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Abstract—The remote sensing scene images classification has
been of great value to civil and military fields. Deep learning
models, especially the convolutional neural network (CNN), have
achieved great success in this task, however, they may suffer
from two challenges: firstly, the sizes of the category objects
are usually different, but the conventional CNN extracts the
features with fixed convolution extractor which could cause the
failure in learning the multi-scale features; secondly, some image
regions may not be useful during the feature learning process,
therefore, how to guide the network to select and focus on
the most relevant regions is crucially vital for remote sensing
scene image classification. To address these two challenges,
we propose a multi-scale attention network (MSA-Network),
which integrates a multi-scale (MS) module and a channel and
position attention (CPA) module to boost the performance of the
remote sensing scene classification. The proposed MS module
learns multi-scale features by adopting various sizes of sliding
windows from different depths’ layers and receptive fields. The
CPA module is composed of two parts: the channel attention
(CA) module and the position attention (PA) one. The CA
module learns the global attention features from channel-level,
and the PA module extracts the local attention features from
pixel-level. Thus, fusing both of those two attention features,
the network is apt to focus on the more critical and salient
regions automatically. Extensive experiments on UC Merced,
AID, NWPU-RESISC45 datasets demonstrate that the proposed
MSA-Network outperforms several state-of-the-art methods.

Index Terms—Remote sensing scene; multi-scale; attention;
feature fusion

I. INTRODUCTION

The explosion of high-resolution remote sensing imaging

technology has unleashed a veritable data deluge in inves-

tigating the land-use and land-cover scenes [9], [16], [19],

[18]. Especially, the recognition and classification of the

remote sensing scene images have been of great value to civil

and military fields, due to its plentiful spatial and semantic

information. Specifically, in this classification task, it uses

pixel-based [3] or different levels of features to identify and

label the images based on the image contents. However, the
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remote sensing scene image usually contains complicated

ground objects with different spatial distributions, such as

roads, buildings, and rivers, and that makes it difficult to

classify the specific category of the whole scene image.

To tackle this challenge, during the past years, many works

have been proposed for scene classification. The early attempts

for this task mainly focused on the hand-crafted features such

as texture, shape, color, and spatial representations which are

combined and fed into a classifier for prediction. For example,

Yang et al. [65] designed a category of image descriptors based

on saliency for remote sensing scene images classification.

Luo et al. [40] proposed to extract the radiometric, Gaussian

wavelet, Gabor, and Gray level co-occurrence matrix features

with different spatial resolutions for indexing of remote sens-

ing scene images. To extract more spatial features, the work

in [77] developed an effective approach by fusing the local

and global spatial features with multi-scale feature learning

mode. Meanwhile, Huang et al. [24] utilized the patch-based

multi-scale local binary pattern features and a Fisher vector

for remote sensing scene images classification. Some other

previous works also used the color features [49], [31], [57],

[51], histogram of oriented gradients features [6] [7] [41], and

bag-of-visual-words [74] [52] [12] for classification. However,

the above methods based on the hand-crafted features may

yield unsatisfactory performance since they require subjective

and empirical feature definition and selection. Furthermore,

these features are usually low-level and mid-level, which may

become limited and inadequate for the complex remote sensing

scene image feature learning.

Since the remarkable performance of the convolutional

neural network (CNN) in many computer vision fields [61],

[76], [25], [5], [73], [22], [17], [45], many researchers also

used CNN to extract high-level features from the remote sens-

ing scene images[15], [20]. Compared with the hand-crafted

based feature learning, CNN could extract more semantic

features by deep network layers in an end-to-end learning

manner. Especially the feature representations from the deeper

layers could provide more abstract and semantic information,

which are more applicable to the remote sensing scene image

classification task. There are many baseline CNN models such

as AlexNet [26], VggNet [54], GoogleNet [56], ResNet [13],

which have achieved impressive performance for the natural

image classification on ImageNet dataset [27]. Inspired by

these works, many works tried to explore the huge power

of CNN for remote sensing scene image classification. For

example, Han et al. [11] used the AlexNet as the backbone

architecture and incorporated the spatial pyramid pooling layer

to learn the multi-scale information of the remote sensing
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Fig. 1: The size of the target category airplane in scene image (a) is quite different from that of the target category tennis court

in scene image (b). In the image (c) and (d), the red ’.’ denotes the target category key regions, and the red ’×’ represents the

useless regions of other objects, it is obvious that not all the image regions are useful during the feature leaning process.

scene image. Castelluccio et al. [3] explored the CaffeNet [28]

and GoogleNet [56] with widely different network settings

for this classification task, in [50], [43], the deeper network

architecture such as the ResNet was used to learn more se-

mantic features. Meanwhile, some other hand-crafted features

such as the texture, color, and Local Binary Patterns (LBP) [1]

were combined with the deep features to further improve the

classification performance. The previous works in [4], [69],

[58], [39], [23] proposed different feature fusion strategies

with various network structures to explore the effectiveness

of different fusion modes. To alleviate the influence of limited

remote sensing scene images, transfer learning or pre-trained

methods [3], [4], [32], [21], [10], [34], [58], [44], [23] which

pre-train the network on large amounts of datasets such as

the ImageNet had been used for the improvement of the

classification performance.

Although these works have achieved promising performance

for remote sensing scene classification, they may encounter

two main challenges. Firstly, the category objects of remote

sensing scene images usually have different sizes as shown in

Figure 1 (a) and (b), in which the size of the target category

airplane in scene image (a) is quite different from that of the

tennis court in (b). However, the conventional CNN extracts

the features with a fixed convolution extractor which could be

a handicap to learn the multi-scale features; secondly, as shown

in Figure 1 (c) and (d), the red ’.’ denotes the target category

key regions, and the red ’×’ represents the useless regions of

other objects, it is obvious that not all the image regions are

useful during the feature leaning process. Therefore, how to

guide the network to select and focus on the most relevant

regions is crucially vital for remote sensing scene image

classification. To address these two challenges, in this paper,

we propose a multi-scale attention network (MSA-Network) to

achieve remote sensing scene images classification tasks. The

proposed MSA-Network uses ResNet [13] as the backbone

network and integrates a multi-scale (MS) module and a

channel and position attention (CPA) module to further boost

the classification performance. Inspired by the previous work

[56], the designed MS module extracts multi-scale features

from different receptive fields with various sizes of sliding

windows. Besides, since different depths of layers may contain

pyramidal scale features, we add the MS module behind each

stage’s last residual block to extract the multi-scale features

hierarchically. The CPA modules consist of two parts, i.e., the

channel attention (CA) module, and position attention (PA)

module, respectively. During the feature learning process, the

CA module extracts the attention features from channel-level

globally, while the PA module learns the attention features

from pixel-level locally. By integrating those two attention

features, it could guide the network to focus on more in-

formative and critical regions globally and locally. The main

contributions of this paper can be summarized as follows:

• A novel multi-scale module has been proposed to improve

the network ability to capturing multi-scale features dur-

ing the feature learning process.

• We design a channel and position attention module, which

guides the network to focus on the informative critical

regions globally and locally.

• Extensive experiments on three (UC Merced, AID,

NWPU-RESISC45) datasets demonstrate our proposed

MSA-Network has achieved competitive results over

other state-of-the-art methods.

The rest of the paper is organized as follows. Section 2

introduces the proposed MSA-Network. The extensive exper-

iments and results are presented in Section 3. In Section 4,

we conduct a qualitative analysis of our designed model. In

Section 5, we summarize this paper and give a brief discussion

of the future work.

II. THE PROPOSED MSA-NETWORK

In this section, we give a detailed description of the designed

model. As illustrated in Figure 2, the main backbone of our

model is based on ResNet, which has achieved great success in

many computer visions tasks. Meanwhile, for better extracting

more multi-scale and discriminative features, we propose an

MS module and a CPA module. Specifically, we add the MS

module after each residual block to extract the multi-scale

features hierarchically. Since the deeper layer contains more

high-level and semantic features, we integrate the CPA module

after the last MS module to focus on more informative and

critical regions. For different depths of ResNet backbones,

we list the parameters and network settings in Table I. The

more detailed introductions of the proposed modules will be

discussed in the following sections.
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Fig. 2: An overview of the proposed architecture for remote sensing scene images classification. The main backbone of our

network is based on ResNet, and we integrate the MS module and the CPA module with the network. The MS module is added

behind each stage’s last residual block to extract the multi-scale features hierarchically. The CPA module is added behind the

last MS module to guide the feature learning process to focus on more informative and critical regions. For different depth of

ResNet backbones, we list detailed parameters and network settings in Table I.

TABLE I: Parameters setting of the network

layer name 18-layer 34-layer 50-layer 101-layer

Conv1 7× 7, 64, stride 2

Pooling 3× 3, max pool, stride 2

Conv2





3× 3, 64

3× 3, 64



× 2





3× 3, 64

3× 3, 64



× 3









1× 1, 64

3× 3, 64

1× 1, 256









× 3









1× 1, 64

3× 3, 64

1× 1, 256









× 3

MS module layer

Conv2





3× 3, 128

3× 3, 128



× 2





3× 3, 128

3× 3, 128



× 4









1× 1, 128

3× 3, 128

1× 1, 512









× 4









1× 1, 128

3× 3, 128

1× 1, 512









× 4

MS module layer

Conv2





3× 3, 256

3× 3, 256



× 2





3× 3, 256

3× 3, 256



× 6









1× 1, 256

3× 3, 256

1× 1, 1024









× 6









1× 1, 256

3× 3, 256

1× 1, 1024









× 23

MS module layer

Conv2





3× 3, 512

3× 3, 512



× 2





3× 3, 512

3× 3, 512



× 3









1× 1, 512

3× 3, 512

1× 1, 2048









× 3









1× 1, 512

3× 3, 512

1× 1, 2048









× 3

MS module layer

CPA module layer

Output-layer average pool, fc, softmax

A. Multi-Scale Feature Learning

The remote sensing scene images usually compose of

complex and diverse objects in the real world, and the main

category of remote sensing scene object is often with various

sizes. However, the conventional ResNet usually uses the fixed

size convolutional layers to extract local features which could

be a handicap for the network to learn multi-scale features.

Thus, inspired by the previous work in [56], we use an MS

feature learning module as a basic unit of the network to

enhance the multi-scale feature learning. The detailed structure

of the proposed MS module is illustrated in Figure 3. Denote

the Fi−1 as the input feature from the previous layer, and Fi

as the output feature from the designed module. Instead of

directly passing Fi−1 into the next layer, we first apply multi-

scale feature learning with different convolution kernel sizes.

Here, we use {1× 1, 3× 3, 6× 6, 9× 9} as the basic units to

generate four scale-level features. Next, an interlaced feature

learning strategy is adopted for aggregating more contextual

multi-scale information from the input features. Specifically,

for the sizes of 1×1 and 3×3 kernels, they aim to learn more

precise and subtle information. While for the sizes of 6 × 6
and 9 × 9 kernels, they are more likely to extract global and

large-scale representations. The different sizes of convolution

operations fs can be formulated as:

fs =
∑

s∈S

(ks ∗ Fi−1 + bs), (1)
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Fig. 3: The detailed structure of the MS module, Fi−1 and Fi are the input and output feature maps of the ith layer, respectively.

where ks is the kernel for the scale of s ∈ {1, 3, 6, 9}, and

bs is the bias for fs. After the interlaced feature learning, two

1×1 convolution layers are utilized to aggregate the global and

local features and then input to another 1×1 convolution layer

to gain the squeezed feature Fc. Subsequently, we perform an

element-wise sum Fc with Fi−1 by residual learning to further

improve the convergence ability of the network, and the output

feature maps Fr can be given as:

Fr = Fc + Fi−1. (2)

After that, the final Fi is gained by applying a 1×1 convolution

operation on Fr. Notably, inspired by the fact that different

depths of layers could contain pyramidal scale features [33],

for our MAS-Network, we insert our MS module behind the

last residual block of each stage to learn the scale-relevant

feature pyramidally, and the detailed inserted position of this

module is illustrated in Table I.

B. Channel and Position Attention Modules

Since the remote sensing scene images are captured from

an overhead view, they usually contain complex and diverse

objects. Thus, many objects are not useful for the image

classification task. To handle this problem, we use the attention

mechanism to guide the feature learning process to focus

on more informative and critical regions. Conventionally, the

attention mechanism has two categories: one is the hard

attention which restricts the regions to 0 or 1, the other one is

the soft attention which calculates the weight of the specific

region. In this paper, we use the soft attention mechanism with

two attention modules to select and learn more global and

local representations. Denote the output feature map from the

last residual block as F ∈ R
C×H×W , where C, H , W are the

channel, height, and width of the output feature, separately. FC

is the channel attention feature map, and FP is the position

attention feature map. In the following subsections, we will

give a detailed introduction to these two attention modules.

1) Channel Attention Module: Our channel attention mod-

ule is inspired by the previous work squeeze and channel

excitation block [29] and the spatial pyramid pooling [14].

The feature map of each channel contains different global

and semantic responses, which is essential for remote sensing

scene images understanding. Thus, in order to improve the

ability to learn discriminative features from the channel level,

we design a CA module to encode a wider of contextual and

global representations from the channel level. The detailed

structure of the proposed CA module is illustrated in Figure

4. For the input feature map F ∈ R
H×W×C , we first perform

three max-pooling operations with sizes of {2 × 2, 4 × 4,

8 × 8} to learn the contextual and global information, and it

could be formulated as {Fsp, p ∈ {2, 4, 8}}. Then, a SE Block

is utilized on Fsp to enable the network to focus on the most

salient representations globally from the channel-level. Here,

we denote each single F j
sp as the jth channel feature map of

Fsp where j ∈ [1, C]. In SE Block, a global-average pooling

over F j
sp is used to generate the global weight aj of the jth

channel. And the operation of the global-average pooling for

the jth channel can be formulated as :

aj =
1

H ×W

H∑

x

W∑

y

F j
sp(x, y). (3)
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For better improving the generalization of the module, a

fully connected (FC) layer is applied to the weight vector

a (a = {a1, a2, ..., aj , ..., aC}) with a ReLU operator δ.

Then, another FC layer with sigmoid activation σ is used

to normalize outputs of the previous layer. These two FCs

operations are defined as:

AW = σ(W2δ(W1a)), (4)

where W1 ∈ R
C×

C

r and W2 ∈ R
C

r
×C are the respective

weights of the two FCs, and the gained value of AW represents

the importance weight of channel feature map from the global-

average level. Additionally, the variable of r is the bottleneck

of the channel excitation, and we set it 4 empirically. Next,

the channel attention output of F̂sp is gained by applying an

muplication between AW and Fsp, which could be formulated

as:

F̂sp = AW · Fsp. (5)

After that, we concatenate those three channel attention out-

puts and apply a convolution layer with a size of 1 × 1 to

squeeze the channel value to C. Therefore, the final output of

channel attention module F̂ is calculated as:

FC = Conv(Concat(F̂s2, F̂s4, F̂s8)) (6)

With the designed channel attention module, it could guide

the network to focus on the globally crucial representations,

which further improve the classification performance.

2) Position Attention Module: Different from the CA mod-

ule, the goal of our PA module is to extract more subtle

features from the pixel level. The detailed structure of the PA

module is illustrated in Figure 5. In order to learn the impor-

tance of each feature pixel position, we first apply two position

operations τM (.) and τA(.), which are utilized to calculate the

max-value and average-value of each feature pixel position of

the whole feature channels. After that, two sigmoid activations

are employed to those two obtained features and gained the

position weighted feature map FM and FA, respectively. Then,

we multiply the input feature F with FM and FA to gain the

position enhanced feature F
′

M and F
′

A, separately. And it could

be formulated as follow :

F
′

M = F · FM , F
′

A = F · FM (7)

Finally, the output feature map of the PA module is obtained

by concatenating the F
′

M and F
′

A, and then applying a (1 ×
1) convolution layer to aggregate those two features, and the

aggregation process can be defined as:

FP = Conv(Concat(F
′

M , F
′

A)) (8)

3) Channel and Local Feature Fusion: In our designed

model, the channel attention module could generate more

global representations over the whole feature map, while the

position attention module extracts the location attention feature

from the pixel level. To incorporate more discriminative fea-

tures from those two modules, we explore three combination

methods to boost the remote sensing scene classification

performance.

(1) Concatenation The concatenation operation is to con-

catenate two features at the same location x, y along the

specific channel direction d into a vector:

y
x,y,d
concat = concat(F x,y,d

C , F
x,y,d
P ), (9)

where d ∈ {0, 1, 2}, and 1 ≤ x ≤ H , 1 ≤ y ≤ W . y
x,y,d
concat

is the output feature by concatenation operation. Although the

concatenation operation increases the complexity with stacking

more channels, there is no information loss during the fusion

process.

(2) Addition The addition operation is to compute the

sum of two input features at the same location. The addition

operation is formulated as:

y
x,y,c
add = F

x,y,c
C + F

x,y,c
P , (10)

where 1 ≤ x ≤ H , 1 ≤ y ≤ W , 1 ≤ c ≤ C, and y
x,y,c
add is the

output feature by addition operation.

(3) Nonlinear Fusion The strategy of nonlinear fusion is

similar to the concatenation fusion, except that we apply an

FC layer with the nonlinear activation function to each input

feature before the concatenation operation:

y
x,y,d
nonlinear = concat(WC(F

x,y,d
C ),WP (F

x,y,d
P )). (11)

Here, 1 ≤ x ≤ H , 1 ≤ y ≤ W and d ∈ {0, 1, 2} is the specific

channel direction, WC and WP is the corresponding weight

of the FC layer, y
x,y,c
nonlinear is the output feature by nonlinear

fusion operation.

III. EXPERIMENTS AND RESULTS

In this section, we evaluate the proposed MSA-Network

model on three different aerial scene public datasets. We first

give a brief description of all datasets, then the detailed exper-

imental setting of the model is introduced. Finally, we conduct

extensive experiments to further validate the performance of

the proposed MSA-Network model.

A. Introduction of All Datasets

1) UC Merced Dataset: The UC Merced dataset, which

was extracted from the USGS National Map Urban Area

Imagery collection, consists of 21 land-use scene classes, as

shown in Figure 6. There are 100 images for each class, and

each image has a 1-foot spatial resolution, measuring 256×256
pixels.

2) AID Dataset: The AID dataset is a new large-scale

image dataset that contains sample images collected from

Google Earth imagery. There are 10000 images within 30

classes, as shown in Figure 6. Each image of the AID dataset

has a spatial resolution ranging from 8m to half a meter, and

there are about 220 to 400 samples measuring 600×600 pixels

in each class. For each class of the AID dataset, all the images

are selected from different countries and regions around the

world. As a consequence, the dataset has high intra-classes

diversities.
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Fig. 4: The structure of our CA module, F denotes the input feature map with dimension of C ×H ×W , and FC is the final

output from the CA module.

Fig. 5: The structure of PA module, F denotes the input feature maps with the dimension of C × H × W , FP is the final

output from PA module.

3) NWPU-RESISC45 Dataset: The NWPU-RESISC45

dataset, created by Northwestern Polytechnical University

(NWPU), contains 31500 images for remote sensing image

scene classification. The dataset consists of 45 scene classes,

and there are 700 images measuring 256× 256 pixels in each

class. The 45 classes are shown in Figure 6.

From Figures 6, we can see that the sizes of the categories

are various with different distributions, which could be a

challenge for the conventional neural network to learn the

semantic features.

B. Implementation Details

In this paper, we use Tensorflow as the basic framework

to implement the proposed MSA-Network model. The main

backbone of our network is based on the ResNet [13]. Fol-

lowing the experimental setting of [71] [59] [47], for the UC

Merced dataset, we use 80% and 50% as the training sample

ratios, respectively. For the AID dataset, we use 50% and 20%
as the training sample ratios, respectively. For the NWPU-

RESISC45 dataset, we use 20% and 10% training sample

ratios, respectively. During the training process, we use Adam

optimization [30] to make the network convergent. The initial

learning rate is set as 1.0×10−4, and then we reduce it by 0.1
factor after the val-loss not improved 10 epochs. The batch-

size of the proposed MSA-Network is 32, and we use real-

time data augmentation on the training dataset such as the

random rotation, flip, and cropping. We pre-train our model

on the ImageNet dataset, and dropout is adopted to avoid the

network being over-fitting. We conduct our experiments on

Ubuntu 14.04 operating system with 64GB memory, and an

NVIDIA GTX 1080 graphics processing unit (GPU) has been

used to accelerate the training process.

C. Evaluation Protocol

The overall accuracy (OA) and confusion matrix are se-

lected as the criterion to evaluate the performance of the

MSA-Network. The value of OA is calculated by the ratio

between the correct numbers of classified images and the

total number of images. It is one of the basic evaluation

metrics for the classification task, and the higher value of

OA denotes the more accurate classification performance. The

confusion matrix is a table layout that describes the errors

and confusion of each class. Each row of the table denotes

the predicted category instance, and the column represents the

actual category instance. In addition, the diagonal of the table

are the numbers of all the classes correctly classified. The final

confusion matrix is calculated by the best classification result

of all the training ratios for each dataset.

D. The Performance of Different Network Depths

Different depths of networks could extract various repre-

sentations. For a deeper network, it is liable to learn more
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Fig. 6: Example images of UC Merced/AID/NWPU-RESISC45 dataset.

semantic and high-level features, for a shallower network,

it would extract tinier and more detailed information. Thus,

in this section, we first explore the performance of four

network depths (18-layer, 34-layer, 50-layer, 101-layer) on

the three datasets with our designed architecture. The depth

of the network is deepened by adding the convolution and

residual blocks as previous work [13]. The results are reported

in Figure 7. We use the 80%, 50%, and 20% of training

data for the UC Merced dataset, AID dataset, and NWPU-

RESISC45 dataset, respectively. On the UC Merced dataset,

the proposed MSA-Network achieves (97.73 ± 0.45%),
(97.82 ± 0.38%), (98.59 ± 0.42%), and (98.96 ± 0.21%)
classification accuracy for 18-layers, 34-layers, 50-layers, and

101-layers, separately. On the AID dataset, the results are

(94.86 ± 0.51%), (95.32 ± 0.21%), (95.89 ± 0.33%),
and (96.01± 0.43%) for 18-layers, 34-layers, 50-layers, and

101-layers, respectively. The performance of 18-layers, 34-

layers, 50-layers, and 101-layers on NWPU-RESISC45 dataset

is (90.31± 0.42%), (90.78± 0.51%), (91.67± 0.43%), and

(92.52 ± 0.23%). The experimental results demonstrate that

the deeper network layers could achieve better performance

compared with shallower network layers. The best result on

three datasets is by using the 101-layers.

Fig. 7: The comparison results with different network depths.

E. The Effectiveness of Different Modules

In this paper, we propose an MS module and two attention

modules (CA module and PA module) to extract the multi-

scale, global, and local representations more effectively. In

order to evaluate the effectiveness of different modules, we

conduct relevant experiments on those three datasets. The

detailed comparison result is shown in Table II. From the

experimental results, we can observe that adding one of

the MS, CA, and PA module could efficiently improve the

classification performance of the network on different datasets,

that further proves the effectiveness of our proposed modules.

Overall, the best performance is achieved by using the MS

module, CA module, and PA module simultaneously, and

it further proves that the multi-scale, channel, and position

attention features are crucially important in the remote sensing

images classification task.

F. Compared with Different Fusion Methods

The designed CA module generates the features from the

channel level, and the PA module generates the features

from pixel level. Thus, fusing both of the two features could

enrich the discrimination of the feature learning model. In this

section, we explore the effectiveness of three fusion methods

(Addition, Concatenation, Nonlinear Fusion) on all datasets.

The detailed results are shown in Figure 8. On the UC Merced

dataset, the OA is (98.37 ± 0.39%), (98.96 ± 0.21%), and

(97.25 ± 0.64%) for addition, concatenation, and nonlinear

fusion methods, respectively. Meanwhile, the OA on the

AID dataset is (95.77 ± 0.51%), (96.01 ± 0.43%), and

(95.32 ± 0.37%). On NWPU-RESISC45 dataset, it achieves

(92.01 ± 0.46%), (92.52 ± 0.23%), and (91.79 ± 0.56%)
with the three fusion methods, respectively. The performance

on these three datasets demonstrates that the concatenation

fusion method performs best compared with the other two

fusion ones. Furthermore, the addition method is slightly better

than the nonlinear fusion method, and it could be the reason

that some spatial correspondences between the two generated

attention features are decreased at the FC layers. Since the

concatenation fusion method performs best, we use it as the

final fusion method of our model.

G. Classification of the UC Merced Dataset

In order to evaluate the effectiveness of the proposed MSA-

Network, we compare it with other state-of-the-art methods

on the UC Merced dataset. The detailed results are presented

in Table III. In [3], [4], [32], [21], [10], [34], [58], [44],
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TABLE II: The effectiveness of different modules on the UC Merced, AID and NWPU-RESISC45 dataset

Dataset MS module CA module PA module Accuracy(%)

UC Merced

× × × 96.88 ± 0.32

X × × 97.09 ± 0.22

× X × 97.21 ± 0.63

× × X 97.13 ± 0.32

X X × 98.16 ± 0.13

X × X 97.83 ± 0.25

× X X 98.35 ± 0.42

X X X 98.96 ± 0.21

AID

× × × 93.02 ± 0.27

X × × 93.13 ± 0.26

× X × 94.33 ± 0.37

× × X 93.87 ± 0.44

X X × 95.31 ± 0.51

X × X 94.73 ± 0.25

× X X 95.75 ± 0.32

X X X 96.01 ± 0.43

NWPU-RESISC45

× × × 89.83 ± 0.31

X × × 90.01 ± 0.34

× X × 90.32 ± 0.45

× × X 90.89 ± 0.22

X X × 91.25 ± 0.37

X × X 91.74 ± 0.65

× X X 92.03 ± 0.33

X X X 92.52 ± 0.23

Fig. 8: The comparison results with different fusion methods.

[23], researchers used pre-trained CNNs to boost the per-

formance of the models. In [74], [47], [64], [23], bag-of-

visual-words (BoVW) was applied to land-use classification.

In [68], [58], the extreme learning machine classifier was

applied for final classification with fused features. In [34],

[66], they constructed a pyramid image to characterize both

the photometric and geometric aspects of an image. In [1],

[60], [23], images with the LBP based texture, local, and

global information was employed to convey the comprehensive

message to the models. From this table, we can see that the

proposed MSA-Network has gained (98.96 ± 0.21%) and

(97.80 ± 0.33%) classification accuracy for 80% and 50%
training ratios, separately. It is noteworthy that the overall

accuracy of 80% training ratio is better than the 50% training

data ratio, it can be explained that with more training data

samples, the network could learn more high-level and abstract

features which further enhance the classification performance.

Overall, the experimental results demonstrate that our MSA-

Network could gain state-of-the-art classification performance

on the UC Merced dataset. The detailed confusion matrix

with the training ratio of 80% is illustrated in Figure 9. The

confusion matrix result shows that most of the categories have

achieved 100% classification accuracy.

H. Classification of the AID Dataset

Table IV shows the results with other state-of-the-art meth-

ods on the AID dataset. The FACNN in [39] combined the
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TABLE III: Comparisons of overall accuracy (%) on the UC Merced dataset

Method 80% Training Ratio 50% Training Ratio

SPCK [66] 73.14 /

SPCK+ [66] 76.05 /

SPCK++ [66] 77.38 /

BoVW [3] 76.81 /

BoVW + SCK [64] 77.71 /

Saliency-Guided [72] 82.72 ± 1.18 /

VGG-VD-16 [59] 95.21 ± 1.20 94.14 ± 0.69

CaffeNet [59] 95.02 ± 0.81 93.98 ± 0.67

SRSCNN [37] 95.57 /

CNN-ELM [58] 95.62 /

salM3LBP-CLM [60] 95.75 ± 0.80 94.21 ± 0.75

TEX-Net-LF [1] 97.72 ± 0.54 96.91 ± 0.36

Appearance-based [48] 96.05 ± 0.62 /

LGFBOVW [74] 96.88 ± 1.32 /

GoogLeNet [59] 94.31 ± 0.89 92.70 ± 0.60

Fusion by addition [4] / 97.42 ± 1.79

DCA fusion [4] / 96.90 ± 0.09

CCP-net [47] 97.52 ± 0.97 /

Two-Stream Fusion [68] 98.02 ± 1.03 96.97 ± 0.75

DSFATN [10] 98.25 /

Deep CNN Transfer [21] 98.49 /

ResNet [50] 98.50 ± 1.40 /

Aggregate strategy [34] 97.40 96.25

SHHTFM [75] 98.33 ± 0.98 /

VGG-VD16+AlexNet [32] 98.81 ± 0.38 /

FACNN [39] 98.81 ± 0.24 /

CTFCNN [23] 98.44 ± 0.58 /

SAFF [2] 97.02 ± 0.78 /

SSRL [63] 94.05 ± 0.12 /

GBNet [55] 98.57 ± 0.48 97.05 ± 0.19

InceptionV3+Xception[46] 97.86 ± 0.59 96.60 ± 0.65

MSA-Network 98.96 ± 0.21 97.80 ± 0.33

feature learning, feature aggregation, and classifier for joint

training. In [67], they utilized a multi-level fusion method,

which can make a judgment by incorporating different levels’

information. In [4], combined with the SIFT feature, the

deep learning feature can get a discriminative image presen-

tation which overcoming the scale and rotation variability.

The result in Table IV shows that our model has achieved

(93.53 ± 0.21%) classification accuracy with 20% training

data, and (96.01 ± 0.43%) classification accuracy with 50%
training data, which is the best performance compared with

all competing methods. Overall, the result demonstrates that

our MSA-Network could achieve state-of-the-art classification

performance on the AID dataset. The detailed confusion matrix

with a fixing training ratio of 50% is illustrated in Figure 10.

The result shows that most of the categories have gained high

classification accuracy, which is above 90%.

I. Classification of the NWPU-RESISC45 Dataset

For the NWPU-RESISC45 dataset, the result over other

state-of-the-art methods is shown in Table V. In [36], the

lecture focused on the four new loss functions to achieve

better performance. Based on a residual network and dense

convolutional networks in [42], it achieved a competitive

result. Using a metric learning regularization term, the Siamese
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Fig. 9: The confusion matrix on UC Merced dataset with training data of 80%.

CNN proposed in [35] was also very robust and effective. it

notes that the proposed architecture in [35] replaces the final

fully connected layer with a convolutional layer to predict the

corresponding label of each class. The result demonstrates

that our method achieves the highest classification accuracy

compared with other state-of-the-art methods. For the 20%
training data, our model achieves (93.52 ± 0.21%) classifi-

cation accuracy, and for the 10% training data, it has gained

the classification accuracy of (90.38 ± 0.17%). Especially,

compared with the other state-of-the-art network architectures

(e.g., AlexNet, GoogLeNet, VGG-16), the proposed MSA-

Network could gain better performance. It could be explained

from two folds: first, our designed network is based on ResNet,

which has a deeper network architecture to learn more high-

level and semantic features; second, with our designed MS

module and CPA module, the model is apt to extract more

multi-scale and salient features, which further improve the

classification performance of the model. The confusion matrix

of 20% training data is illustrated in Figure 11, indicating that

our model achieves competitive classification results in most

of the categories.

IV. QUALITATIVE ANALYSIS

A. Multi-scale Feature Map Visualization

In this section, we visualize some examples of the MS

module feature maps on different datasets in Figure 12. Since
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TABLE IV: Comparisons of overall accuracy (%) on the AID dataset

Method 50% Training Ratio (%) 20% Training Ratio

BoVW [60] / 78.66 ± 0.52

MS-CLBP+FV [60] / 86.48 ± 0.27

CaffeNet [59] 89.53 ± 0.31 86.86 ± 0.47

GoogLeNet [59] 86.39 ± 0.55 83.44 ± 0.40

VGG-VD-16 [59] 89.64 ± 0.36 86.59 ± 0.29

DCA fusion [4] 89.71 ± 0.33 /

salM3LBP −CLM [60] 89.76 ± 0.45 /

TEX-Net-LF [1] 95.73 ± 0.16 /

Fusion by addition [4] 91.87 ± 0.36 /

Bidirectional adaptive

feature fusion [38]

93.56 /

Multilevel fusion [67] 94.17 ± 0.32 /

Two-Stream Fusion [69] 94.58 ± 0.25 92.32 ± 0.21

FACNN [39] 95.45 ± 0.11 /

CTFCNN [23] 94.91 ± 0.24 /

LCNN-BFF [53] 94.62 ± 0.16 91.66 ± 0.48

SAFF [2] 93.83 ± 0.28 90.25 ± 0.29

GBNet [55] 95.52 /

MSA-Network 96.01 ± 0.43 93.53 ± 0.21

TABLE V: Comparisons of overall accuracy (%) on the NPWU-RESISC45 dataset

Method 20% Training Ratio (%) 10% Training Ratio

LASC-CNN[70] 84.30 81.37

Two-Stream Fusion [69] 83.16 ± 0.18 80.22 ± 0.22

BoCF [8] 84.32 ± 0.17 82.65 ± 0.31

AlexNet [8] 85.16 ± 0.18 81.22 ± 0.19

GoogLeNet [8] 86.02 ± 0.18 82.57 ± 0.12

VGG-16 [8] 90.36 ± 0.18 87.15 ± 0.45

Triple networks [36] 92.33 ± 0.20 /

ResNet [42] 91.96 ± 0.71 89.24 ± 0.75

Siamese ResNet [35] 92.28 /

LCNN-BFF [53] 91.73 ± 0.17 86.53 ± 0.15

SAFF [2] 87.86 ± 0.14 84.38 ± 0.19

SSRL [63] 83.12 ± 0.26 /

MF2Net [62] 92.73 ± 0.21 90.17 ± 0.25

MSA-Network 93.52 ± 0.21 90.38 ± 0.17

different depths of layers could contain various semantic

features, we select the feature maps from the four depth layers

of our designed architecture. Here, we denote the ’MS module

layer 1’, ’MS module layer 2’, ’MS module layer 3’, and

’MS module layer 4’ as the layers from the first, second,

third, and fourth of the MS module layer, respectively. From

the visualization results, we can see that the MS module

could extract diverse features through different sizes of filters,

and the shallower depth layer tends to extract more edge

and subtle representations, while the deeper depth layer is

liable to learn more high-level and abstract features. Overall,

with the designed MS module, the designed network could

encode more discriminative features from different levels,

which further improve the classification performance of the

model.
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Fig. 10: The confusion matrix on AID dataset with training data of 50%.

B. Visualization of the Attention Map

In this section, we show some examples of attention maps

on different datasets. For better comparison, we compare

our model with the ResNet architecture (depth with 101).

The detailed visualization results are illustrated in Figure

13. Compared with the ResNet visualization results, it is

obvious that our designed model can attend to the more

crucial regions, especially on the category relevant regions.

Meanwhile, the designed model could provide more diverse

and detailed region features which could further enhance the

final classification performance. We suggest that adding the

CA module, could guide the model to focus on more global

regions while adding the PA module, tends to guide the model

to focus on more subtle regions, thus, fusing both the CA

module and PA module could efficiently improve the model

ability to learn more crucial and salient features.

V. CONCLUSION

In this paper, we propose an MSA-Network to handle

the remote sensing scene image classification task, in which

the MSA-Network uses the ResNet and incorporates an MS

module and CPA module to further improve the performance

of the designed architecture. The proposed MS module extracts

multi-scale features from different receptive fields with various

sizes of sliding windows. Moreover, we add the MS module

behind each stage’s last residual block to extract the multi-

scale features hierarchically. The CPA module consists of two
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Fig. 11: The confusion matrix on NPWU-RESISC45 dataset with training data of 20%.

parts: the CA module and the PA module. The CA mod-

ule aims to extract the attention features from channel-level

globally, while the PA module learns the attention features

from pixel-level locally. With those two attention modules,

the proposed MSA-Network could focus on more informa-

tive and critical regions globally and locally. Experimental
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Fig. 12: Some examples of the MS module feature maps on different datasets, the images on the top two rows are samples from

the UC Merced dataset, the images on the middle two rows are samples from the NPWU-RESISC45 dataset, and the images

on the bottom two rows are the samples from AID dataset. The ’MS module layer 1’, ’MS module layer 2’, ’MS module

layer 3’, and ’MS module layer 4’ as the layers from the first, second, third, and fourth of the MS module layer, respectively.

results on UC Merced, NWPU-RESISC45, and AID datasets

demonstrate that the proposed MSA-Network could achieve

better performance over several state-of-the-arts on the overall

classification accuracy. Furthermore, we also conduct relevant

experiments on our designed modules to further analyze the

effectiveness of each module. In future work, we will try

to explore the designed MS module and CPA module with

deeper network architecture such as DenseNet to validate

the effectiveness of our modules. Meanwhile, some other

techniques such as ensemble more models with early fusion

or late fusion may further improve the classification accuracy.
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Fig. 13: Some examples of the attention maps on different datasets, the images on the top two rows are samples from the UC

Merced dataset, the images on the middle two rows are samples from the NPWU-RESISC45 dataset, and the images on the

bottom two rows are the samples from the AID dataset.
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