure hinges on our ability to compute a

log likelihood ratio at each state and resolution, which in turn

relies upon a knowledge of the parameters 8 and <jl for each

node. These parameters, as well as the structure of the object

tree, are determined using the CAD model of the object.

These parameters are adjusted at the actual inspection site by

using a single real image to compensate for variations in

lighting environments.

We first use the CAD model to identify the important sub

assemblies and generate the object tree. The CAD model then

generates a series of training images, each of which contains a

properly assembled object, with all subassemblies and viewing

conditions within their allowed tolerances. The object tree is

"overlaid" on one of the training images, identifying the loca

tion and orientation of each subassembly in that image. This

information is used to initialize the model parameters, which

are then determined from the full set of training images via

the iterative expectation maximization (EM) algorithm [6, 12].

Variation
Parameters

Horizontal
Band Data

Horizontal
Band Means

Vertical
Band Data

Vertical
Band Means

Image
Data

Figure5. Thesinglemonochrome imageof the assemblyunder inspec

tion is processedusing the multiple resolution Haartransformillustrat

ed in Figure4.An exampleof the resultsof this procedure is providedin

the upperhalf of the figure. In this example the nodeof the objecttree

that correspond,to the shaft of the pattern wheel is shownat maximum

resolution. This transformedversion of the inspection image is com

paredto the statisticalmodelof what we expect to seeat this node fora

correctlyassembledpattern wheel. Thestatisticalmodelshown in the

lowerhalf of the figure is automaticallycalculatedfrom the training

imagescreatedfrom the CAD model of the assembly. Thedarkregions in

the model representa mask whichexcludesextraneousinformation

from the identification process.

Figure4. An illustrationof the Haartransformappliedrecursively to the

videoimage of the pattern wheelshown in Figure2. Theupperportion

of the figure showsthe actual transformedimage at three differentreso

lutions. The lowerportionof the figure illustratesthe pixel calculations

that are recursively appliedto createthe multiresolutiontransformed

image.

indicating conditional dependence.

We use the multiresolution Haar transform of each image

as our data (see Figure 4) and use a corresponding multireso

lution template at each node of the object tree (see Figure 5).

This allows us to model each node at resolutions appropriate

to the important features in the subassembly. It also permits

us to search for the subassemblies via a fast multiscale search

technique. We use recent results from the theory of multi

scale random processes to aid in the analysis and construction

of the model [13,6].

The search for the most likely position X of a subassembly

begins at a coarse resolution and progresses to finer resolu

tions. For a given resolution and candidate state we use the

image data and templates at that and coarser resolutions to

compute the log likelihood ratio between the hypothesis that

the subassembly is present and the hypothesis that it is not.

The states with the largest log likelihood ratio are investigated

at the next finer resolution. The search continues in this fash

ion until the largest log likelihood ratio exceeds a predefined

decision threshold B, at which point the search returns the

associated state as the position of the subassembly. The search

will terminate in a "no match" condition if it reaches a point

where all remaining candidate states have log likelihood

ratios less than a rejection threshold a. Thus, the search takes

the form of a sequential likelihood ratio test, where the search

progresses in scale rather than time. A more detailed discus

sion of the algorithm can be found in [7].

The inspection algorithm searches for the object in an

image by using this fast multiscale search technique at each

node of the object tree. The search traverses the object tree
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Figure 6. This figure presentsan illustration of tolerance zones fora

simplecomponentdepicted in (a). Any instanceof this componentthat

lieswithin the shadedregion boundedby the MMC andLMCsurfacesis

within tolerance and will function as designed. Instancesofcomponents

within the tolerance zone arecreatedby traversing the CSCtreesof the

MMC andLMCmodelsof the component, as illustratedin (b), where

eachprimitiveis selectedfromwithin its tolerance zone.

MMC

(b)

(a)

Figure7.An explodedviewof

the pattern wheelassembly

generatedfrom the informa

tion in the CAD model. This

viewillustrates the orderof

assemblyas wellas the sin

nment pin 1 gle common insertionaxis

forall of the pins.Individual

surfacecontactsbetweendif-

L~~i~g ferentcomponentsareused

to createthe liaison diagram

shown in Figure8.

Shaft

LMC

liaison diagram [I1J and it shows the interaction among the

different components of the assembly. This process is demon

strated using Figure 7 which shows an exploded view of the

pattern wheel assembly. This figure illustrates the order of

operations required to complete the assembly and highlights

the single common axis of insertion for the pins and the shaft.

Using this information along with the correct final state of the

assembly, the system determines which surfaces will be in

contact. For example, the single cylinder pins (the high densi

ty and the unlatch pins) are inserted only into wheel-a1 and

wheel-a2 and therefore form a close relationship with the

wheels through their side surfaces. The shaft is only inserted

into the center hole of the gear. The multi-cylinder pins (the

alignment pins), however, are in contact with the holes in the

gear, the locking ring, and the wheels and functionally are

required to maintain a precise separation between the two

wheels as well as between wheel-a1 and the locking ring

which rests on the gear. This last piece of information can not

CAD DATABASE ANALYSIS
As discussed in the preceding section, data obtained from an

analysis of the CAD model of the assembly is used to guide the

inspection algorithm in the training process by addressing the

different variations possible and identifying an appropriate

object tree in the training images. To be able to produce a

large number of synthetic images with the required varia

tions, a suitable CAD model has to be generated for the

desired assembly and its components. The relationship among

the different components of the assembly must be known to

provide the inspection algorithm with an appropriate object

tree.

For purposes of illustration, the pattern wheel assembly

pictured in Figure 2 is used as a simple example of a realistic

assembly used in a small batch manufacturing environment.

For each component of the pattern wheel assembly, a CAD

model was created using the TWIN Solid Modeling Package

developed by the CADLAB of Purdue University. TWIN is a

boundary representation solid modeler but also accepts Con

structive Solid Ceometry (CSC) models as input. Therefore,

components are created in the CSC format and then convert

ed to boundary representation for internal calculations [8].

Three CSC models are created for every component to

account for component variations that naturally occur in a

manufacturing environment. One model represents the com

ponent at its maximum tolerance limit while another repre

sents it at its minimum tolerance limit. Both models are

created by using the maximum and minimum dimensions

that allow the component to function as designed. These are

the Maximum Material Condition (MMC) and Least Material

Condition (LMC) of the component, with the region in

between forming the component's tolerance zone [9]. Creat

ing a CAD model of the component that lies within its toler

ance zone generates an instance of the component that is

within its allowed tolerance. Figure 6 shows an example of the

tolerance zone of a component. A new random instance of the

component is generated by tracing the CSC tree of the LMC

and the CSC tree of the MMC models of the component and

selecting from a uniform distribution of the geometric para

meters of the primitives in the CSC trees. The third CSC

model represents the component at its optimal dimensions

which can then be used, along with the other two CSC mod

els, for generating a nonuniform distribution of random com

ponents that are within tolerance.

The locations of all components within the nominal

assembly are specified by homogeneous transformation

matrices that are used to accomplish two tasks. First, the vari

ations between the relative locations of different components

is specified in terms of a tolerance zone for these homoge

neous matrices [10] so that different instances of properly

functioning assemblies can be created. Second, when the

components are transformed as specified by these homoge

neous matrices, the contact relationship between any two

components can be found by querying the modeler. The iden

tification of the bounding faces between any components that

are mated is used to form a graph in which the vertices repre

sent the different components of the assembly and the edges

between the vertices represent liaisons between the compo

nents, as connections or as contacts. This graph is called the

18. IEEERobotics & Automation Magazine June 1996



Figure 8.A liaison diagram forthe patternwheelassemblyshowingthe

contactrelationships amongthe different components. Eachcircle rep

resentsthe structureof a particular component. Thedouble arrows indi

catea contactbetween somesurfaces within twocomponents.

visible in the templates depicted in Figure 5.

The second rendering technique is used to create more

physically realistic synthetic images that are required to build

the statistical model of what a correctly assembled product

should look like (see Figure 1). To obtain sufficiently realistic

Figure 9. Theerrortree forthe

HighDensityPinthat isgenerat

ed fromthe liaison diagram. This

treeillustrates the possible prop

agation ofmisalignedsurfaces

within the assembly. Thecircles

represent different surfaces of a

component. (For simplicitythe

threealignmentpinsareconsid

eredtogetherand the unlatch

pin isnot shown.)Thedashed

arrow represents an edgethat

existsin the liaison diagram but

that is not includedin the error

tree. Thisallows severalerror

treesto be combinedto formthe

objecttreeusedby the rnultiscale

detection algorithm.

G

Hi D-Pin

Shaft

SYNTHETIC IMAGE GENERATION
There are two image generation algorithms used to create

synthetic images from the CAD model of the assembly. The

first is a fast rendering technique that uses only a simple local

illumination model and takes advantage of special purpose

VLSI hardware for performing geometrical calculations.

These draft images are used to identify an optimal camera

location and to further refine the object trees used by the

inspection algorithm [14]. The location of the camera relative

to the assembly under inspection will greatly affect the sensi

tivity of identifying possiblle errors. Our approach to comput

ing an optimal camera location is to try and maximize the

amount of information in the resulting image that is relevant

to evaluating contacts between components. To do this we tag

each of the contact surfaces in the error trees with a unique

ambient color, with all other surfaces set to black. We then

render the assembly using a graphics workstation equipped

with a Z-buffer using only the ambient intensity of the poly

gons. The resulting image contains the number of visible pix

els for each surface of interest. Since with hardware support

this procedure takes only a fraction of a second, it can be

repeated for a large number of potential camera locations.

The optimal camera location is selected as that which maxi

mizes the number of visible pixels and surfaces. The informa

tion from this image created from the optimal camera

location is also used to identify the location and size of the

object nodes required by the inspection algorithm. To simpli
fy processing, all object nodes are rectangular, however, a

mask is used to identify the regions within the node that cor

respond to error tree surfaces. Only this region is used in

building the statistical model of the node. This prevents irrel

evant background information from affecting the sensitivity
of the inspection process. An illustration of creating this mask

information is provided in Figure 10. These masks are also

be clearly deduced from the exploded view but is clear in the

resulting liaison diagram shown in Figure 8 which is formed

from the contact information explained above. Each circle in

the diagram represents a surface on an individual component

with the arrows indicating a contact between surfaces of dif
ferent components.

The liaison diagram forms the basis from which the object

tree is generated. Contacts between different components
imply that they were brought together by the assembly

process and that errors in that process would result in mis

aligned or missing contacts. Thus, to check for errors in the

insertion of an individual component, the liaison diagram is

traversed starting with the vertex associated with that compo

nent. This process is illustrated for the high density pin in

Figure 9, resulting in a data structure that we refer to as an

error tree. The error trees for all components of interest can

then be combined to create the complete object tree (see Fig
ure 3) that guides the inspection process.

All relevant information needed by the inspection algo

rithm that can be gleaned from the CAD model is now avail

able. The remaining step in the training process is the actual

creation of realistic images that include the object tree and

the different environmental variations that may occur in the

actual assembly workcell. This is the topic of the next section.
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Extent of the alignment pin in image plane

Masking information of the alignment pin

Figure10. Theouter rectanglerepresents the boundingbox of the pro

jection of an alignment pin onto the imageplane.The inner rectangleis

the boundingbox of the visibleportionofthis alignment pin. This

boundingbox is passedto the inspectionalgorithmas an objectnode

alongwith the mask that identifies the regionwhich corresponds to the

alignment pin. Thisallowsthe inspection algorithmto ignoregray-scale

variations fromsurfacesthat areunrelatedto the assemblyprocess. This

mask informationis obtainedusingZ-bufferhardware.

images, light-object interaction must be modeled. Although

graphics workstations available today can generate shaded

images at video rates, the illumination models used to gener

ate these images typically only deal with the very first reflec

tion from an object's surface. These so called first-order or

local models do not include the effects of light reflecting from

several objects or being transmitted through objects. These

global models need to be considered in order to obtain more

realistic images that can model different types of materials,

particularly those that are highly reflective such as polished

metals [15]. The only established rendering techniques that

attempt to model global lighting effects are ray tracing and

radiosity. Because specular effects are very hard to model

with radiosity, metallic parts are hard to simulate in images

that are rendered using radiosity techniques. As a result, we

selected ray tracing as the rendering technique for this

application.

AN EXAMPLE
We will now illustrate the implementation of the entire

assembly error inspection system for the simple example of

the pattern wheel presented in Figure 2. First, the CAD model

of the assembly is used to create instances of the different

components that have simple variations within their allowed

20 • IEEE Robotics & Automation Magazine

tolerances. This is required in order to produce training

images that include acceptable levels of variations. Next, as

explained in our discussion of CAD database analysis, the liai

son diagram of the pattern wheel assembly is generated auto

matically from surface contact information (see Figure 8).

The exploded view of Figure 7 suggests that the pattern wheel

assembly can be completely assembled with only a single

common axis of insertion. This identifies the pins as potential

sources of errors that can occur due to misalignment. From

the liaison diagram the system automatically generates the

error trees of the pins. These error trees, like the example in

Figure 9, are used as the object trees (see Figure 3) which

identify the important locations in the images for various

types of assembly errors. The number of levels included in the

tree is determined by the visibility of the root node, i.e., if the

single view used by the inspection algorithm results in the

root node being partially occluded then evidence of misas

sembly should be corroborated by its child nodes to which the

error may be propagated.

Ray tracing is then used to generate a group of synthetic

images from the assembly CAD model. Determining the opti

mal number of images to use is the subject of ongoing

research, however, for this particular example six images were

used. Parameters for the illumination model are specified

from the material types of the different pattern wheel assem

bly components. Light and camera placements are automati

cally evaluated to provide maximum visibility of contact

surfaces representing potential locations of assembly errors.

The synthetic images along with the information from the

object trees are then passed to the multi scale inspection algo

rithm for training. Figure 11 illustrates one such synthetic

image where the wheel-a2 error tree is shown superimposed

onto the image (see Figure 8). The object tree consists of the

"boxed in" areas. The upper left corners of the nodes are con

nected to one another to indicate the connectivity of the tree,

and the number of boxes around each node indicates that

node's level in the tree. Note that up to this point no real

images of the assembly are required so that this system can

also be used to evaluate prospective designs for their

inspectability without even building a prototype. Once the

system has been trained it is ready to perform its function of

inspecting real assemblies. Prior to automated inspection, a

single real image of a correctly assembled product must be

obtained from the actual inspection station to compensate for

Figure11. A synthetic image of the

pattern wheelassemblywith the

wheel-a2errortreedenotedby the

connectedboxes.Thistree is used

as the objecttreerequiredby the

inspectionalgorithm to guide its

analysisof the image. Thenumber

of boxesaroundeach objectrepre-

. ~~~_~~ J sents the object'slevelin the tree.

Theboxesare automaticallygen

eratedby calculatingthe visible

portionsof the componentsin the

errortreewith the first levelbox

includingthe entireassembly.
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Figure 12. A realvideo imageof

a defective assembly with the

errorcorrectly identifiedby the

inspection algorithm. The "X" in

the box identifies the location in

the imagein whicha mismatch

with the trainingimageswas

foundthus indicating the miss

ing alignmentpin.Note that the

slightlydifferent position, orien

tation,andscaleof the real

imageas opposed to the syn

thetic trainingimagesas indi

catedby the largeboundingbox

doesnot adversely affectthe

robustness of the algorithm.

Figure 13. A realvideo imageof

a defective assemblyresulting

frommisplacing the top wheel

(wheel-a2). Thealgorithm

detectedno errors in trying to

locatethe assemblyand the first

levelof the wheel-a2 errortree

as indicatedby the singleand

double linesquares. A defective

assemblywasidentified when

the inspection algorithm

descended to the secondlevelof

the errortree

variations in lighting environments.

The system was tested on numerous real video images of

correctly assembled pattern wheels, which can be safely

assumed to comprise the vast majority of manufactured

pieces, in various positions, orientations, and lighting condi

tions uniformly distributed in the range specified by the train

ing set. In all cases the inspection algorithm produced no

false negatives, despite the large variations in the resulting

image, thus illustrating the robustness of the technique. The

algorithm consumed an average CPU-time of 12 seconds on a

Sun SPARC-I0 workstation to identify a correct assembly.

Next the system was tested with real assemblies that were

misassembled due to missing or misaligned pins. Figure 12

shows an example of a video image of one such defective

assembly in which the alignment pin is missing. The perfor

mance of the algorithm is graphically illustrated in the figure

by the boxes that are superimposed on the image. The algo

rithm first identifies the gross location of the assembly within

the image. The box around the entire assembly indicates

where the algorithm located the part. Note that the tilt of the

box indicates that the algorithm was able to adapt to the dif
ferent orientation of the part in the real image as compared to

the training images, once again illustrating its robustness.

The algorithm then "zooms in" to look for the pin, guided by

the information in the error trees. At this point it detects a

mismatch which is indicated in the image by an "X" in the

area where it last checked to find the pin.

Figure 13 shows an example of a more subtle error result-

June 1996

ing from wheeI-a2 being misplaced on the pins. Note that the

error can not be detected from just considering wheel-a2.

However, once the algorithm descends to the second level of

the wheel-a2 error tree, which includes all the pins (see Fig

ure 8), it detects an error in the node associated with one of

the alignment pins. This is again indicated in the image by an

"X"in the area where a problem was detected.

CONCLUSIONS
This article has discussed the implementation of an assembly

inspection system that uses a multi scale algorithm to detect
errors in assemblies after being trained on images of correctly

assembled products. It has been shown that synthetic images

generated by using the CAD models of the assembly and com

puter graphics ray tracing rendering techniques can be effec

tively used to train the algorithm. The use of synthetic images

has the advantages of simplifying the training process and

automating the image selection and the object tree allocation

procedure. In addition, the problem of addressing the differ

ent variations that can occur in the assembly workcell is sim

plified. The use of synthetic images generated directly from

CAD models also allows the fine tuning of the inspection algo

rithm early in the design process thus allowing the assembly

and inspection processes to be designed concurrently.
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